1
|
Li S, Cai Q, Liu Q, Gong Y, Zhao D, Wan J, Wang D, Shao Y. Effective enhancement of the ability of Monascus pilosus to produce lipid-lowering compound Monacolin K via perturbation of metabolic flux and histone acetylation modification. Food Res Int 2024; 195:114961. [PMID: 39277234 DOI: 10.1016/j.foodres.2024.114961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Monacolin K (MK), also known as lovastatin, is a polyketide compound with the ability to reduce plasma cholesterol levels and many other bio-activities. Red yeast rice (also named Hongqu) rich in MK derived from Monascus fermentation has attracted widespread attention due to its excellent performance in reducing blood lipids. However, industrial Monascus fermentation suffers from the limitations such as low yield of MK, long fermentation period, and susceptibility to contamination. In this study, we firstly blocked the competitive pathway of MK biosynthesis to create polyketide synthase gene pigA (the key gene responsible for the biosynthesis of Monascus azaphilone pigments) deficient strain A1. Then, based on the strategies to increase precursor supply for MK biosynthesis, acetyl-CoA carboxylase gene acc overexpression strains C1 and C2 were constructed with WT and A1 as the parent, respectively. Finally, histone deacetylase gene hos2 overexpression strain H1 was constructed by perturbation of histone acetylation modification. HPLC detection revealed all these four strains significantly increased their abilities to produce MK. After 14 days of solid-state fermentation, the MK yields of strains A1, C1, C2, and H1 reached 2.03 g/100 g, 1.81 g/100 g, 2.45 g/100 g and 2.52 g/100 g, which increased by 28.5 %, 14.7 %, 43.9 % and 36.1 % compared to WT, respectively. RT-qPCR results showed that overexpression of hos2 significantly increased the expression level of almost all genes responsible for MK biosynthesis after 5-day growth. Overall, the abilities of these strains to produce MK has been greatly improved, and MK production period has been shortened to 14 days from 20 days, providing new approaches for efficient production of Hongqu rich in MK.
Collapse
Affiliation(s)
- Shengfa Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinhua Cai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianrui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunxia Gong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Deqing Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Wan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Danjuan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Huang Z, Xiao L, Mo W, Zhang Y, Cai Y, Huang S, Chen Z, Long C. Molecular Mechanism of Mok I Gene Overexpression in Enhancing Monacolin K Production in Monascus pilosus. J Fungi (Basel) 2024; 10:721. [PMID: 39452673 PMCID: PMC11508744 DOI: 10.3390/jof10100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
Monascus species are capable of producing various active metabolites, including monacolin K (MK) and pigments. Studies have shown that the overexpression of the mok I gene from the MK synthesis gene cluster in Monascus species can significantly increase MK production; however, the molecular mechanism has not yet been fully elucidated. Therefore, this study focused on the mok I gene of Monascus pilosus to construct overexpression strains of the mok I gene, resulting in high-yield MK production. Sixteen positive transformants were obtained, seven of which produced 9.63% to 41.39% more MK than the original strain, with no citrinin detected in any of the transformants. The qRT-PCR results revealed that the expression levels of mok I in the transformed strains TI-13, TI-24, and TI-25 increased by more than 50% compared to the original strain at various fermentation times, with the highest increase being 10.9-fold. Furthermore, multi-omics techniques were used to analyze the molecular mechanisms underlying enhanced MK production in transformed strains. The results indicated that mok I overexpression may enhance MK synthesis in M. pilosus by regulating the expression of key genes (such as MAO, HPD, ACX, and PLC) and the synthesis levels of key metabolites (such as delta-tocopherol and alpha-linolenic acid) in pathways linked to the biosynthesis of cofactors, the biosynthesis of unsaturated fatty acids, tyrosine metabolism, ubiquinone and other terpenoid-quinone biosynthesis, alpha-linolenic acid metabolism, and glycerophospholipid metabolism. These findings provide a theoretical basis for further study of the metabolic regulation of MK in Monascus species and for effectively enhancing their MK production.
Collapse
Affiliation(s)
- Zhiwei Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.X.); (W.M.); (Y.Z.); (Y.C.); (S.H.); (Z.C.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lishi Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.X.); (W.M.); (Y.Z.); (Y.C.); (S.H.); (Z.C.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenlan Mo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.X.); (W.M.); (Y.Z.); (Y.C.); (S.H.); (Z.C.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaru Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.X.); (W.M.); (Y.Z.); (Y.C.); (S.H.); (Z.C.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiyang Cai
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.X.); (W.M.); (Y.Z.); (Y.C.); (S.H.); (Z.C.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Simei Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.X.); (W.M.); (Y.Z.); (Y.C.); (S.H.); (Z.C.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiting Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.X.); (W.M.); (Y.Z.); (Y.C.); (S.H.); (Z.C.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chuannan Long
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China;
| |
Collapse
|
3
|
Zhu L, Long P, Hu M, Wang L, Shao Y, Cheng S, Dong X, He Y. Insight into selenium biofortification and the selenite metabolic mechanism of Monascus ruber M7. Food Chem 2024; 455:139740. [PMID: 38843715 DOI: 10.1016/j.foodchem.2024.139740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 07/10/2024]
Abstract
Monascus species are functional fermentation fungi with great potential for selenium (Se) supplementation. This study investigated the effects of Se bio-fortification on the growth, morphology, and biosynthesis of Monascus ruber M7. The results demonstrated a significant increase in the yield of orange and red Monascus pigments (MPs) in red yeast rice (RYR) by 38.52% and 36.57%, respectively, under 20 μg/mL of selenite pressure. Meanwhile, the production of citrinin (CIT), a mycotoxin, decreased from 244.47 μg/g to 175.01 μg/g. Transcriptome analysis revealed significant upregulation of twelve genes involved in MPs biosynthesis, specifically MpigE, MpigF, and MpigN, and downregulation of four genes (mrr3, mrr4, mrr7, and mrr8) associated with CIT biosynthesis. Additionally, three genes encoding cysteine synthase cysK (Log2FC = 1.6), methionine synthase metH (Log2FC = 2.2), and methionyl-tRNA synthetase metG (Log2FC = 1.8) in selenocompound metabolism showed significantly upregulated. These findings provide insights into Se biotransformation and metabolism in filamentous fungi.
