1
|
Zhang B, Li S, Zhang W, Cheng Y, Liu Z, Zhang N, Xu J, Wu X, Dong F, Zheng Y, Pan X. Sensitive and portable intelligent detection platform construction and dietary risk assessment of procymidone in Chinese leek, cowpea and celery. Food Chem 2025; 465:142081. [PMID: 39602947 DOI: 10.1016/j.foodchem.2024.142081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Procymidone (PRM), a widely used amide-type fungicide in vegetables, poses potential health risks due to its high detection rate. This study introduces a pretreatment device and an intelligent quantification method for PRM in Chinese leek, cowpea, and celery using a lateral flow immunoassay (LFIA) integrated with a smartphone. The whole pretreatment and detection process can be achieved within 21 min. Recovery rates were 76.7%-100.7% with an RSD of <12.6%, and the limit of quantification was 7.54-13.01 ng/g. Dietary risk assessment on 122 real samples from nine cities revealed that the chronic risk of PRM was all acceptable among different population group. However, the acute dietary in Chinese leek was unacceptable for children, with %ARfD of 125.20% at 97.5th percentiles. This work developed a convenient platform for on-site and rapid PRM detection, and provided scientific basis to protect human health from hazards of PRM.
Collapse
Affiliation(s)
- Binbin Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shi Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China
| | - Wentao Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Agricultural Engineering and Food Science, Shandong University of Technology, ZiBo 255049, Shandong, China
| | - Youpu Cheng
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China
| | - Zhenjiang Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ning Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Wang B, Shi L, Ren P, Qin S, Li J, Cao J. Dissipation and Dietary Risk Assessment of the Fungicide Pyraclostrobin in Apples Using Ultra-High Performance Liquid Chromatography-Mass Spectrometry. Molecules 2024; 29:4434. [PMID: 39339428 PMCID: PMC11434584 DOI: 10.3390/molecules29184434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/04/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The fungicide pyraclostrobin is the main measure used to control apple alternaria blotch in production. To evaluate the potential dietary risks for consumers, the dissipation and terminal residues of pyraclostrobin were investigated using ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS/MS). Pyraclostrobin in apples was extracted by acetonitrile with 2% ammonia and then purified using primary secondary amine (PSA) and graphitized carbon black (GCB). The method showed good linearity within the concentration range of 0.005-0.1 mg L-1, with a coefficient of determination (R2) ≥ 0.9958. The recoveries ranged from 96.0% to 103.8%, with relative standard deviations (RSDs) between 0.8% and 2.3%. The limit of quantification (LOQ) was 0.01 mg kg-1. Pyraclostrobin dispersible oil suspension was applied in 12 apple fields across China according to good agricultural practices (GAPs). In Beijing and Shandong, the dissipation of pyraclostrobin followed first-order kinetic equations, with a half-life of 11 days. The terminal residues ranged from <0.01 to 0.09 mg kg-1. The national estimated daily intake (NEDI) of pyraclostrobin was compared with the acceptable daily intake (ADI), resulting in risk quotient (RQc) of 80.8%. These results suggest that pyraclostrobin poses a low health risk to consumers under GAP conditions and according to recommended dosages.
Collapse
Affiliation(s)
- Bin Wang
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Lei Shi
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030031, China
| | - Pengcheng Ren
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Shu Qin
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jindong Li
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Junli Cao
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
3
|
Song R, Zhang Y, Lu P, Wu J, Li QX, Song B. Status and Perspective on Green Pesticide Utilizations and Food Security. Annu Rev Food Sci Technol 2024; 15:473-493. [PMID: 38134385 DOI: 10.1146/annurev-food-072023-034519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Pesticides protect crops against pests, and green pesticides are referred to as effective, safe, and eco-friendly pesticides that are sustainably synthesized and manufactured (i.e., green chemistry production). Owing to their high efficacy, safety, and ecological compatibility, green pesticides have become a main direction of global pesticide research and development (R&D). Green pesticides attract attention because of their close association with the quality and safety of agricultural produce. In this review, we briefly define green pesticides and outline their significance, current registration, commercialization, and applications in China, the European Union, and the United States. Subsequently, we engage in an in-depth analysis of the impact of newly launched green pesticides on the environment and ecosystems. Finally, we focus on the potential risks of dietary exposure to green pesticides and the possible hazards of chronic toxicity and carcinogenicity. The status of and perspective on green pesticides can hopefully inspire green pesticide R&D and applications to ensure agricultural production and safeguard human and ecological health.
Collapse
Affiliation(s)
- Runjiang Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China;
| | - Yuping Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China;
| | - Ping Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China;
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China;
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA;
| | - Baoan Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China;
| |
Collapse
|
4
|
Fang Q, Zheng K, Zeng R, Zhang Z, Shi Y, Gao Q, Xiao J, Liao M, Duan J, Cao H. Residue Behavior of Chiral Fungicide Prothioconazole and Its Major Chiral Metabolite in Flour Product Processing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:679-689. [PMID: 38064576 DOI: 10.1021/acs.jafc.3c06435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
This study systematically investigates the stereoselective metabolism and residue behavior of chiral pesticide prothioconazole enantiomers during the steaming, baking, and frying of steamed buns, bread, and deep-fried dough sticks. The results show that steaming, baking, and frying can significantly promote the degradation of the prothioconazole enantiomers. In low- and high-concentration treatments, the degradation rates of prothioconazole enantiomers were over 96.0% and 45.4%, respectively, and the residual concentration of prothioconazole-desthio enantiomers was less than 32.7 μg/kg (excluding fried processing). During the processing of steamed buns, bread, and deep-fried dough sticks, the enantiomer fraction (EF) value of the prothioconazole enantiomer was close to 0.5, and the stereoselectivity was not significant. During the processing of steamed buns (low concentration), bread (low and high concentrations), and deep-fried dough sticks (low concentration), the stereoselectivity of prothioconazole-desthio was significant, and preferential enantiomer degradation occurred. Following the analysis of 120 flour product samples, the residual risk.
