1
|
Li S, Yu W, Wang Y, Lu X. Effect of wet media milling on starch-quercetin complex: Enhancement of Pickering emulsifying ability and oxidative resistance. Food Chem 2024; 460:140586. [PMID: 39079359 DOI: 10.1016/j.foodchem.2024.140586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024]
Abstract
This research explored the effect of media milling on complexation of corn starch (CS) and quercetin (QC), interaction mechanism and Pickering emulsifying ability of corn-quercetin (CS-QC) complex. CS-QC with QC/CS ratio of 1:24 had the highest encapsulation efficiency of 76.00 ± 1.30 %. Average volume-mean diameter, average whole molecular size (Rh) and debranchedamylopectinchain length of CS-QC were significantly decreased after milling. Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) spectra confirmed the complexation between CS and QC. Emulsifying capacity and emulsion stability of Pickering emulsion stabilized by 5 % CS-QC complex particles after 120 min milling reached 100.00 % and 100.00. Pickering emulsions stabilized by these complex particles demonstrated superior oxidative stability. These results demonstrated that media milling could be an efficient physical approach to obtain starch-polyphenol complex by enhancing non-covalent interactions, which could not only be used as food-grade Pickering emulsifiers, but also retard lipid oxidation.
Collapse
Affiliation(s)
- Shufan Li
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Wenwen Yu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China; Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Xuanxuan Lu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China; Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China.
| |
Collapse
|
2
|
Xu Y, Sun L, Zhuang Y, Gu Y, Zhang G, Fan X, Ding Y. Influence of gelatinized octenyl succinic anhydride-modified waxy adlay seed starch on the properties of astaxanthin-loaded emulsions: Emulsion properties, stability and in vitro digestion properties. Food Chem 2024; 457:140105. [PMID: 38905828 DOI: 10.1016/j.foodchem.2024.140105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Octenyl succinic anhydride (OSA)-modified starch is a commonly used food emulsifier and its emulsifying properties are positively correlated with the degree of substitution (DS). However, the maximum concentration of OSA in starch approved by the FDA and the China National Food Safety Standards is 3%. This study aims to enhance the emulsifying properties of OSA-modified waxy adlay seed starch by gelatinization under a limited DS and investigate its use in preparing delivery systems. The gelatinized OSA starch exhibited a more flexible macromolecular structure and better emulsifying activity (20.19 m2/g). The gelatinized OSA starch-stabilized astaxanthin-loaded emulsions showed high retention of astaxanthin (>50%) and long-term stability (56 days). In vitro digestion, the emulsion system showed a protective effect on astaxanthin, and the bioaccessibility of astaxanthin was increased to 16.32%. This study indicated that gelatinization could enhance the emulsifying properties of OSA starch, and this starch-stabilized emulsion was an effective system for astaxanthin.
Collapse
Affiliation(s)
- Yuan Xu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yangyue Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| |
Collapse
|
3
|
Yan X, McClements DJ, Luo S, Liu C, Ye J. Recent advances in the impact of gelatinization degree on starch: Structure, properties and applications. Carbohydr Polym 2024; 340:122273. [PMID: 38858001 DOI: 10.1016/j.carbpol.2024.122273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
During home cooking or industrial food processing operations, starch granules usually undergo a process known as gelatinization. The starch gelatinization degree (DG) influences the structural organization and properties of starch, which in turn alters the physicochemical, organoleptic, and gastrointestinal properties of starchy foods. This review summarizes methods for measuring DG, as well as the impact of DG on the starch structure, properties, and applications. Enzymatic digestion, iodine colorimetry, and differential scanning calorimetry are the most common methods for evaluating the DG. As the DG increases, the structural organization of the molecules within starch granules is progressively disrupted, the particle size of the granules is altered due to swelling and then disruption, the crystallinity is decreased, the molecular weight is reduced, and the starch-lipid complexes are formed. The impact of DG on the starch structure and properties depends on the processing method, operating conditions, and starch source. The starch DG affects the quality of many foods, including baked goods, fried foods, alcoholic beverages, emulsified foods, and edible inks. Thus, a better understanding of the changes in starch structure and function caused by gelatinization could facilitate the development of foods with novel or improved properties.
Collapse
Affiliation(s)
- Xudong Yan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - David Julian McClements
- Biopolymers and Colloids Research Laboratory, Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Shunjing Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Jiangping Ye
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
4
|
Weng J, Zou Y, Zhang Y, Zhang H. Stable encapsulation of camellia oil in core-shell zein nanofibers fabricated by emulsion electrospinning. Food Chem 2023; 429:136860. [PMID: 37478611 DOI: 10.1016/j.foodchem.2023.136860] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
This study aimed to develop core-shell nanofibers by emulsion electrospinning using zein-stabilized emulsions to encapsulate camellia oil effectively. The increasing oil volume fraction (φ from 10% to 60%) increased the apparent viscosity and average droplet size of emulsions, resulting in the average diameter of electrospun fibers increasing from 124.5 nm to 286.2 nm. The oil droplets as the core were randomly distributed in fibers in the form of beads, and the core-shell structure of fibers was observed in TEM images. FTIR indicated that hydrogen bond interactions occurred between zein and camellia oil molecules. The increasing oil volume fraction enhanced the thermal stability, hydrophobicity, and water stability of electrospun nanofiber films. The core-shell nanofibers with 10%, 20%, 40%, and 60% camellia oil showed encapsulation efficiency of 78.53%, 80.25%, 84.52%, and 84.39%, respectively, and had good storage stability. These findings contribute to developing zein-based core-shell electrospun fibers to encapsulate bioactive substances.
Collapse
Affiliation(s)
- Junjie Weng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yucheng Zou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yipeng Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China.
| |
Collapse
|
5
|
Fu Y, Li Y, Everett DW, Weng S, Zhai Y, Wang M, Li T. Octenyl succinic anhydride-modified amyloid protein fibrils demonstrate enhanced ice recrystallization inhibition activity and dispersibility. Int J Biol Macromol 2023; 252:126439. [PMID: 37611688 DOI: 10.1016/j.ijbiomac.2023.126439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Octenyl succinic anhydride (OSA) modification of amyloid proteins fibrils (APFs) was employed to improve dispersibility and ice recrystallization inhibition activity. OSA mainly reacted with the amino groups of APFs without significantly changing morphology. OSA-modified APFs (OAPFs) had lower pI, carried more negative charges, and were more hydrophobic. OSA-modification showed a pH-dependent effect on the dispersibility of fibrils. At pH 7.0, OSA-modification improved dispersibility and inhibited heat-induced gelation of fibrils at weakened electrostatic repulsion. OAPFs were more prone to aggregation with lower dispersity at acidic pH values and demonstrated stronger IRI activity than unmodified fibrils at pH 7.0. Our findings indicate OSA-modification favors the industrial application of APFs as an ice recrystallization inhibitor with enhanced dispersibility.
