1
|
Alshehri MA, Seyed MA, Panneerselvam C, Sayed SM, Shukry M. Mechanistic insights into Retama raetam's anti-proliferative and pro-apoptotic effects in A549 lung cancer cells: targeting PI3K/Akt pathway and ROS production. Toxicol Res (Camb) 2024; 13:tfae137. [PMID: 39233844 PMCID: PMC11368664 DOI: 10.1093/toxres/tfae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
Lung cancer, particularly non-small cell lung cancer (NSCLC), is a leading cause of cancer-related deaths worldwide. This study investigates the molecular mechanisms behind the anti-cancer effects of the tropical desert plant Retama raetam (R. raetam) on the A549 NSCLC cell line. The research examined R. raetam's anti-proliferative effects, cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, mitochondrial membrane potential, and cell morphology in NSCLC A549 and L-132 cells. In addition, the influence of R. raetam on DNA fragmentation, apoptotic signaling, and PI3K/Akt pathways for its anti-cancer mechanism was examined. Our results indicated that R. raetam's effects were dose- and time-dependent to exhibit anti-proliferative effects on A549 cells. R. raetam treatment promoted apoptotic cell death cycle arrest, increased apoptotic cells, depolarized the mitochondrial membrane, and induced morphological alterations in cells and nuclei. It also inhibited A549 cell migration (P < 0.05), colonization, and invasiveness. Moreover, the study demonstrated that R. raetam treatment resulted in the upregulation of Bax expression, downregulation of Bcl-2 expression, and apoptotic fragmented DNA in A549 cells. The top five bioactive compounds derived from R. raetam exhibited molecular interactions that inhibit PIK3CA and AKT1. This inhibition leads to an increased frequency of apoptosis and subsequent death of cancer cells. Additionally, R. raetam extract induced an increase in ROS formation and cytochrome c levels, indicating that its toxic effects on A549 cells involve both ROS-dependent cytotoxicity through the disruption of mitochondrial transmembrane potential ΔΨm and ROS-independent cell cycle arrest through downregulation BCL-2, PARP, E-Cadherin, PI3K, and Akt expressions pathways.
Collapse
Affiliation(s)
- Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohamed Ali Seyed
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Chellasamy Panneerselvam
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Samy M Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
2
|
Chen J, Radjabzadeh D, Medina-Gomez C, Voortman T, van Meurs JBJ, Ikram MA, Uitterlinden AG, Kraaij R, Zillikens MC. Advanced Glycation End Products (AGEs) in Diet and Skin in Relation to Stool Microbiota: The Rotterdam Study. Nutrients 2023; 15:nu15112567. [PMID: 37299529 DOI: 10.3390/nu15112567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Advanced glycation end products (AGEs) are involved in age-related diseases, but the interaction of gut microbiota with dietary AGEs (dAGEs) and tissue AGEs in the population is unknown. OBJECTIVE Our objective was to investigate the association of dietary and tissue AGEs with gut microbiota in the population-based Rotterdam Study, using skin AGEs as a marker for tissue accumulation and stool microbiota as a surrogate for gut microbiota. DESIGN Dietary intake of three AGEs (dAGEs), namely carboxymethyl-lysine (CML), N-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MGH1), and carboxyethyl-lysine (CEL), was quantified at baseline from food frequency questionnaires. Following up after a median of 5.7 years, skin AGEs were measured using skin autofluorescence (SAF), and stool microbiota samples were sequenced (16S rRNA) to measure microbial composition (including alpha-diversity, beta-dissimilarity, and taxonomic abundances) as well as predict microbial metabolic pathways. Associations of both dAGEs and SAF with microbial measures were investigated using multiple linear regression models in 1052 and 718 participants, respectively. RESULTS dAGEs and SAF were not associated with either the alpha-diversity or beta-dissimilarity of the stool microbiota. After multiple-testing correction, dAGEs were not associated with any of the 188 genera tested, but were nominally inversely associated with the abundance of Barnesiella, Colidextribacter, Oscillospiraceae UCG-005, and Terrisporobacter, in addition to being positively associated with Coprococcus, Dorea, and Blautia. A higher abundance of Lactobacillus was associated with a higher SAF, along with several nominally significantly associated genera. dAGEs and SAF were nominally associated with several microbial pathways, but none were statistically significant after multiple-testing correction. CONCLUSIONS Our findings did not solidify a link between habitual dAGEs, skin AGEs, and overall stool microbiota composition. Nominally significant associations with several genera and functional pathways suggested a potential interaction between gut microbiota and AGE metabolism, but validation is required. Future studies are warranted, to investigate whether gut microbiota modifies the potential impact of dAGEs on health.