Collapse
Affiliation(s)
- Lisha Zhu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Pengcheng Long
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Man Hu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Liling Wang
- College of Food Science and Engineering, Tarim University, Alar 843300, PR China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xingxing Dong
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yi He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
4
|
Zhang C, Wang H, Ablimit A, Zhao Y, Sun Q, Dong H, Zhang B, Liu C, Wang C. Functional Verification of Transcription Factor comp54181_c0 in Monascus purpureus. J Basic Microbiol 2024:e2400469. [PMID: 39344177 DOI: 10.1002/jobm.202400469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Monacolin K is a valuable secondary metabolite produced after a period of fermentation by Monascus purpureus; however, our current understanding of the regulatory mechanisms of its synthesis remains incomplete. This study conducted functional analysis on the key transcription factor, comp54181_c0, that is involved in the synthesis of monacolin K in Monascus. Mutant strains with either knockout or overexpression of comp54181_c0 were constructed using CRISPR/Cas9. A comparison between the knockout and overexpression strains revealed changes in fungal morphology and growth, with a significant increase in the production of Monascus pigments and monacolin K when comp54181_c0 was absent. Real-time fluorescence quantitative PCR analysis revealed that comp54181_c0 significantly influenced the transcription of key genes related to monacolin K biosynthesis in Monascus. In conclusion, our study elucidates the crucial role of comp54181_c0 in Monascus, enriches our understanding of fungal secondary metabolite development and regulation, and provides a foundation for the development and regulation of Monascus and monacolin K production.
Collapse
Affiliation(s)
- Chan Zhang
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Haijiao Wang
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Arzugul Ablimit
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Yufei Zhao
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Qing Sun
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - HuiJun Dong
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Bobo Zhang
- School of Science, Shantou University, Shantou, Guangdong, China
| | - Chengjian Liu
- Shandong Fanhui Pharmaceutical Co. Ltd., Jinan, Shandong, China
| | - Chengtao Wang
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
5
|
Ye F, Chen Y, Liu J, Gong Z, Zhang S, Lin Q, Zhou B, Liang Y. A water-soluble mycelium polysaccharide from Monascus pilosus: Extraction, structural characterization, immunomodulatory effect and yield enhanced by overexpression of UGE gene. Int J Biol Macromol 2024; 280:136138. [PMID: 39349085 DOI: 10.1016/j.ijbiomac.2024.136138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Mycelium polysaccharide (MPP) from Monascus pilosus with the compositions of glucose, galactose, mannose, glucosamine hydrochloride, rhamnose and arabinose, was obtained using alkaline extracting, and subsequently three purified components (MPP-0, MPP-0.1 and MPP-0.3) were separated. The purity and extraction volume of the MPP-0.1 fraction surpassed those of the other two groups, thus warranting its selection for subsequent experimental investigations. The sample MPP-0.1, with an average molecular weight of 3.7776 × 104 Da, exhibited exceptional thermal stability up to 170 °C. The main glycosidic linkage pattern of MPP-0.1 was structured as→[4)-α-D-Glcp-(1]6 → 4)-α-D-Glcp-(1 → [2)-α-D-Manp-(1]5 → 2)-α-D-Manp-(1 → 5)-β-D-Galf-(1 → 3)-β-D-Galf (1 → 3)-β-D-Galf-(1 → 3)-β-D-Galf-(1→, and branched Glcp, Manp, Galf fragments were connected with the main chain through →4, 6)-α-D-Glcp-(1→, →2, 6)-α-D-Manp-(1 → and →3, 6)-β-D-Galf-(1→. Besides, the up-regulated levels of Nitric oxide (NO), Tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), Interleukin-1β (IL-1β) and other pro-inflammatory cytokines along with increased phagocytic activity revealed that MPP-0.1 has significant immunomodulatory effect, and can significantly enhance the proliferation and activation of RAW264.7 cells. Finally, the gene UGE (UDP-glucose 4-epimerase) was overexpressed in M. pilosus to increase the MPP production. Results showed that the biomass of the recombinant strain exhibited a remarkable increase of approximately 62.56 ± 1.50 % compared to that of the parental strain, and the extraction yield of MPP increased significantly by 83.19 ± 4.56 %.