Collapse
Affiliation(s)
- Yuying Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuan Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - David W Everett
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; AgResearch, Palmerston North, New Zealand; Riddet Institute, Palmerston North, New Zealand
| | - Shuni Weng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yun Zhai
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Mengtin Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Teng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
6
|
Nguyen MT, Shin JA, Lee KT. Oxidation stability of oil-in-water emulsion prepared from perilla seed oil and soy sauce with high salt concentration using OSA-starch. Food Sci Biotechnol 2023; 32:1883-1891. [PMID: 37781065 PMCID: PMC10541380 DOI: 10.1007/s10068-023-01296-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/19/2023] [Accepted: 03/06/2023] [Indexed: 10/03/2023] Open
Abstract
The O/W emulsions were prepared using perilla seed oil (PSO) dispersed in soy sauce (PSE) and in distilled water (PWE), respectively. Octenyl succinic anhydride-modified starch (OSA starch, 3 wt%) showed the most efficient emulsifying ability and its stabilities of emulsion and oxidation in PSE and PWE were studied at different storage periods (0, 4, and 8 weeks) and temperatures (4, 25, and 40 °C). Negligible change in droplet diameter of PSE was observed without coalescence or flocculation during storing for 8 weeks at 4 °C. The stabilizing ability of OSA-starch despite the high ionic strength of soy sauce is attributed to the starch backbone, which promotes steric repulsions between droplets. A lower oxidation degree was observed for PSE prepared than PWE and PSO under all storage conditions. Thus, the O/W emulsion prepared from PSO and soy sauce can be applied to the production of ω-3 fatty acid-enriched Asian-style emulsified products.
Collapse
Affiliation(s)
- Manh-Thang Nguyen
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 South Korea
| | - Jung-Ah Shin
- Department of Food Processing and Distribution, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon-Do 25457 South Korea
| | - Ki-Teak Lee
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 South Korea
| |
Collapse
|
7
|
Fuciños C, Rodríguez-Sanz A, García-Caamaño E, Gerbino E, Torrado A, Gómez-Zavaglia A, Rúa ML. Microfluidics potential for developing food-grade microstructures through emulsification processes and their application. Food Res Int 2023; 172:113086. [PMID: 37689862 DOI: 10.1016/j.foodres.2023.113086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 09/11/2023]
Abstract
The food sector continues to face challenges in developing techniques to increase the bioavailability of bioactive chemicals. Utilising microstructures capable of encapsulating diverse compounds has been proposed as a technological solution for their transport both in food and into the gastrointestinal tract. The present review discusses the primary elements that influence the emulsification process in microfluidic systems to form different microstructures for food applications. In microfluidic systems, reactions occur within small reaction channels (1-1000 μm), using small amounts of samples and reactants, ca. 102-103 times less than conventional assays. This geometry provides several advantages for emulsion and encapsulating structure production, like less waste generation, lower cost and gentle assays. Also, from a food application perspective, it allows the decrease in particle dispersion, resulting in a highly repeatable and efficient synthesis method that also improves the palatability of the food products into which the encapsulates are incorporated. However, it also entails some particular requirements. It is important to obtain a low Reynolds number (Re < approx. 250) for greater precision in droplet formation. Also, microfluidics requires fluid viscosity typically between 0.3 and 1400 mPa s at 20 °C. So, it is a challenge to find food-grade fluids that can operate at the micro-scale of these systems. Microfluidic systems can be used to synthesise different food-grade microstructures: microemulsions, solid lipid microparticles, microgels, or self-assembled structures like liposomes, niosomes, or polymersomes. Besides, microfluidics is particularly useful for accurately encapsulating bacterial cells to control their delivery and release on the action site. However, despite the significant advancement in these systems' development over the past several years, developing and implementing these systems on an industrial scale remains challenging for the food industry.
Collapse
Affiliation(s)
- Clara Fuciños
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain.
| | - Andrea Rodríguez-Sanz
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| | - Esther García-Caamaño
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| | - Esteban Gerbino
- Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata) RA-1900, Argentina
| | - Ana Torrado
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| | - Andrea Gómez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata) RA-1900, Argentina.
| | - María L Rúa
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| |
Collapse
|
8
|
Zhou J, Guo M, Qin Y, Wang W, Lv R, Xu E, Ding T, Liu D, Wu Z. Advances in Starch Nanoparticle for Emulsion Stabilization. Foods 2023; 12:2425. [PMID: 37372636 DOI: 10.3390/foods12122425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Starch nanoparticles (SNPs) are generally defined as starch grains smaller than 600-1000 nm produced from a series of physical, chemical, or biologically modified starches. Many studies have reported the preparation and modification of SNPs, which are mostly based on the traditional "top-down" strategy. The preparation process generally has problems with process complexity, long reaction periods, low yield, high energy consumption, poor repeatability, etc. A "bottom-up" strategy, such as an anti-solvent method, is proven to be suitable for the preparation of SNPs, and they are synthesized with small particle size, good repeatability, a low requirement on equipment, simple operation, and great development potential. The surface of raw starch contains a large amount of hydroxyl and has a high degree of hydrophilicity, while SNP is a potential emulsifier for food and non-food applications.
Collapse
Affiliation(s)
- Jianwei Zhou
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Meimei Guo
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yu Qin
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wenjun Wang
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ruiling Lv
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| | - Enbo Xu
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tian Ding
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Food Laboratory of Zhongyuan, Luohe 462044, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
9
|
Influence of degree of substitution of octenyl succinic anhydride starch on complexation with chitosan and complex-stabilized high internal phase Pickering emulsions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Lin J, Fan S, Ruan Y, Wu D, Yang T, Hu Y, Li W, Zou L. Tartary Buckwheat Starch Modified with Octenyl Succinic Anhydride for Stabilization of Pickering Nanoemulsions. Foods 2023; 12:foods12061126. [PMID: 36981053 PMCID: PMC10048578 DOI: 10.3390/foods12061126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
In this study, Tartary buckwheat starch was modified to different degrees of substitution (DS) with octenyl succinate anhydride (OS-TBS) in order to explore its potential for stabilizing Pickering nanoemulsions. OS-TBS was prepared by reacting Tartary buckwheat starch with 3, 5 or 7% (w/v) octenyl succinate in an alkaline aqueous solution at pH 8.5. Fourier-transform infrared spectroscopy gave peaks at 1726 cm−1 (C=O) and 1573 cm−1 (RCOO−), indicating the formation of OS-TBS. We further studied the physicochemical properties of the modified starch as well as its emulsification capacity. As the DS with octenyl succinate anhydride increased, the amylose content and gelatinization temperature of the OS-TBS decreased, while its solubility increased. In contrast to the original Tartary buckwheat starch, OS-TBS showed higher surface hydrophobicity, and its particles were more uniform in size and its emulsification stability was better. Higher DS with octenyl succinate led to better emulsification. OS-TBS efficiently stabilized O/W Pickering nanoemulsions and the average particle size of the emulsion was maintained at 300–400 nm for nanodroplets. Taken together, these results suggest that OS-TBS might serve as an excellent stabilizer for nanoscale Pickering emulsions. This study may suggest and expand the use of Tartary buckwheat starch in nanoscale Pickering emulsions in various industrial processes.