Collapse
Affiliation(s)
- Jinluan Chen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Djawad Radjabzadeh
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
3
|
See JRC, Amos D, Wright J, Lamendella R, Santanam N. Synergistic effects of exercise and catalase overexpression on gut microbiome. Environ Microbiol 2022; 24:4220-4235. [PMID: 34270161 PMCID: PMC8761204 DOI: 10.1111/1462-2920.15670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/08/2021] [Accepted: 07/08/2021] [Indexed: 11/26/2022]
Abstract
Exercise influences metabolic parameters in part by modulating redox stress and as recently suggested, by affecting the gut microbiome. However, whether excess endogenous antioxidant potentiates or interferes with the beneficial effects of exercise on the gut microbiome is not known. A comparison of the gut microbiome of C57Bl6 (C57/WT) mice to the 'stress-less' catalase overexpressing mice models ([Tg(CAT)± ] and Bob-Cat), that were either exercised or remained sedentary, showed differences in both alpha and beta diversity. The significant variation was explained by genotypes along with exercise, suggesting a synergistic relationship between exercise and genotypic traits. Linear discriminant analysis effect size (LEfSe) analysis also revealed differential taxa within the exercised/genotype cohorts in contrast to those within sedentary/genotype cohorts. Functional pathway predictions from PICRUSt2 showed enrichment for the metabolism of short-chain fatty acids, butanoate and propanoate pathways in exercised groups. Spearman correlations between enriched taxa and metabolic parameters showed correlations with body or fat weight in some of the cohorts. However, there were significant correlations of differential taxa among all cohorts against parameters that predict energy metabolism, such as respiratory exchange ratio and energy expenditure. Overall, our study showed that there was a synergistic beneficial influence of antioxidant overexpression and exercise on the gut microbiome.
Collapse
Affiliation(s)
| | - Deborah Amos
- Department of Biomedical Sciences, Joan C. Edwards School
of Medicine, Marshall University, Huntington, WV, USA
| | - Justin Wright
- Department of Biological Sciences, Juniata College,
Huntingdon, PA
| | | | - Nalini Santanam
- Department of Biomedical Sciences, Joan C. Edwards School
of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
4
|
Maher A, Nowak A. Chemical Contamination in Bread from Food Processing and Its Environmental Origin. Molecules 2022; 27:5406. [PMID: 36080171 PMCID: PMC9457569 DOI: 10.3390/molecules27175406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/21/2022] [Indexed: 12/03/2022] Open
Abstract
Acrylamide (AA), furan and furan derivatives, polycyclic aromatic amines (PAHs), monochloropropanediols (MCPDs), glycidol, and their esters are carcinogens that are being formed in starchy and high-protein foodstuffs, including bread, through baking, roasting, steaming, and frying due to the Maillard reaction. The Maillard reaction mechanism has also been described as the source of food processing contaminants. The above-mentioned carcinogens, especially AA and furan compounds, are crucial substances responsible for the aroma of bread. The other groups of bread contaminants are mycotoxins (MTs), toxic metals (TMs), and pesticides. All these contaminants can be differentiated depending on many factors such as source, the concentration of toxicant in the different wheat types, formation mechanism, metabolism in the human body, and hazardous exposure effects to humans. The following paper characterizes the most often occurring contaminants in the bread from each group. The human exposure to bread contaminants and their safe ranges, along with the International Agency for Research on Cancer (IARC) classification (if available), also have been analyzed.