Collapse
Affiliation(s)
- Fanyu Ye
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yajuan Chen
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Jun Liu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Zihan Gong
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Song Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Bo Zhou
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ying Liang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
6
|
Qin X, Han H, Zhang J, Xie B, Zhang Y, Liu J, Dong W, Hu Y, Yu X, Feng Y. Transcriptomic and Metabolomic Analyses of Soybean Protein Isolate on Monascus Pigments and Monacolin K Production. J Fungi (Basel) 2024; 10:500. [PMID: 39057385 PMCID: PMC11277953 DOI: 10.3390/jof10070500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Monascus pigments (MPs) and monacolin K (MK) are important secondary metabolites produced by Monascus spp. This study aimed to investigate the effect of soybean protein isolate (SPI) on the biosynthesis of MPs and MK based on the analysis of physiological indicators, transcriptomes, and metabolomes. The results indicated that the growth, yellow MPs, and MK production of Monascus pilosus MS-1 were significantly enhanced by SPI, which were 8.20, 8.01, and 1.91 times higher than that of the control, respectively. The utilization of a nitrogen source, protease activity, the production and utilization of soluble protein, polypeptides, and free amino acids were also promoted by SPI. The transcriptomic analysis revealed that the genes mokA, mokB, mokC, mokD, mokE, mokI, and mokH which are involved in MK biosynthesis were significantly up-regulated by SPI. Moreover, the glycolysis/gluconeogenesis, pyruvate metabolism, fatty acid degradation, tricarboxylic acid (TCA) cycle, and amino acid metabolism were effectively up-regulated by SPI. The metabolomic analysis indicated that metabolisms of amino acid, lipid, pyruvate, TCA cycle, glycolysis/gluconeogenesis, starch and sucrose, and pentose phosphate pathway were significantly disturbed by SPI. Thus, MPs and MK production promoted by SPI were mainly attributed to the increased biomass, up-regulated gene expression level, and more precursors and energies.
Collapse
Affiliation(s)
- Xueling Qin
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (X.Q.); (H.H.); (J.Z.); (B.X.); (Y.Z.); (J.L.); (W.D.); (Y.H.); (X.Y.)
- College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Haolan Han
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (X.Q.); (H.H.); (J.Z.); (B.X.); (Y.Z.); (J.L.); (W.D.); (Y.H.); (X.Y.)
- College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Jiayi Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (X.Q.); (H.H.); (J.Z.); (B.X.); (Y.Z.); (J.L.); (W.D.); (Y.H.); (X.Y.)
- College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Bin Xie
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (X.Q.); (H.H.); (J.Z.); (B.X.); (Y.Z.); (J.L.); (W.D.); (Y.H.); (X.Y.)
- College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Yufan Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (X.Q.); (H.H.); (J.Z.); (B.X.); (Y.Z.); (J.L.); (W.D.); (Y.H.); (X.Y.)
- College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Jun Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (X.Q.); (H.H.); (J.Z.); (B.X.); (Y.Z.); (J.L.); (W.D.); (Y.H.); (X.Y.)
- College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Weiwei Dong
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (X.Q.); (H.H.); (J.Z.); (B.X.); (Y.Z.); (J.L.); (W.D.); (Y.H.); (X.Y.)
- College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Yuanliang Hu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (X.Q.); (H.H.); (J.Z.); (B.X.); (Y.Z.); (J.L.); (W.D.); (Y.H.); (X.Y.)
- College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Xiang Yu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (X.Q.); (H.H.); (J.Z.); (B.X.); (Y.Z.); (J.L.); (W.D.); (Y.H.); (X.Y.)
- College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Yanli Feng
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (X.Q.); (H.H.); (J.Z.); (B.X.); (Y.Z.); (J.L.); (W.D.); (Y.H.); (X.Y.)
- College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| |
Collapse
|
7
|
Zhou J, Pan Q, Xue Y, Dong Y, Chen Y, Huang L, Zhang B, Liu ZQ, Zheng Y. Synthetic biology for Monascus: From strain breeding to industrial production. Biotechnol J 2024; 19:e2400180. [PMID: 39014924 DOI: 10.1002/biot.202400180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/18/2024]
Abstract
Traditional Chinese food therapies often motivate the development of modern medicines, and learning from them will bring bright prospects. Monascus, a conventional Chinese fungus with centuries of use in the food industry, produces various metabolites, including natural pigments, lipid-lowering substances, and other bioactive ingredients. Recent Monascus studies focused on the metabolite biosynthesis mechanisms, strain modifications, and fermentation process optimizations, significantly advancing Monascus development on a lab scale. However, the advanced manufacture for Monascus is lacking, restricting its scale production. Here, the synthetic biology techniques and their challenges for engineering filamentous fungi were summarized, especially for Monascus. With further in-depth discussions of automatic solid-state fermentation manufacturing and prospects for combining synthetic biology and process intensification, the industrial scale production of Monascus will succeed with the help of Monascus improvement and intelligent fermentation control, promoting Monascus applications in food, cosmetic, agriculture, medicine, and environmental protection industries.