Collapse
Affiliation(s)
- Jie Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Shasha Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yuyue Ruan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ting Yang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Wei Li
- School of Basic Medicine, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Correspondence: ; Tel.: +86-028-84616029
| |
Collapse
|
11
|
Wang L, Zhan J, Ma R, Tian Y. Preparation of Starch-based Nanoemulsion for Sustained Release and Enhanced Bioaccessibility of Quercetin. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
12
|
Cai Z, Wei Y, Shi A, Zhong J, Rao P, Wang Q, Zhang H. Correlation between interfacial layer properties and physical stability of food emulsions: current trends, challenges, strategies, and further perspectives. Adv Colloid Interface Sci 2023; 313:102863. [PMID: 36868168 DOI: 10.1016/j.cis.2023.102863] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/02/2023]
Abstract
Emulsions are thermodynamically unstable systems that tend to separate into two immiscible phases over time. The interfacial layer formed by the emulsifiers adsorbed at the oil-water interface plays an important role in the emulsion stability. The interfacial layer properties of emulsion droplets have been considered the cutting-in points that influence emulsion stability, a traditional motif of physical chemistry and colloid chemistry of particular significance in relation to the food science and technology sector. Although many attempts have shown that high interfacial viscoelasticity may contribute to long-term emulsion stability, a universal relationship for all cases between the interfacial layer features at the microscopic scale and the bulk physical stability of the emulsion at the macroscopic scale remains to be established. Not only that, but integrating the cognition from different scales of emulsions and establishing a unified single model to fill the gap in awareness between scales also remain challenging. In this review, we present a comprehensive overview of recent progress in the general science of emulsion stability with a peculiar focus on interfacial layer characteristics in relation to the formation and stabilization of food emulsions, where the natural origin and edible safety of emulsifiers and stabilizers are highly requested. This review begins with a general overview of the construction and destruction of interfacial layers in emulsions to highlight the most important physicochemical characteristics of interfacial layers (formation kinetics, surface load, interactions among adsorbed emulsifiers, thickness and structure, and shear and dilatational rheology), and their roles in controlling emulsion stability. Subsequently, the structural effects of a series of typically dietary emulsifiers (small-molecule surfactants,proteins, polysaccharides, protein-polysaccharide complexes, and particles) on oil-water interfaces in food emulsions are emphasized. Finally, the main protocols developed for modifying the structural characteristics of adsorbed emulsifiers at multiple scales and improving the stability of emulsions are highlighted. Overall, this paper aims to comprehensively study the literature findings in the past decade and find out the commonality of multi-scale structures of emulsifiers, so as to deeply understand the common characteristics and emulsification stability behaviour of adsorption emulsifiers with different interfacial layer structures. It is difficult to say that there has been significant progress in the underlying principles and technologies in the general science of emulsion stability over the last decade or two. However, the correlation between interfacial layer properties and physical stability of food emulsions promotes revealing the role of interfacial rheological properties in emulsion stability, providing guidance on controlling the bulk properties by tuning the interfacial layer functionality.
Collapse
Affiliation(s)
- Zhixiang Cai
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Wei
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, P.O. Box 5109, Beijing 100193, China
| | - Jian Zhong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Pingfan Rao
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, P.O. Box 5109, Beijing 100193, China.
| | - Hongbin Zhang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China..
| |
Collapse
|
13
|
Li XL, Liu WJ, Xu BC, Zhang B, Wang W, Su DL. OSA-linear dextrin enhances the compactness of pea protein isolate nanoparticles: Increase of high internal phase emulsions stability. Food Chem 2023; 404:134590. [DOI: 10.1016/j.foodchem.2022.134590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
14
|
Xu T, Hong Y, Gu Z, Cheng L, Li C, Li Z. Adsorption and Assembly of Octenyl Succinic Anhydride Starch/Chitosan Electrostatic Complexes at Oil-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3006-3017. [PMID: 36745541 DOI: 10.1021/acs.langmuir.2c02878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Biopolymer electrostatic complexes are popular Pickering stabilizers whose structures greatly affect their interfacial properties. This study comprehensively demonstrated the interfacial adsorption and assembly of dissolved octenyl succinic anhydride (OSA) starch (OSA-D)/chitosan (CS) electrostatic complexes with different structures through complementary characterization methods. We found that compared with single-component systems, OSA-D/CS complexes exhibited significantly increased wetting stability and adsorption rate to the interface, which was reinforced by molecular dynamics simulations. Their soft structures and the entanglement of molecular chains led to the formation of thick and highly viscoelastic multilayer adsorbed films, which greatly resisted deformation against shearing forces. The adsorption and assembly of the complexes were strongly influenced by OSA-D/CS ratios and pH, which could be related to the different interfacial interaction strengths. Overall, the electrostatic complexation, structural characteristics, and interfacial properties of OSA-D/CS complexes were well related, thereby providing valuable information for the regulation of controlled interfaces and bulk system properties.
Collapse
Affiliation(s)
- Tian Xu
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi214122, China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi214122, China
- Jiaxing Institute of Future Food, Jiaxing314050, PR China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi214122, China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi214122, China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi214122, China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi214122, China
| |
Collapse
|
15
|
Dong D, Geng T, Cui B, Yuan C, Guo L, Zhao M, Zou F, Liu P, Zhang H. Effect of octenyl succinic anhydride modified starch on soy protein-polyphenol binary covalently linked complexes. Front Nutr 2023; 10:1093250. [PMID: 36845044 PMCID: PMC9947288 DOI: 10.3389/fnut.2023.1093250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
The present study aimed to investigate the effects of octenyl succinic anhydride modified starch (OSAS) on soy protein (SP)-(-)-epigallocatechin-3-gallate (EGCG) binary covalently linked complexes. Mean diameters of OSAS-SP-EGCG complexes decreased from 379.6 ± 54.9 nm to 272.7 ± 47.7 nm as the OSAS-to-SP-EGCG ratio changed from 1:2 to 4:1, while ζ-potential decreased from -19.1 ± 0.8 mV to -13.7 ± 1.2 mV. Fourier transform infrared spectroscopy results revealed that the characteristic peaks at 1725 cm-1 and 1569 cm-1 for OSAS disappeared in the OSAS-SP-EGCG complexes, indicating an interaction between OSAS and SP-EGCG complexes. X-ray diffraction analysis showed that with the increase of OSAS content, the diffraction peak at approximately 8.0° decreased from 8.22° to 7.74°, implying that the structures of OSAS and SP-EGCG complexes were rearranged after forming into OSAS-SP-EGCG complexes. The contact angle of the OSAS-SP-EGCG complexes significantly increased from 59.1° to 72.1° with the addition of OSAS increased, revealing that the addition of OSAS improved hydrophobicity of the SP-EGCG complexes. Transmission electron microscopy images revealed that the individual OSAS-SP-EGCG complexes became smaller but stuck together to form large fragments, which was different from the morphology of OSAS and SP-EGCG complexes. Thus, the OSAS-SP-EGCG complexes developed in this study may be effective emulsifiers for improving the stability of emulsion systems in the food industry.