Collapse
Affiliation(s)
- Agnieszka Maher
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| |
Collapse
|
5
|
Bermúdez-Oria A, Rodríguez-Gutiérrez G, Fernández-Prior Á, Rodríguez-Juan E, Fernández-Bolaños J. Formation of a bioactive cyclopentenone and its adducts with amino acids in sterilized-fruits and - vegetables baby foods. Food Chem 2022; 378:131983. [PMID: 35032801 DOI: 10.1016/j.foodchem.2021.131983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 11/04/2022]
Abstract
The formation of the molecule 4,5-dihydroxy-2-cyclopenten-1-one (DHCP) from the thermal treatment of pectin-containing foods was investigated in small-scale laboratory preparation of sterilized vegetable puree (carrot, zucchini and tomato) and fruit puree (peach and mixture of pear and apple) and in commercial baby foods. DHCP attracts attention due to its cytotoxicity as well as potential antiviral and anti-inflammatory effects. However, its effects and the difficulty of its identification in food are mediated in part by the formation of Michael adducts of DHCP with amino acids. The results revealed that DHCP reacted efficiently with cysteine and glutathione, and to a lesser extent with histidine. Mass spectrometry analysis confirmed the formation of adducts of DHCP with amino acids in a model system, being in a real food system difficult to investigate. However, these formed adducts are of potential interest, although it is not known whether they are safe, bioactive or reversible.
Collapse
Affiliation(s)
- Alejandra Bermúdez-Oria
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Guillermo Rodríguez-Gutiérrez
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - África Fernández-Prior
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Elisa Rodríguez-Juan
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain.
| |
Collapse
|
6
|
Qiu Y, Lin X, Chen Z, Li B, Zhang Y. 5-Hydroxymethylfurfural Exerts Negative Effects on Gastric Mucosal Epithelial Cells by Inducing Oxidative Stress, Apoptosis, and Tight Junction Disruption. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3852-3861. [PMID: 35311281 DOI: 10.1021/acs.jafc.2c00269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
5-Hydroxymethylfurfural (5-HMF) is a processing byproduct present in foods that are consumed daily by humans, and the diet is the principal route for human exposure to it. However, its adverse effects on gastric epithelial cells are not fully understood. Based on the half inhibitory concentration value, concentrations of HMF of 2, 4, 8, and 16 mM were selected for this study. After 5-HMF treatment for 24 h, the number of living cells decreased to 89.61 ± 0.48, 77.30 ± 0.57, 58.75 ± 0.36, and 19.61 ± 0.40% of the control, respectively. Apoptosis activated through both the death receptor and mitochondrial pathways was confirmed to be the primary mode of HMF-induced cell death. Further analysis revealed that the reactive oxygen species (ROS) levels in GES-1 cells increased 1.7-6.5 fold after exposure to 5-HMF. Moreover, the inhibition of ROS by N-acetylcysteine blocked HMF-induced apoptosis and cell proliferation suppression, indicating that oxidative stress was important in HMF-induced apoptosis. Besides, after 5-HMF treatment, the gene expressions of occludin and ZO-1 were reduced by 1.1-3.4 fold and 2.0-9.4 fold, respectively. The cell surface morphology and tight junction-related protein expression analysis also revealed the destructive effect of 5-HMF on tight junction integrity. Our research highlights a potential mechanism of HMF-induced toxicity in GES-1 cells and provides additional information on the health risks of 5-HMF exposure to the human gastric epithelium.