Collapse
Affiliation(s)
- Junping Zhou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Qilu Pan
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yinan Xue
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yaping Dong
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yihong Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Lianggang Huang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
8
|
Liu H, Zhang M, Xu L, Xue F, Chen W, Wang C. Unlocking fungal quorum sensing: Oxylipins and yeast interactions enhance secondary metabolism in monascus. Heliyon 2024; 10:e31619. [PMID: 38845857 PMCID: PMC11154204 DOI: 10.1016/j.heliyon.2024.e31619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/04/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Exploring the symbiotic potential between fungal and yeast species, this study investigates the co-cultivation dynamics of Monascus, a prolific producer of pharmacologically relevant secondary metabolites, and Wickerhamomyce anomalous. The collaborative interaction between these microorganisms catalyzed a substantial elevation in the biosynthesis of secondary metabolites, prominently Monacolin K and natural pigments. Central to our discoveries was the identification and enhanced production of oxylipins (13S-hydroxyoctadecadienoic acid,13S-HODE), putative quorum-sensing molecules, within the co-culture environment. Augmentation with exogenous oxylipins not only boosted Monacolin K production by over half but also mirrored morphological adaptations in Monascus, affecting both spores and mycelial structures. This augmentation was paralleled by a significant upregulation in the transcriptional activity of genes integral to the Monacolin K biosynthetic pathway, as well as genes implicated in pigment and spore formation. Through elucidating the interconnected roles of quorum sensing, G-protein-coupled receptors, and the G-protein-mediate signaling pathway, this study provides a comprehensive view of the molecular underpinnings facilitating these metabolic enhancements. Collectively, our findings illuminate the profound influence of Wickerhamomyces anomalous co-culture on Monascus purpureus, advocating for oxylipins as a pivotal quorum-sensing mechanism driving the observed symbiotic benefits.
Collapse
Affiliation(s)
- Huiqian Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Mengyao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Linlin Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, PR China
| | - FuRong Xue
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Wei Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, PR China
| |
Collapse
|
9
|
Gong Y, Li S, Zhou Y, Chen F, Shao Y. Histone lysine methyltransferases MpDot1 and MpSet9 are involved in the production of lovastatin and MonAzPs by histone crosstalk modification. Int J Biol Macromol 2024; 255:128208. [PMID: 37979745 DOI: 10.1016/j.ijbiomac.2023.128208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/29/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Increasing data suggested that histone methylation modification plays an important role in regulating biosynthesis of secondary metabolites (SMs). Monascus spp. have been applied to produce hypolipidemic drug lovastatin (also called monacolin K, MK) and edible Monascus-type azaphilone pigments (MonAzPs). However, little is known about how histone methylation regulates MK and MonAzPs. In this study, we constructed H3K9 methyltransferase deletion strain ΔMpDot1 and H4K20 methyltransferase deletion strain ΔMpSet9 using Monascus pilosus MS-1 as the parent. The result showed that deletion of MpDot1 reduced the production of MK and MonAzPs, and deletion of MpSet9 increased MonAzPs production. Real-time quantitative PCR (RT-qPCR) showed inactivation of mpdot1 and mpset9 disturbed the expression of genes responsible for the biosynthesis of MK and MonAzPs. Western blot suggested that deletion of MpDot1 reduced H3K79me and H4K16ac, and deletion of MpSet9 decreased H4K20me3 and increased H4pan acetylation. Chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) showed ΔMpDot1 strain and ΔMpSet9 strain reduced the enrichment of H3K79me2 and H4K20me3 in the promoter regions of key genes for MK and MonAzPs biosynthesis, respectively. These results suggested that MpDot1 and MpSet9 affected the synthesis of SMs by regulating gene transcription and histone crosstalk, providing alternative approach for regulation of lovastatin and MonAzPs.
Collapse
Affiliation(s)
- Yunxia Gong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengfa Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Youxiang Zhou
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fusheng Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
He Y, Zhu L, Dong X, Li A, Xu S, Wang L, Shao Y. Metabolic Regulation of Two pksCT Gene Transcripts in Monascus ruber Impacts Citrinin Biosynthesis. J Fungi (Basel) 2023; 9:1174. [PMID: 38132775 PMCID: PMC10745002 DOI: 10.3390/jof9121174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
Citrinin (CIT), a secondary metabolite produced by the filamentous fungi Monascus species, exhibits nephrotoxic, hepatotoxic, and carcinogenic effects in mammals, remarkably restricting the utilization of Monascus-derived products. CIT synthesis is mediated through the pksCT gene and modified by multiple genetic factors. Here, the regulatory effects of two pksCT transcripts, pksCTα, and pksCTβ, generated via pre-mRNA alternative splicing (AS), were investigated using hairpin RNA (ihpRNA) interference, and their impact on CIT biosynthesis and the underlying mechanisms were assessed through chemical biology and transcriptome analyses. The CIT yield in ihpRNA-pksCTα and ihpRNA-pksCT (α + β) transformants decreased from 7.2 μg/mL in the wild-type strain to 3.8 μg/mL and 0.08 μg/mL, respectively. Notably, several genes in the CIT biosynthetic gene cluster, specifically mrl3, mrl5, mrr1, and mrr5 in the ihpRNA-pksCT (α + β) transformant, were downregulated. Transcriptome results revealed that silencing pksCT has a great impact on carbohydrate metabolism, amino acid metabolism, lipid metabolism, and AS events. The key enzymes in the citrate cycle (TCA cycle) and glycolysis were significantly inhibited in the transformants, leading to a decrease in the production of biosynthetic precursors, such as acetyl-coenzyme-A (acetyl-coA) and malonyl-coenzyme-A (malonyl-coA). Furthermore, the reduction of CIT has a regulatory effect on lipid metabolism via redirecting acetyl-coA from CIT biosynthesis towards lipid biosynthesis. These findings offer insights into the mechanisms underlying CIT biosynthesis and AS in Monascus, thus providing a foundation for future research.