Collapse
Affiliation(s)
| | - Tenglong Geng
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | | | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Meng Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Feixue Zou
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Hongxia Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| |
Collapse
|
16
|
Kou T, Faisal M, Song J, Blennow A. Stabilization of emulsions by high-amylose-based 3D nanosystem. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Tea polyphenols-OSA starch interaction and its impact on interface properties and oxidative stability of O/W emulsion. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Champrasert O, Sagis LM, Suwannaporn P. Emulsion-based oleogelation using octenyl succinic anhydride modified granular cold-water swelling starch. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
19
|
Kirtil E, Oztop MH. Mechanism of adsorption for design of role-specific polymeric surfactants. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-022-02636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Niu H, Wang W, Dou Z, Chen X, Chen X, Chen H, Fu X. Multiscale combined techniques for evaluating emulsion stability: A critical review. Adv Colloid Interface Sci 2023; 311:102813. [PMID: 36403408 DOI: 10.1016/j.cis.2022.102813] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Emulsions are multiscale and thermodynamically unstable systems which will undergo various unstable processes over time. The behavior of emulsifier molecules at the oil-water interface and the properties of the interfacial film are very important to the stability of the emulsion. In this paper, we mainly discussed the instability phenomena and mechanisms of emulsions, the effects of interfacial films on the long-term stability of emulsions and summarized a set of systematic multiscale combined methods for studying emulsion stability, including droplet size and distribution, zeta-potential, the continuous phase viscosity, adsorption mass and thickness of the interfacial film, interfacial dilatational rheology, interfacial shear rheology, particle tracking microrheology, visualization technologies of the interfacial film, molecular dynamics simulation and the quantitative evaluation methods of emulsion stability. This review provides the latest research progress and a set of systematic multiscale combined techniques and methods for researchers who are committed to the study of oil-water interface and emulsion stability. In addition, this review has important guiding significances for designing and customizing interfacial films with different properties, so as to obtain emulsion-based delivery systems with varying stability, oil digestibility and bioactive substance utilization.
Collapse
Affiliation(s)
- Hui Niu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China; SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China
| | - Wenduo Wang
- School of Food Science and Technology, Guangdong Ocean University, Yangjiang 529500, Guangdong, PR China
| | - Zuman Dou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Xianwei Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China; Maritime Academy, Hainan Vocational University of Science and Technology, 18 Qiongshan Road, Haikou 571126, PR China.
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China.
| |
Collapse
|
21
|
Kou T, Faisal M, Song J, Blennow A. Polysaccharide-based nanosystems: a review. Crit Rev Food Sci Nutr 2022; 64:1-15. [PMID: 35916785 DOI: 10.1080/10408398.2022.2104209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polysaccharide-based nanosystem is an umbrella term for many areas within research and technology dealing with polysaccharides that have at least one of their dimensions in the realm of a few hundreds of nanometers. Nanoparticles, nanocrystals, nanofibers, nanofilms, and nanonetworks can be fabricated from many different polysaccharide resources. Abundance in nature, cellulose, starch, chitosan, and pectin of different molecular structures are widely used to fabricate nanosystems for versatile industrial applications. This review presents the dissolution and modification of polysaccharides, which are influenced by their different molecular structures and applications. The dissolution ways include conventional organic solvents, ionic liquids, inorganic strong alkali and acids, enzymes, and hydrothermal treatment. Rheological properties of polysaccharide-based nano slurries are tailored for the purpose functions of the final products, e.g., imparting electrostatic functions of nanofibers to reduce viscosity by using lithium chloride and octenyl succinic acid to increase the hydrophobicity. Nowadays, synergistic effects of polysaccharide blends are increasingly highlighted. In particular, the reinforcing effect of nanoparticles, nanocrystals, nanowhiskers, and nanofibers to hydrogels, aerogels, and scaffolds, and the double network hydrogels of a rigid skeleton and a ductile substance have been developed for many emerging issues.
Collapse
Affiliation(s)
- Tingting Kou
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, PR China
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Marwa Faisal
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jun Song
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, PR China
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
22
|
Huang Z, Zeng YJ, Wu XL, Li MF, Zong MH, Lou WY. Development of Millettia speciosa champ polysaccharide conjugate stabilized oil-in-water emulsion for oral delivery of β-carotene: Protection effect and in vitro digestion fate. Food Chem 2022; 397:133764. [PMID: 35905621 DOI: 10.1016/j.foodchem.2022.133764] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022]
Abstract
In this study, a natural antioxidant emulsifier, Millettia speciosa Champ polysaccharide conjugates (MSC-PC), was used for fabricating oil-in-water emulsion, and the influences of MSC-PC on β-carotene stability and bioaccessibility were studied. Results suggested that MSC-PC stabilized emulsion exhibited excellent resistance to a wide range of salt levels (0-500 mM of Na+), thermal treatments (50-90 °C) and pH values (3.0-11.0). MSC-PC also exhibited an outstanding inhibition capacity on lipid oxidation. Besides, MSC-PC stabilized emulsion had a better protective effect on β-carotene than other systems. Interestingly, in spite of similar lipolysis extent, β-carotene bioaccessibility in MSC-PC fabricated emulsion (14.75 %) was markedly higher than that in commercial Tween 80 fabricated emulsion (10.08 %), likely due to the steric-hindrance effect and antioxidant ability of MSC-PC, building interfacial layers that prevented β-carotene from degradation. This work supplied a deep insight into elucidating the mechanisms of emulsifying performance and β-carotene protection effect of MSC-PC fabricated emulsion.