Collapse
Affiliation(s)
- Yanting Qiu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaorong Lin
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bin Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuanyuan Zhang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Shen Y, Zhang J, Nie J, Zhang H, Bacha SAS. Apple microbial communities and differences between two main Chinese producing regions. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyab033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Microbes on fresh apples are closely associated with fruit disease, preservation and quality control. Investigation into the microbial communities on apples from different producing regions could reveal the microbial specificity and help disease prevention and quality control. In this paper, the apple surface microbes of forty-four samples from two main Chinese apple-producing regions, Bohai Bay (BHB) and the Loess Plateau (LP), were investigated by sequencing fungal internal transcribed spacer (ITS) and bacterial 16S rRNA hypervariable sequences. BHB and LP apples contained significantly different bacterial and fungal communities. BHB apples had a higher fungal diversity than LP apples. A total of 102 different fungal and bacterial taxonomies were obtained between apples from the two regions, in which 24 genera were predominant. BHB apples had higher phytopathogenic fungal genera, such as Tilletiopsis, Acremonium, Candida and Phoma, indicating the higher phytopathogenic risks of apples from the humid climate of the BHB region. LP apples contained more bacterial genera identified as gut microbes, indicating the potential risks of contaminating apples with foodborne pathogens in the arid environment of the LP. This study highlighted the environment-oriented microbial specificity on apples from two main apple-producing regions, and provided a basis for further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Syed Asim Shah Bacha
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, China
| |
Collapse
|
8
|
Dursun Capar T, Inanir C, Cimen F, Ekici L, Yalcin H. Black garlic fermentation with green tea extract reduced HMF and improved bioactive properties: optimization study with response surface methodology. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01247-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Daniel N, Rossi Perazza L, Varin TV, Trottier J, Marcotte B, St-Pierre P, Barbier O, Chassaing B, Marette A. Dietary fat and low fiber in purified diets differently impact the gut-liver axis to promote obesity-linked metabolic impairments. Am J Physiol Gastrointest Liver Physiol 2021; 320:G1014-G1033. [PMID: 33881354 DOI: 10.1152/ajpgi.00028.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Selecting the most relevant control diet is of critical importance for metabolic and intestinal studies in animal models. Chow and LF-purified diet differentially impact metabolic and gut microbiome outcomes resulting in major changes in intestinal integrity in LF-fed animals which contributes to altering metabolic homeostasis. Dietary fat and low fiber both contribute to the deleterious metabolic effect of purified HF diets through both selective and overlapping mechanisms.
Collapse
Affiliation(s)
- Noëmie Daniel
- Faculty of Food Science, Laval University, Québec City, Québec, Canada.,Cardiology axis of the Québec Heart and Lung Institute Research Center, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| | - Laίs Rossi Perazza
- Faculty of Medicine, Laval University, Québec City, Québec, Canada.,Cardiology axis of the Québec Heart and Lung Institute Research Center, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| | - Thibault V Varin
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| | - Jocelyn Trottier
- Laboratory of Molecular Pharmacology, CHU-Québec Research Center, and Faculty of Pharmacy, Laval University, Québec City, Québec, Canada
| | - Bruno Marcotte
- Cardiology axis of the Québec Heart and Lung Institute Research Center, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| | - Philippe St-Pierre
- Cardiology axis of the Québec Heart and Lung Institute Research Center, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, CHU-Québec Research Center, and Faculty of Pharmacy, Laval University, Québec City, Québec, Canada
| | - Benoit Chassaing
- INSERM U1016, team "Mucosal microbiota in chronic inflammatory diseases," CNRS UMR 8104, Université de Paris, Paris, France
| | - André Marette
- Faculty of Medicine, Laval University, Québec City, Québec, Canada.,Cardiology axis of the Québec Heart and Lung Institute Research Center, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, Québec, Canada
| |
Collapse
|
10
|
Hamzalıoğlu A, Gökmen V. Potential reactions of thermal process contaminants during digestion. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Ou J, Zheng J, Huang J, Ho CT, Ou S. Interaction of Acrylamide, Acrolein, and 5-Hydroxymethylfurfural with Amino Acids and DNA. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5039-5048. [PMID: 32275416 DOI: 10.1021/acs.jafc.0c01345] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Acrylamide, acrolein, and 5-hydroxymethylfurfural (HMF) are food-borne toxicants produced during the thermal processing of food. The α,β-unsaturated carbonyl group or aldehyde group in their structure can react easily with the amino, imino, and thiol groups in amino acids, proteins, and DNA via Michael addition and nucleophilic reactions in food and in vivo. This work reviews the interaction pathways of three toxins with amino acids and the cytotoxicity and changes after the digestion and absorption of the resulting adducts. Their interaction with DNA is also discussed. Amino acids ubiquitously exist in foods and are added as nutrients or used to control these food-borne toxicants. Hence, the interaction widely occurring in foods would greatly increase the internal exposure of these toxins and their derived compounds after food intake. This review aims to encourage further investigation on toxin-derived compounds, including their types, exposure levels, toxicities, and pharmacokinetics.