Collapse
Affiliation(s)
- Yi He
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.Z.); (X.D.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (A.L.); (S.X.)
| | - Lisha Zhu
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.Z.); (X.D.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (A.L.); (S.X.)
| | - Xingxing Dong
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.Z.); (X.D.)
| | - Aoran Li
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (A.L.); (S.X.)
| | - Suyin Xu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (A.L.); (S.X.)
| | - Liling Wang
- College of Food Science and Engineering, Tarim University, Alar 843300, China;
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Hong X, Guo T, Xu X, Lin J. Multiplex metabolic pathway engineering of Monascus pilosus enhances lovastatin production. Appl Microbiol Biotechnol 2023; 107:6541-6552. [PMID: 37672068 DOI: 10.1007/s00253-023-12747-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023]
Abstract
Monascus sp. is an important food microbial resource with the production of cholesterol-lowering agent lovastatin and other healthy metabolites. However, the mycotoxin citrinin naturally produced by Monascus sp. and the insufficient productivity of lovastatin limit its large-scale use in food industry. The aim of this paper is to modify a lovastatin-producing strain Monascus pilosus GN-01 through metabolic engineering to obtain a citrinin-free M. pilosus strain with higher yield of lovastatin. The citrinin synthesis regulator gene ctnR was firstly disrupted to obtain GN-02 without citrinin production. Based on that, the lovastatin biosynthesis genes (mokC, mokD, mokE, mokF, mokH, mokI, and LaeA) were, respectively, overexpressed, and pigment-regulatory gene (pigR) was knocked out to improve lovastatin production. The results indicated ctnR inactivation effectively disrupted the citrinin release by M. pilosus GN-01. The overexpression of lovastatin biosynthesis genes and pigR knockout could lead higher contents of lovastatin, of which pigR knockout strain achieved 76.60% increase in the yield of lovastatin compared to GN-02. These studies suggest that such multiplex metabolic pathway engineering in M. pilosus GN-01 is promising for high lovastatin production by a safe strain for application in Monascus-related food. KEY POINTS: • Disruption of the regulator gene ctnR inhibited citrinin production of M. pilosus. • Synchronous overexpression of biosynthesis gene enhanced lovastatin production. • pigR knockout enhanced lovastatin of ΔctnR strain of M. pilosus.
Collapse
Affiliation(s)
- Xiaokun Hong
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Tianlong Guo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Xinqi Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China.
| | - Juan Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China.
| |
Collapse
|
12
|
Tang G, Man H, Wang J, Zou J, Zhao J, Han J. An oxidoreductase gene CtnD involved in citrinin biosynthesis in Monascus purpureus verified by CRISPR/Cas9 gene editing and overexpression. Mycotoxin Res 2023; 39:247-259. [PMID: 37269452 DOI: 10.1007/s12550-023-00491-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/05/2023]
Abstract
Monascus produces a kind of mycotoxin, citrinin, whose synthetic pathway is still not entirely clear. The function of CtnD, a putative oxidoreductase located upstream of pksCT in the citrinin gene cluster, has not been reported. In this study, the CtnD overexpressed strain and the Cas9 constitutively expressed chassis strain were obtained by genetic transformation mediated by Agrobacterium tumefaciens. The pyrG and CtnD double gene-edited strains were then obtained by transforming the protoplasts of the Cas9 chassis strain with in vitro sgRNAs. The results showed that overexpression of CtnD resulted in significant increases in citrinin content of more than 31.7% and 67.7% in the mycelium and fermented broth, respectively. The edited CtnD caused citrinin levels to be reduced by more than 91% in the mycelium and 98% in the fermented broth, respectively. It was shown that CtnD is a key enzyme involved in citrinin biosynthesis. RNA-Seq and RT-qPCR showed that the overexpression of CtnD had no significant effect on the expression of CtnA, CtnB, CtnE, and CtnF but led to distinct changes in the expression of acyl-CoA thioesterase and two MFS transporters, which may play an unknown role in citrinin metabolism. This study is the first to report the important function of CtnD in M. purpureus through a combination of CRISPR/Cas9 editing and overexpression.
Collapse
Affiliation(s)
- Guangfu Tang
- Key Lab of Pharmacognostics of Guizhou Province, College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550002, China
| | - Haiqiao Man
- Key Lab of Pharmacognostics of Guizhou Province, College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550002, China
| | - Jiao Wang
- Key Lab of Pharmacognostics of Guizhou Province, College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550002, China
| | - Jie Zou
- Key Lab of Pharmacognostics of Guizhou Province, College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550002, China
| | - Jiehong Zhao
- Key Lab of Pharmacognostics of Guizhou Province, College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550002, China.
| | - Jie Han
- Key Lab of Pharmacognostics of Guizhou Province, College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550002, China.
| |
Collapse
|
13
|
Shi R, Gong P, Liu Y, Luo Q, Chen W, Wang C. Linoleic acid functions as a quorum-sensing molecule in Monascus purpureus-Saccharomyces cerevisiae co-culture. Yeast 2023; 40:42-52. [PMID: 36514193 DOI: 10.1002/yea.3831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/10/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
When Monascus purpureus was co-cultured with Saccharomyces cerevisiae, we noted significant changes in the secondary metabolism and morphological development of Monascus. In yeast co-culture, although the pH was not different from that of a control, the Monascus mycelial biomass increased during fermentation, and the Monacolin K yield was significantly enhanced (up to 58.87% higher). However, pigment production did not increase. Co-culture with S. cerevisiae significantly increased the expression levels of genes related to Monacolin K production (mokA-mokI), especially mokE, mokF, and mokG. Linoleic acid, that has been implicated in playing a regulating role in the secondary metabolism and morphology of Monascus, was hypothesized to be the effector. Linoleic acid was detected in the co-culture, and its levels changed during fermentation. Addition of linoleic acid increased Monacolin K production and caused similar morphological changes in Monascus spores and mycelia. Exogenous linoleic acid also significantly upregulated the transcription levels of all nine genes involved in the biosynthesis of Monacolin K (up to 69.50% higher), consistent with the enhanced Monacolin K yield. Taken together, our results showed the effect of S. cerevisiae co-culture on M. purpureus and suggested linoleic acid as a specific quorum-sensing molecule in Saccharomyces-Monascus co-culture.