Collapse
Affiliation(s)
- Zhi Huang
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Ying-Jie Zeng
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Xiao-Ling Wu
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Meng-Fan Li
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Wen-Yong Lou
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China.
| |
Collapse
|
23
|
Niu H, Chen X, Luo T, Chen H, Fu X. Relationships between the behavior of three different sources of pectin at the oil-water interface and the stability of the emulsion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107566] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Huang Z, Hu T, Liu H, Xie H, Tian X, Wu Z. Biosynthesis and polyketide oxidation of Monascus red pigments in an integrated fermentation system with microparticles and surfactants. Food Chem 2022; 394:133545. [PMID: 35759840 DOI: 10.1016/j.foodchem.2022.133545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/04/2022] [Accepted: 06/19/2022] [Indexed: 11/04/2022]
Abstract
Monascus red pigments are widely used in the food industry, mainly as intracellular red pigments. The low yields of extracellular red pigments (ERPs) make them unsuitable for large-scale industrial production. Herein, a novel integrated fermentation system (IFS) consisting of sodium starch octenyl succinate and Triton X-100 was explored for increasing yield, resulting in an ERP yield of 126.7 U/mL, 82.6% higher production than controls (69.4 U/mL). Major ERP components in control fermentations were monascopyridine A and monascopyridine B, but dehydro derivatives, rubropunctamine and monascorubramine, predominated in the test fermentations, presumably due to polyketide oxidation induced by Triton X-100. Improvement of hyphal morphology, membrane permeability, respiratory activity, and gene expression for red pigment biosynthesis is likely to be critical to increase yield and change the compositions. This study provides an effective strategy to accelerate the biosynthesis and secretion of Monascus pigments.
Collapse
Affiliation(s)
- Zhenfeng Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Tingting Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Haiqing Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Pan Asia (Jiangmen) Institute of Biological Engineering and Health, Jiangmen 529080, China
| | - Huixin Xie
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaofei Tian
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou 510006, China
| | - Zhenqiang Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
25
|
Wu Z, Li H, Zhao X, Ye F, Zhao G. Hydrophobically modified polysaccharides and their self-assembled systems: A review on structures and food applications. Carbohydr Polym 2022; 284:119182. [DOI: 10.1016/j.carbpol.2022.119182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/27/2021] [Accepted: 01/21/2022] [Indexed: 01/05/2023]
|
26
|
Huang Z, Zong MH, Lou WY. Effect of acetylation modification on the emulsifying and antioxidant properties of polysaccharide from Millettia speciosa Champ. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107217] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Characterization of core-shell nanofibers electrospun from bilayer gelatin/gum Arabic O/W emulsions crosslinked by genipin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Xu T, Jiang C, Zhou Q, Gu Z, Cheng L, Tong Y, Hong Y. Preparation and characterization of octenyl succinic anhydride modified waxy maize starch hydrolyzate/chitosan complexes with enhanced interfacial properties. Carbohydr Polym 2021; 267:118228. [PMID: 34119181 DOI: 10.1016/j.carbpol.2021.118228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/25/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022]
Abstract
The preparation and characterization of colloidal complexes based on octenyl succinic anhydride starch hydrolyzate (OSAS) and chitosan (CS) were conducted. Results showed that OSA-S/CS ratio (r) and pH significantly affected complex turbidities and yields. The highest turbidity and yield were obtained at r = 6:1 when pH was fixed, and at pH 6.5 when r was fixed. All complexes remained liquid-like except that formed at pH 6.5, which exhibited a gel structure due to the strongest complexation. OSA-S/CS complexes had intertwined core-shell microstructure and exhibited electrostatic interactions between COO- and NH3+ groups of OSA-S and CS, respectively. The complexes prepared at r = 6:1 and pH 6.0 exhibited the most suitable wettability (θow = 91.97°) and interfacial adsorption dynamics. The compact lamellar network and intact cores of these complexes were also shown. This work provides profound and comprehensive information about the formation and physicochemical properties of OSA-S/CS complexes.
Collapse
Affiliation(s)
- Tian Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 LiHu Avenue, Wuxi 214122, Jiangsu Province, PR China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, 1800 LiHu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Chengchen Jiang
- School of Food Science and Technology, Jiangnan University, 1800 LiHu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Qiwei Zhou
- School of Food Science and Technology, Jiangnan University, 1800 LiHu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 LiHu Avenue, Wuxi 214122, Jiangsu Province, PR China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, 1800 LiHu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 LiHu Avenue, Wuxi 214122, Jiangsu Province, PR China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, 1800 LiHu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Yi Tong
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Bio-Chemical Co. Ltd, Changchun 130033, PR China.
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 LiHu Avenue, Wuxi 214122, Jiangsu Province, PR China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, 1800 LiHu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| |
Collapse
|
29
|
Huang ZF, Yang SZ, Liu HQ, Tian XF, Wu ZQ. Sodium starch octenyl succinate facilitated the production of water-soluble yellow pigments in Monascus ruber fermentation. Appl Microbiol Biotechnol 2021; 105:6691-6706. [PMID: 34463799 DOI: 10.1007/s00253-021-11512-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/28/2022]
Abstract
Natural water-soluble Monascus pigments (WSMPs) have been in increasing demand but have not been able to achieve industrial production due to the low production rate. This study aimed to improve the biosynthesis and secretion of extracellular yellow pigments (EYPs) through submerged fermentation with Monascus ruber CGMCC 10,910 supplemented with sodium starch octenyl succinate (OSA-SNa). The results demonstrated that the yield was 69.68% and 48.89% higher than that without OSA-SNa in conventional fermentation (CF) and extractive fermentation (EF), respectively. The mainly increased EYP components were Y3 and Y4 in CF, but they were mainly Y1 and Y2 as well as secreted intracellular pigments, including Y5, Y6, O1, and O2, in EF. Scanning electron microscopy analysis revealed that the mycelium presented an uneven surface profile with obvious wrinkles and small fragments with OSA-SNa. It was found that a higher unsaturated/saturated fatty acids ratio in the cell membrane resulted in increased permeability and facilitated the export of intracellular yellow pigments into the broth with OSA-SNa treatment. In addition, a higher NAD+/NADH ratio and glucose-6-phosphate dehydrogenase activity provided a reducing condition for yellow pigment biosynthesis. Gene expression analysis showed that the expression levels of the key genes for yellow pigment biosynthesis were significantly upregulated by OSA-SNa. This study provides an effective strategy to promote the production of WSMPs by microparticle-enhanced cultivation using OSA-SNa. KEY POINTS: • OSA-SNa addition facilitated the production of Monascus yellow pigments. • Mycelial morphology and membrane permeability were affected by OSA-SNa. • The key gene expression of yellow pigments was upregulated.