Collapse
Affiliation(s)
- Juanying Ou
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jie Zheng
- Department of Food and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Junqing Huang
- Formula-pattern Research Center, College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Shiyi Ou
- Department of Food and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
12
|
Zeng R, Zhang G, Zheng J, Zhou H, Wang Y, Huang C, Hu W, Ou S. Formation and Identification of Two Hydroxmethylfurfural-Glycine Adducts and Their Cytotoxicity and Absorption in Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:384-389. [PMID: 31804818 DOI: 10.1021/acs.jafc.9b06418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Our previous research showed that thioacetal and Schiff base formed between 5-hydroxymethylfurfural (HMF) and cysteine or lysine considerably decreased the cytotoxicity of HMF. In this study, two adol condensation adducts, named 2β-amino-3α-hydroxy-3-(5-(hydroxymethyl)furan-2-yl)propanoic acid (HGA) and 2α-amino-3β-hydroxy-3-(5-(hydroxymethyl)furan-2-yl)propanoic acid (HGB), were prepared from the reaction products of glycine and HMF, and their cytotoxicities were investigated in Caco-2 cells. Compared with HMF, HGA and HGB displayed lower cytotoxicities against Caco-2 cells with IC50 values of 36.50 and 43.47 mM, respectively, versus 16.11 mM (HMF). In contrast to our findings in thioacetal and Schiff base products, HGA and HGB underwent a very high metabolism rate (99%) in Caco-2 cells. HGA and HGB may degrade to other products instead of HMF since no extracellular or intracellular HMF was detected.
Collapse
Affiliation(s)
- Rui Zeng
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Guangwen Zhang
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Jie Zheng
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Hua Zhou
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Ying Wang
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Caihuan Huang
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 Guangdong , China
| | | | - Shiyi Ou
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 Guangdong , China
| |
Collapse
|
13
|
Lee CH, Chen YT, Hsieh HJ, Chen KT, Chen YA, Wu JT, Tsai MS, Lin JA, Hsieh CW. Exploring epigallocatechin gallate impregnation to inhibit 5-hydroxymethylfurfural formation and the effect on antioxidant ability of black garlic. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Lee CH, Chen KT, Lin JA, Chen YT, Chen YA, Wu JT, Hsieh CW. Recent advances in processing technology to reduce 5-hydroxymethylfurfural in foods. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.09.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Wang G, Liu P, He J, Yin Z, Yang S, Zhang G, Ou S, Yang X, Zheng J. Identification of a 5-Hydroxymethylfurfural-Lysine Schiff Base and Its Cytotoxicity in Three Cell Lines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10214-10221. [PMID: 31430143 DOI: 10.1021/acs.jafc.9b04539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
5-Hydroxymethylfurfural (HMF) can undergo the Maillard reaction with amino acids. However, the safety of the products remains unknown. In this study, a HMF-lysine Schiff base named (E)-N6-((5'-(hydroxymethyl)furan-2'-yl)methylene)lysine (HML) was identified and detected for the first time in baked foods. HML formation significantly decreased the cytotoxicity (IC50) of HMF against GES-1 cells (81.81 versus 5.02 mM and 73.76 versus 2.94 mM for HML versus HMF at 24 and 48 h, respectively), EA.hy926 cells (86.05 versus 4.85 mM and 77.22 versus 0.71 mM, respectively), and Caco-2 cells (155.77 versus 36.84 mM and 112.70 versus 18.51 mM, respectively). Exposure of Caco-2 cells to HMF at 10.0 mM triggered cell apoptosis of 14.02% (versus 8.54% in the control), whereas exposure to HML at 10-15 mM hardly increased cell apoptosis. Moreover, the absorption capacities of HMF and HML by Caco-2 cells were equivalent (p > 0.05) at 7.23-12.57% after incubation at 2 mM for 30-150 min.
Collapse
Affiliation(s)
| | - Pengzhan Liu
- School of Food Science and Engineering & Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou , Guangdong 510641 , People's Republic of China
| | | | | | | | | | | | - Xinquan Yang
- School of Life Sciences , Guangzhou University , Guangzhou , Guangdong 510006 , People's Republic of China
| | | |
Collapse
|