Collapse
Affiliation(s)
- Ruoyu Shi
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, P.R. China.,Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, China
| | - Pengfei Gong
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Yutong Liu
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Qiaoqiao Luo
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Wei Chen
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Chengtao Wang
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| |
Collapse
|
14
|
Analysis of metabolites of coix seed fermented by Monascus purpureus. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Effect of γ-butyrolactone, a quorum sensing molecule, on morphology and secondary metabolism in Monascus. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Disruption of the Chitin Biosynthetic Pathway Results in Significant Changes in the Cell Growth Phenotypes and Biosynthesis of Secondary Metabolites of Monascus purpureus. J Fungi (Basel) 2022; 8:jof8090910. [PMID: 36135635 PMCID: PMC9503372 DOI: 10.3390/jof8090910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, the gene monascus-5162 from Monascus purpureus LQ-6, identified as chitin synthase gene VI (chs6), was knocked out to disrupt the chitin biosynthetic pathway and regulate the biosynthesis of Monascus pigments (MPs) and citrinin. The results showed that the aerial hyphae on a solid medium were short and sparse after the deletion of chs6 in M. purpureus LQ-6, significantly reducing the germination percentage of active spores to approximately 22%, but the colony diameter was almost unaffected. Additionally, the deletion of chs6 changed the mycelial morphology of M. purpureus LQ-6 during submerged fermentation and increased its sensitivity to environmental factors. MP and citrinin biosynthesis was dramatically inhibited in the recombinant strain. Furthermore, comparative transcriptome analysis revealed that the pathways related to spore development and growth, including the MAPK signaling pathway, chitin biosynthetic pathway, and regulatory factors LaeA and WetA genes, were significantly downregulated in the early phase of fermentation. The mRNA expression levels of genes in the cluster of secondary metabolites were significantly downregulated, especially those related to citrinin biosynthesis. This is the first detailed study to reveal that chs6 plays a vital role in regulating the cell growth and secondary metabolism of the Monascus genus.
Collapse
|
17
|
Xu N, Li L, Chen F. Construction of gene modification system with highly efficient and markerless for Monascus ruber M7. Front Microbiol 2022; 13:952323. [PMID: 35979480 PMCID: PMC9376451 DOI: 10.3389/fmicb.2022.952323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Monascus spp. are traditional medicinal and edible filamentous fungi in China, and can produce various secondary metabolites, such as Monascus pigments (MPs) and citrinin (CIT). Genetic modification methods, such as gene knock-out, complementation, and overexpression, have been used extensively to investigate the function of related genes in Monascus spp.. However, the resistance selection genes that can have been used for genetic modification in Monascus spp. are limited, and the gene replacement frequency (GRF) is usually <5%. Therefore, we are committed to construct a highly efficient gene editing system without resistance selection marker gene. In this study, using M. ruber M7 as the starting strain, we successfully constructed a so-called markerlessly and highly genetic modification system including the mutants ΔmrpyrGΔmrlig4 and ΔmrpyrGΔmrlig4::mrpyrG, in which we used the endogenous gene mrpyrG from M. ruber M7 instead of the resistance marker gene as the screening marker, and simultaneously deleted mrlig4 related to non-homologous end joining in M. ruber M7. Then, the morphology, the growth rate, the production of MPs and CIT of the mutants were analyzed. And the results show that the mutant strains have normal mycelia, cleistothecia and conidia on PDA+Uridine(U) plate, the biomass of each mutant is also no different from M. ruber M7. However, the U addition also has a certain effect on the orange and red pigments yield of M. ruber M7, which needs our further study. Finally, we applied the system to delete multiple genes from M. ruber M7 separately or continuously without any resistance marker gene, and found that the average GRF of ΔmrpyrGΔmrlig4 was about 18 times of that of M. ruber M7. The markerlessly and highly genetic modification system constructed in current study not only will be used for multi-gene simultaneous modification in Monascus spp., and also lays a foundation for investigating the effects of multi-genes modification on Monascus spp..