Collapse
Affiliation(s)
- Zhen-Feng Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Shan-Zhong Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Hai-Qing Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.,Pan Asia (Jiangmen) Institute of Biological Engineering and Health, Jiangmen, 529080, China
| | - Xiao-Fei Tian
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou, 510006, China
| | - Zhen-Qiang Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
30
|
Qin XS, Gao QY, Luo ZG. Enhancing the storage and gastrointestinal passage viability of probiotic powder (Lactobacillus Plantarum) through encapsulation with pickering high internal phase emulsions stabilized with WPI-EGCG covalent conjugate nanoparticles. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106658] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
Espinosa-Sandoval L, Ochoa-Martínez C, Ayala-Aponte A, Pastrana L, Gonçalves C, Cerqueira MA. Polysaccharide-Based Multilayer Nano-Emulsions Loaded with Oregano Oil: Production, Characterization, and In Vitro Digestion Assessment. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:878. [PMID: 33808246 PMCID: PMC8067034 DOI: 10.3390/nano11040878] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022]
Abstract
The food industry has increased its interest in using "consumer-friendly" and natural ingredients to produce food products. In the case of emulsifiers, one of the possibilities is to use biopolymers with emulsification capacity, such as octenyl succinic anhydride modified starch, which can be used in combination with other polysaccharides, such as chitosan and carboxymethylcellulose, in order to improve the capacity to protect bioactive compounds. In this work, multilayer nano-emulsion systems loaded with oregano essential oil were produced by high energy methods and characterized. The process optimization was carried out based on the evaluation of particle size, polydispersity index, and zeta potential. Optimal conditions were achieved for one-layer nano-emulsions resulting in particle size and zeta potential of 180 nm and -42 mV, two layers (after chitosan addition) at 226 nm and 35 mV, and three layers (after carboxymethylcellulose addition) of 265 nm and -1 mV, respectively. The encapsulation efficiency of oregano essential oil within nano-emulsions was 97.1%. Stability was evaluated up to 21 days at 4 and 20 °C. The three layers nano-emulsion demonstrated to be an efficient delivery system of oregano essential oil, making 40% of the initial oregano essential oil available versus 13% obtained for oregano essential oil in oil, after exposure to simulated digestive conditions.
Collapse
Affiliation(s)
- Luz Espinosa-Sandoval
- School of Food Engineering, Universidad del Valle, 76001 Cali, Colombia; (L.E.-S.); (C.O.-M.); (A.A.-A.)
| | - Claudia Ochoa-Martínez
- School of Food Engineering, Universidad del Valle, 76001 Cali, Colombia; (L.E.-S.); (C.O.-M.); (A.A.-A.)
| | - Alfredo Ayala-Aponte
- School of Food Engineering, Universidad del Valle, 76001 Cali, Colombia; (L.E.-S.); (C.O.-M.); (A.A.-A.)
| | - Lorenzo Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (L.P.); (M.A.C.)
| | - Catarina Gonçalves
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (L.P.); (M.A.C.)
| | - Miguel A. Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (L.P.); (M.A.C.)
| |
Collapse
|
32
|
Li W, Yu Y, Peng J, Dai Z, Wu J, Wang Z. Effects of the degree of substitution of OSA on the properties of starch microparticle-stabilized emulsions. Carbohydr Polym 2021; 255:117546. [PMID: 33436262 DOI: 10.1016/j.carbpol.2020.117546] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022]
Abstract
An amphiphilic polymer of octenyl succinic anhydride (OSA)-modified starch microparticles (SMPs) was synthesized and used to stabilize emulsions. The effects of the degree of substitution (DS) on the physicochemical properties of OSA-modified SMPs and the stability of OSA-modified SMP-stabilized emulsions during a three-step in vitro digestion model were studied. The results showed that OSA esterification acted on the surface of SMPs and that the hydrophobicity of SMPs improved with increasing DS. In addition, the emulsion stability during storage and the changes in ionic strength were enhanced by increasing DS. Moreover, a higher DS also led to smaller oil droplets and more OSA-modified SMPs retained during intestinal digestion. Most importantly, the encapsulation efficiency and the bioaccessibility of curcumin in the emulsion during intestinal digestion were both enhanced significantly with the increase of DS.
Collapse
Affiliation(s)
- Wenhui Li
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Yu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jielong Peng
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ziyang Dai
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhengwu Wang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
33
|
Zhao L, Tong Q, Wang H, Liu Y, Xu J, Rehman A. Emulsifying properties and structure characteristics of octenyl succinic anhydride-modified pullulans with different degree of substitution. Carbohydr Polym 2020; 250:116844. [DOI: 10.1016/j.carbpol.2020.116844] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 11/27/2022]
|
34
|
Liu Y, Yan C, Chen J, Wang Y, Liang R, Zou L, McClements DJ, Liu W. Enhancement of beta-carotene stability by encapsulation in high internal phase emulsions stabilized by modified starch and tannic acid. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106083] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
35
|
Characteristics of starch-based Pickering emulsions from the interface perspective. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Starch nanocrystals as the particle emulsifier to stabilize caprylic/capric triglycerides-in-water emulsions. Carbohydr Polym 2020; 245:116561. [PMID: 32718647 DOI: 10.1016/j.carbpol.2020.116561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/19/2020] [Accepted: 05/31/2020] [Indexed: 11/20/2022]
Abstract
Starch nanocrystals (SNCs) grafted with octenyl succinic anhydride (OSA) were used to stabilize caprylic/capric triglycerides (GTCC)-in-water emulsions. The morphology and viscoelasticity of emulsions were studied in terms of particle loadings and degrees of substitution (DSs). It is found that the emulsifying capacities of SNCs increase with increased DSs. Both the pristine SNC and modified ones can be well used to stabilize emulsions, whereas the emulsification follows different mechanisms. The platelet-like structure of SNCs, together with its improved amphiphilicity after surface treatments, are important to the formation and evolution of droplet clusters. The deformation and relaxation of those clusters result in weak flow overshoots and strong thixotropy in different shear flow fields, which favor storage and applications of GTCC-in-water emulsions as hydrocolloids. The mechanisms were then discussed in terms of rigidity of SNC and relaxations of clusters. This work proposes a promising application of SNC in food and cosmetic industries.