Collapse
Affiliation(s)
- Na Xu
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Li
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, China
- College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Fusheng Chen
| |
Collapse
|
18
|
Gan Y, Bai M, Lin X, Liu K, Huang B, Jiang X, Liu Y, Gao C. Improvement of macrolactins production by the genetic adaptation of Bacillus siamensis A72 to saline stress via adaptive laboratory evolution. Microb Cell Fact 2022; 21:147. [PMID: 35854349 PMCID: PMC9294813 DOI: 10.1186/s12934-022-01871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Macrolactins, a type of macrolide antibiotic, are toxic to the producer strains. As such, its level is usually maintained below the lethal concentration during the fermentation process. To improve the production of macrolactins, we applied adaptive laboratory evolution technology to engineer a saline-resistant mutant strain. The hypothesis that strains with saline resistance show improved macrolactins production was investigated. RESULTS Using saline stress as a selective pressure, we engineered a mutant strain with saline resistance coupled with enhanced macrolactins production within 60 days using a self-made device. As compared with the parental strain, the evolved strain produced macrolactins with 11.93% improvement in non-saline stress fermentation medium containing 50 g/L glucose, when the glucose concentration increased to 70 g/L, the evolved strain produced macrolactins with 71.04% improvement. RNA sequencing and metabolomics results revealed that amino acid metabolism was involved in the production of macrolactins in the evolved strain. Furthermore, genome sequencing of the evolved strain revealed a candidate mutation, hisDD41Y, that was causal for the improved MLNs production, it was 3.42 times higher than the control in the overexpression hisDD41Y strain. Results revealed that saline resistance protected the producer strain from feedback inhibition of end-product (macrolide antibiotic), resulting in enhanced MLNs production. CONCLUSIONS In the present work, we successfully engineered a mutant strain with enhanced macrolactins production by adaptive laboratory evolution using saline stress as a selective pressure. Based on physiological, transcriptomic and genetic analysis, amino acid metabolism was found to benefit macrolactins production improvement. Our strategy might be applicable to improve the production of other kinds of macrolide antibiotics and other toxic compounds. The identification of the hisD mutation will allow for the deduction of metabolic engineering strategies in future research.
Collapse
Affiliation(s)
- Yuman Gan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China.
| | - Meng Bai
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Xiao Lin
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Kai Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Bingyao Huang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Xiaodong Jiang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Yonghong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China.
| | - Chenghai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China.
| |
Collapse
|
19
|
Analysis of secondary metabolite gene clusters and chitin biosynthesis pathways of Monascus purpureus with high production of pigment and citrinin based on whole-genome sequencing. PLoS One 2022; 17:e0263905. [PMID: 35648754 PMCID: PMC9159588 DOI: 10.1371/journal.pone.0263905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022] Open
Abstract
Monascus is a filamentous fungus that is widely used for producing Monascus pigments in the food industry in Southeast Asia. While the development of bioinformatics has helped elucidate the molecular mechanism underlying metabolic engineering of secondary metabolite biosynthesis, the biological information on the metabolic engineering of the morphology of Monascus remains unclear. In this study, the whole genome of M. purpureus CSU-M183 strain was sequenced using combined single-molecule real-time DNA sequencing and next-generation sequencing platforms. The length of the genome assembly was 23.75 Mb in size with a GC content of 49.13%, 69 genomic contigs and encoded 7305 putative predicted genes. In addition, we identified the secondary metabolite biosynthetic gene clusters and the chitin synthesis pathway in the genome of the high pigment-producing M. purpureus CSU-M183 strain. Furthermore, it is shown that the expression levels of most Monascus pigment and citrinin clusters located genes were significantly enhanced via atmospheric room temperature plasma mutagenesis. The results provide a basis for understanding the secondary metabolite biosynthesis, and constructing the metabolic engineering of the morphology of Monascus.
Collapse
|
20
|
Effect of arginine supplementation on Monacolin K yield of Monascus purpureus. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Effect of γ-Heptalactone on the Morphology and Production of Monascus Pigments and Monacolin K in Monascus purpureus. J Fungi (Basel) 2022; 8:jof8020179. [PMID: 35205931 PMCID: PMC8880682 DOI: 10.3390/jof8020179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Monascus is used widely in Asian countries and produces various biologically active metabolites, such as Monascus pigments (MPs) and monacolin K (MK). In this study, the effect of γ-heptalactone on secondary metabolites and mycelial growth during Monascus purpureus M1 fermentation was investigated. After the addition of 50 μM γ-heptalactone, the yields of MPs (yellow, orange, and red) reached maxima, increased by 115.70, 141.52, and 100.88%, respectively. The 25 μM γ-heptalactone groups showed the highest yield of MK was increased by 62.38% compared with that of the control. Gene expression analysis showed that the relative expression levels of MPs synthesis genes (MpPKS5, MpFasA2, mppB, mppC, mppD, mppG, mpp7, and mppR1/R2) were significantly upregulated after γ-heptalactone treatment. The relative expression levels of MK synthesis genes (mokA, mokC, mokE, mokH, and mokI) were significantly affected. The mycelium samples treated with γ-heptalactone exhibited more folds and swelling than that in the samples of the control group. This study confirmed that the addition of γ-heptalactone has the potential to induce yields of MPs and MK, and promote the expression of biosynthesis genes, which may be related to the transformation of mycelial morphology in M. purpureus.
Collapse
|
22
|
Development of Monascus purpureus monacolin K-hyperproducing mutant strains by synchrotron light irradiation and their comparative genome analysis. J Biosci Bioeng 2022; 133:362-368. [DOI: 10.1016/j.jbiosc.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022]
|
23
|
Xie L, Zhu G, Shang J, Chen X, Zhang C, Ji X, Zhang Q, Wei Y. An overview on the biological activity and anti-cancer mechanism of lovastatin. Cell Signal 2021; 87:110122. [PMID: 34438015 DOI: 10.1016/j.cellsig.2021.110122] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
Lovastatin, a secondary metabolite isolated from fungi, is often used as a representative drug to reduce blood lipid concentration and treat hypercholesterolemia. Its structure is similar to that of HMG-CoA. Lovastatin inhibits the binding of the substrate to HMG-CoA reductase, and strongly competes with HMG-CoA reductase (HMGR), thereby exerting a hypolipidemic effect. Further, its safety has been confirmed in vivo and in vitro. Lovastatin also has anti-inflammatory, anti-cancer, and neuroprotective effects. Therefore, the biological activity of lovastatin, especially its anti-cancer effect, has garnered research attention. Several in vitro studies have confirmed that lovastatin has a significant inhibitory effect on cancer cell viability in a variety of cancers (such as breast, liver, cervical, lung, and colon cancer). At the same time, lovastatin can also increase the sensitivity of some types of cancer cells to chemotherapeutic drugs and strengthen their therapeutic effect. Lovastatin inhibits cell proliferation and regulates cancer cell signaling pathways, thereby inducing apoptosis and cell cycle arrest. This article reviews the structure, biosynthetic pathways, and applications of lovastatin, focusing on the anti-cancer effects and mechanisms of action.