Collapse
|
37
|
Gao Y, Wu S. Development and evaluation of a novel oleogel system based on starch-water-wax-oil. Food Funct 2020; 11:7727-7735. [PMID: 32789410 DOI: 10.1039/d0fo01785j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel oleogel system was developed, and its characteristics and properties were investigated. The results indicate that a low-cost, low-fat and low hardness oleogel product was formed by potato starch, candelilla wax, oil, and distilled water. Specifically, the content of potato starch and candelilla wax in the oleogel system was 5 wt%. A potato starch/candelilla wax ratio from 1.22 to 5.67 led to the formation of a type II starch-lipid oleogel system, and the content of distilled water was 45 times the starch content. All the above-mentioned information demonstrated that starch/wax-based oleogels are a typical lipid system. They can reduce the content of wax and oil in oleogel systems, form oleogel products with low hardness values and exhibit great potential in the field of low-fat food and low-cost food industrial applications.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China. and Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, 800 Dongchuan Road, Shanghai 200240, China
| | - Shimin Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China. and Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
38
|
Zhang R, Belwal T, Li L, Lin X, Xu Y, Luo Z. Recent advances in polysaccharides stabilized emulsions for encapsulation and delivery of bioactive food ingredients: A review. Carbohydr Polym 2020; 242:116388. [PMID: 32564856 DOI: 10.1016/j.carbpol.2020.116388] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Many bioactive food ingredients were encapsulated in different forms to improve their stability and bioavailability. Emulsions have showed excellent properties in encapsulation, controlled release, and targeted delivery of bioactives. Polysaccharides are widely available and have different structures with different advantages including non-toxic, easily digested, biocompatible and can keep stable over a wide range of pH and temperatures. In this review, the most common polysaccharides and polysaccharide based complexes as emulsifiers to stabilize emulsions in recent ten years are described. The close relationships between the types and structures of polysaccharides and their emulsifying capacities are discussed. In addition, the absorption and bioavailability of bioactive food components loaded in polysaccharide stabilized emulsions are summarized. The main goal of the review is to emphasize the important roles of polysaccharides in stabilizing emulsions. Moreover, speculations regarded to some issues for the further exploration and possible onward developments of polysaccharides stabilized emulsions are also discussed.
Collapse
Affiliation(s)
- Ruyuan Zhang
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China
| | - Li Li
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China
| | - Xingyu Lin
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China
| | - Yanqun Xu
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China; Fuli Institute of Food Science, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
39
|
Rashed MMA, Mahdi AA, Ghaleb ADS, Zhang FR, YongHua D, Qin W, WanHai Z. Synergistic effects of amorphous OSA-modified starch, unsaturated lipid-carrier, and sonocavitation treatment in fabricating of Lavandula angustifolia essential oil nanoparticles. Int J Biol Macromol 2020; 151:702-712. [PMID: 32092424 DOI: 10.1016/j.ijbiomac.2020.02.224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/18/2022]
Abstract
This investigation aims to evaluate the synergistic effects of amorphous OSA-modified starch, unsaturated lipid-carrier (RBD-SFO), and high-energy microfluidization in synergy with the ultrasonic techniques in fabricating of Lavandula angustifolia essential oil (LAF-EO) nanoparticle. GC-MS and SEM techniques were employed to investigate the LAF-EO isolation method used. DLS analysis was employed along with CLSM and TEM techniques to investigate the physicochemical properties of nanoemulsion formulation (NE) matrices. The NE achieved the optimal spherical and size distributions of droplets (125.7 nm), Poly Dispersity Index (PdI) (0.183), and ζ-potential (-40.3 mV) when the contents of the formulation matrix were as follows: OSA-MS (2%), LAF-EO (1%), RBD-SFO (1%), and Tween-80 (1%). The findings of this work provide a new concept about the synergistic effects of amorphous OSA-modified starch and unsaturated lipid carrier as safe-grade macromolecules in the fabricating of LAF-EO nanoparticles. Besides, the application of the ultrasound cavitation phenomenon has been shown to have effective effect in reducing the droplet hydrodynamic diameter along with enhancing the distribution (PdI) and electrokinetic potential of the LAF-EO nanoparticles.
Collapse
Affiliation(s)
- Marwan M A Rashed
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, Jiangsu Province, China.
| | - Amer Ali Mahdi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, Jiangsu Province, China
| | - Abduljalil D S Ghaleb
- Faculty of Applied and Medical Science, AL-Razi University, Al-Rebatt St., Sana'a, Yemen
| | - Feng Rui Zhang
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China
| | - Du YongHua
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China
| | - Wei Qin
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China.
| | - Zhou WanHai
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China.
| |
Collapse
|
40
|
Li H, Ma Y, Yu L, Xue H, Wang Y, Chen J, Zhang S. Construction of octenyl succinic anhydride modified porous starch for improving bioaccessibility of β-carotene in emulsions. RSC Adv 2020; 10:8480-8489. [PMID: 35497834 PMCID: PMC9049959 DOI: 10.1039/c9ra10079b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/24/2020] [Indexed: 11/30/2022] Open
Abstract
Modified porous starch (PS), by introducing octenyl succinic anhydride (OSA) moieties, was synthesized successfully, which was applied as an emulsion of β-carotene for the first time. The pores and channels within porous starch provided more possibilities for OSA to modify starch. The ester linkage of OSA modified PS with different degrees of substitution (DS) were confirmed by both 13C solid-state NMR and Fourier transform-infrared spectroscopy (FT-IR). The hydrophobic octenyl succinic and hydrophilic hydroxyl groups of OSA modified PS showed the good emulsifying capability, which could be utilized to prepare β-carotene emulsions. And the bioaccessibility of β-carotene was also enhanced with increasing DS of OSA modified starch. This study not only paves a new way using porous starches for modification of starch, but also offers an attractive alternative for obtaining emulsion-based delivery systems for bioactive components. The synthesis and application of OSA modified porous starch.![]()
Collapse
Affiliation(s)
- Haiyan Li
- College of Food Science and Engineering
- Gansu Agricultural University
- Lanzhou 730070
- China
| | - Yunxiang Ma
- College of Food Science and Engineering
- Gansu Agricultural University
- Lanzhou 730070
- China
| | - Liyue Yu
- College of Food Science and Engineering
- Gansu Agricultural University
- Lanzhou 730070
- China
| | - Huadong Xue
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Yue Wang
- College of Food Science and Engineering
- Gansu Agricultural University
- Lanzhou 730070
- China
| | - Jinfeng Chen
- College of Food Science and Engineering
- Gansu Agricultural University
- Lanzhou 730070
- China
| | - Shenggui Zhang
- College of Food Science and Engineering
- Gansu Agricultural University
- Lanzhou 730070
- China
| |
Collapse
|
41
|
Effect of storage temperature and relative humidity on long-term colloidal stability of reconstitutable emulsions stabilised by hydrophobically modified starch. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Tong F, Deng L, Sun R, Zhong G. Effect of octenyl succinic anhydride starch ester by semi-dry method with vacuum-microwave assistant. Int J Biol Macromol 2019; 141:1128-1136. [PMID: 31479674 DOI: 10.1016/j.ijbiomac.2019.08.157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/13/2019] [Accepted: 08/17/2019] [Indexed: 11/27/2022]
Abstract
Corn starch was esterified with octenyl succinic anhydride (OSA), in which semidry method assisted with vacuum-microwave treatment was used under the alkalescent condition. The effect of vacuum treatment on esterification was studied. The products were characterized by Fourier transform infrared (FT-IR) spectroscopy, 1H nuclear magnetic resonance (NMR), scanning electron microscopy (SEM) and X-ray diffraction. And the emulsifying properties were investigated with the emulsifying capacity (EC), emulsion droplet size and confocal laser scanning microscopy (CLSM). The degree of substitution (DS) of OSA starch increased significantly (ρ < 0.05) assisted by the vacuum-microwave treatment with the same dosage of reactant compared with the microwave only. The results confirmed the formation of OSA starch prepared by the method, all reactions occurred mainly on the surface of granules, and had no significant effect on the starch crystallinity. The OSA starch was a good polymeric surfactant with good abilities both in hydrophilic and lipophilic. The emulsifying capacity, degree of substitution of the OSA starch prepared by the method attractively showed vast potential for scale production.