Collapse
Affiliation(s)
- Liguo Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Guodong Zhu
- Yunnan Minzu University, Library, Kunming 650500, China.
| | - Junjie Shang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Xuemei Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Chunting Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Xiuling Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
24
|
Zhang Y, Chen Z, Wen Q, Xiong Z, Cao X, Zheng Z, Zhang Y, Huang Z. An overview on the biosynthesis and metabolic regulation of monacolin K/lovastatin. Food Funct 2021; 11:5738-5748. [PMID: 32555902 DOI: 10.1039/d0fo00691b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lovastatin/monacolin K (MK) is used as a lipid lowering drug, due to its effective hypercholesterolemic properties, comparable to synthetic statins. Lovastatin's biosynthetic pathway and gene cluster composition have been studied in depth in Aspergillus terreus. Evidence shows that the MK biosynthetic pathway and gene cluster in Monascus sp. are similar to those of lovastatin in A. terreus. Currently, research efforts have been focusing on the metabolic regulation of MK/lovastatin synthesis, and the evidence shows that a combination of extracellular and intracellular factors is essential for proper MK/lovastatin metabolism. Here, we comprehensively review the research progress on MK/lovastatin biosynthetic pathways, its synthetic precursors and inducing substances and metabolic regulation, with a view to providing reference for future research on fungal metabolism regulation and metabolic engineering for MK/lovastatin production.
Collapse
Affiliation(s)
- Yaru Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China. and Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiting Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China. and Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinyou Wen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China. and Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zixiao Xiong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China. and Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaohua Cao
- Key Laboratory of Crop Biotechnology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Zhenghuai Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yangxin Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhiwei Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China. and Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China and China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
25
|
Sarvari R, Nouri M, Agbolaghi S, Roshangar L, Sadrhaghighi A, Seifalian AM, Keyhanvar P. A summary on non-viral systems for gene delivery based on natural and synthetic polymers. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1825081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Raana Sarvari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Laila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhouman Sadrhaghighi
- Department of Orthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alexander M. Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (Ltd), The London Innovation Bio Science Centre, London, UK
| | - Peyman Keyhanvar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Convergence of Knowledge, Technology and Society Network (CKTSN), Universal Scientific Education and Research Network (USERN), Tabriz, Iran
- ARTAN110 Startup Accelerator, Tabriz, Iran
| |
Collapse
|
26
|
Li Y, Wang N, Jiao X, Tu Z, He Q, Fu J. The ctnF gene is involved in citrinin and pigment synthesis in Monascus aurantiacus. J Basic Microbiol 2020; 60:873-881. [PMID: 32812258 DOI: 10.1002/jobm.202000059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 01/09/2023]
Abstract
The application of Monascus is restricted by citrinin. So, it is important to explore the synthetic pathway of citrinin to completely inhibit the production of citrinin. In our previous study, we found that the protein encoded by the ctnF gene has a significant similarity to fructose-2,6-bisphosphatase (F26BPase). It is generally known that the bifunctional enzyme F26BPase regulates the glycolytic flux. So, we speculated that the CtnF protein strengthens carbon flux towards acetyl-CoA and malonyl-CoA which are precursor compounds in citrinin and pigment synthesis. In this study, the ctnF gene-targeting vector pctnF-HPH was constructed and transformed into Monascus aurantiacus. A ctnF-deficient strain was selected by four sets of primers and polymerase chain reaction amplification. Compared with the wild-type strain, citrinin content in the deficient strain was reduced by 34%, and the pigment production was decreased by 72%. These results indicate that the ctnF gene is involved in the common synthesis of citrinin and pigment, which is consistent with previous speculations.
Collapse
Affiliation(s)
- Yanping Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang, China
| | - Na Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, China
| | - Xuexue Jiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhui Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang, China
| | - Qinghua He
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang, China
| | - Jinheng Fu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
27
|
Overexpression of global regulator LaeA increases secondary metabolite production in Monascus purpureus. Appl Microbiol Biotechnol 2020; 104:3049-3060. [DOI: 10.1007/s00253-020-10379-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/05/2020] [Accepted: 01/14/2020] [Indexed: 12/25/2022]
|
28
|
Liao Q, Liu Y, Zhang J, Li L, Gao M. A low-frequency magnetic Field regulates Monascus pigments synthesis via reactive oxygen species in M. purpureus. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
29
|
Zhang C, Chai S, Hao S, Zhang A, Zhu Q, Zhang H, Wang C. Effects of glutamic acid on the production of monacolin K in four high-yield monacolin K strains in Monascus. Appl Microbiol Biotechnol 2019; 103:5301-5310. [DOI: 10.1007/s00253-019-09752-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/27/2022]
|