Collapse
Affiliation(s)
- Fang Tong
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Liling Deng
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Institute of Biotechnology Co. Ltd., Chongqing 401121, PR China
| | - Rui Sun
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Geng Zhong
- College of Food Science, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
43
|
Polysaccharides at fluid interfaces of food systems. Adv Colloid Interface Sci 2019; 270:28-37. [PMID: 31158575 DOI: 10.1016/j.cis.2019.05.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
Fabrication of next generation polysaccharides with interfacial properties is driven by the need to create high performance surfactants that operate at extreme environments, as for example in complex food formulations or in the gastrointestinal tract. The present review examines the behaviour of polysaccharides at fluid food interfaces focusing on their performance in the absence of any other intentionally added interfacially active components. Relevant theoretical principles of colloidal stabilisation using concepts that have been developed for synthetic polymers at interfaces are firstly introduced. The role of protein that in most cases is present in polysaccharide preparations either as contaminant or as integral part of the structure is also discussed. Critical assessment of the literature reveals that although protein may contribute to emulsion formation mostly as an anchor for polysaccharides to attach, it is not the determinant factor for the long-term emulsion stability, irrespectively of polysaccharide structure. Interfacial performance of key polysaccharides is also assessed revealing shared characteristics in their modes of adsorption. Conformation of polysaccharides, as affected by the composition of the aqueous solvent needs to be closely controlled, as it seems to be the underlying fundamental cause of stabilisation events and appears to be more important than the constituent polysaccharide sugar-monomers. Finally, polysaccharide adsorption is better understood by regarding them as copolymers, as this approach may assist to better control their properties with the aim to create the next generation biosurfactants.
Collapse
|
44
|
Yang L, Qin X, Kan J, Liu X, Zhong J. Improving the Physical and Oxidative Stability of Emulsions Using Mixed Emulsifiers: Casein-Octenyl Succinic Anhydride Modified Starch Combinations. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1018. [PMID: 31315272 PMCID: PMC6669503 DOI: 10.3390/nano9071018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/23/2022]
Abstract
This study aims to investigate the influence of casein and octenyl succinic anhydride modified starch (OSAS) combinations on the physical and oxidative stability of fish oil-in-water emulsions. The interaction between casein and OSAS was manifested in changes in protein structure and hydrogen-bonding interaction. Casein-OSAS combinations could effectively inhibit droplet aggregation at pH 4 and attenuate droplet growth at a high CaCl2 concentration of 0.2 mol/L, compared with casein as an emulsifier. Nanoemulsions stabilized by casein-OSAS combinations or casein showed better oxidative stability compared with OSAS-stabilized emulsions. Therefore, casein-OSAS combinations can improve some physical properties of protein-based emulsions and oxidative stability of modified starch-based emulsions, suggesting protein-modified starch combinations are more promising in the emulsion-based food industry compared to each of the two emulsifiers alone.
Collapse
Affiliation(s)
- Liu Yang
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Xiaoli Qin
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Xiong Liu
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Jinfeng Zhong
- College of Food Science, Southwest University, Chongqing 400700, China.
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400700, China.
| |
Collapse
|
45
|
Liu W, Li Y, Goff HD, Nsor-Atindana J, Ma J, Zhong F. Interfacial Activity and Self-Assembly Behavior of Dissolved and Granular Octenyl Succinate Anhydride Starches. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4702-4709. [PMID: 30829488 DOI: 10.1021/acs.langmuir.9b00069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The mechanisms of granular octenyl succinate anhydride (GOSA) and dissolved OSA (DOSA) starches in emulsion stabilization were investigated. In general, DOSA starch offered better emulsification activity by generating greater ζ-potential, lower particle size as well as long-term stability in comparison to GOSA starch of close degree of substitution (DS). A compact interface in DOSA starches was determined, resulting from an increased surface loading value of 2.37 mg/m2 in comparison to that of GOSA of 1.6 mg/m2. Additionally, the irreversibly adsorbed and predominantly elastic interface of both DOSA and GOSA starches indicated that the DOSA starch may be a Pickering emulsifier rather than a biopolymer surfactant. This assumption was confirmed by transmission electron microscopy. Spherical micelles with average diameters of 100 nm were observed above the critical micelle concentration of 1 mg/mL. Moreover, samples G28 (representing DS of 0.028), D28, G16, and D16 could reach equilibrium interfacial tensions of 19.4, 16.5, 20.0, and 19.3 mN/m, respectively. However, due to the misleading contact angle as a result of rough surfaces and nonignorable gravity of GOSA starch, the energy escape equation failed to be employed in this study.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - Yue Li
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - H Douglas Goff
- Department of Food Science , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - John Nsor-Atindana
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - Jianguo Ma
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - Fang Zhong
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| |
Collapse
|
46
|
Yan C, McClements DJ, Zou L, Liu W. A stable high internal phase emulsion fabricated with OSA-modified starch: an improvement in β-carotene stability and bioaccessibility. Food Funct 2019; 10:5446-5460. [DOI: 10.1039/c9fo00508k] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A high internal phase emulsion (HIPE) was firstly fabricated with octenyl succinic anhydride modified starch through simple shear dispersion.
Collapse
Affiliation(s)
- Chi Yan
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - David Julian McClements
- Biopolymers & Colloids Research Laboratory
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
- National R&D Center for Freshwater Fish Processing
| |
Collapse
|
47
|
Gao Y, Wu S. Thermal and oxidation stability of functional oleogels formed by edible wax/starch and Schisandra chinensis oil. Food Funct 2019; 10:8056-8068. [DOI: 10.1039/c9fo01727e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work was aimed at the evaluation of stability of components in oleogels and providing a quick, visual description of the relationship between the composition of an oleogel and its thermal and oxidation properties.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Food Science and Technology
- School of Agriculture and Biology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Shimin Wu
- Department of Food Science and Technology
- School of Agriculture and Biology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|