Collapse
Affiliation(s)
- Qingkui Fang
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
| | - Kang Zheng
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
| | - Rong Zeng
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
| | - Zhaoxian Zhang
- College of Resources and Environment, Provincial Key Laboratory for Agri-Food Safety, Anhui Agricultural University, Hefei 230036, China
| | - Yanhong Shi
- College of Resources and Environment, Provincial Key Laboratory for Agri-Food Safety, Anhui Agricultural University, Hefei 230036, China
| | - Quan Gao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
| | - Jinjing Xiao
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
| | - Min Liao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
| | - Jinsheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Haiqun Cao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
| |
Collapse
|
5
|
Li R, Men X, Li R, Liu T, Liang H, Fang F, Sun-Waterhouse D, Wang Y. Residue behaviors and dietary risk of cyazofamid in turnip, onion and romaine lettuce assessed by a QuEChERS-LC-MS/MS method. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Hu L, Xu T, Wang X, Qian M, Jin Y. Exposure to the fungicide prothioconazole and its metabolite prothioconazole-desthio induced hepatic metabolism disorder and oxidative stress in mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105452. [PMID: 37248020 DOI: 10.1016/j.pestbp.2023.105452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023]
Abstract
Prothioconazole (PTC), as a popular triazole fungicide, with its main metabolite prothioconazole desthio (PTC-d), have attracted widespread concern due to their widely use and toxicological effects on non-target organisms. However, toxic effects of study analyzed PTC and PTC-d on the hepatic metabolism of mammalian still remains unclear. In this study, we conducted the study of the C57BL/6 mice which oral exposure to 30 mg/kg PTC and PTC-d via metabolomic analysis. In the liver, the metabolomics profile unveiled that exposure to 30 mg/kg PTC and PTC-d led to significantly altered 13 and 28 metabolites respectively, with 6 metabolites in common including significant decreased d-Fructose, Glutathione, showing the change of carbohydrate, lipid and amino acid metabolism. Via the further exploration of genes related to hepatic glycolipid metabolism and the biomarkers of oxidative stress, we found that liver was potentially damaged after exposure to 5 and 30 mg/kg PTC and PTC-d. Particularly, it was proved that PTC-d caused more adverse effect than its parent compound PTC on hepatotoxicity, and high concentration PTC or PTC-d exposure is more harmful than low concentration exposure.
Collapse
Affiliation(s)
- Lingyu Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Ting Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaofang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
7
|
Dong X, Chen Z, Chu Y, Tong Z, Gao T, Duan J, Wang M. Degradation, adsorption, and bioaccumulation of novel triketone HPPD herbicide tembotrione. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27501-4. [PMID: 37170049 DOI: 10.1007/s11356-023-27501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Tembotrione is a new triketone HPPD herbicide widely used in Europe, USA, and other areas. However, tembotrione is moderately to highly toxic to algae and daphnia in aquatic ecosystems. In this study, hydrolysis, photolysis, soil degradation, soil adsorption, and bioaccumulation of tembotrione were systematically studied. Hydrolysis experiment revealed that tembotrione was stable in acidic, neutral, and alkaline conditions with half-lives of 231-289 days. The photolysis half-lives of tembotrione were 112-158 days and 76-107 days in pH 4, 7, 9 buffer solutions and on three soils surface, respectively, which demonstrated that tembotrione could be persisted in soil and water. Meanwhile, tembotrione Kfoc was 128-196 mL/g, indicating that tembotrione was not easily adsorbed to soil, and the adsorption capacity increased with the decrease in pH. The half-lives of tembotrione in the test soil were 32-48 days, and high organic matter soil is conducive to microbial activity and accelerates the degradation of tembotrione. Moreover, bioaccumulation experiment demonstrated that tembotrione with a BCF of 0.664 to 0.724 had a low risk of exposure to zebrafish. This study is very helpful for the evaluation environmental risk and safe use of tembotrione.
Collapse
Affiliation(s)
- Xu Dong
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu Province, 210095, China
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Zihao Chen
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu Province, 210095, China
| | - Yue Chu
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Zhou Tong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Tongchun Gao
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Jinsheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu Province, 210095, China.
| |
Collapse
|
8
|
Gao Q, Wu H, Zhou Y, Xiao J, Shi Y, Cao H. Mechanism and Kinetics of Prothioconazole Photodegradation in Aqueous Solution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6594-6602. [PMID: 37075317 DOI: 10.1021/acs.jafc.3c00453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This study investigated the effects of light source, pH value, and NO3- concentration on the photodegradation of prothioconazole in aqueous solution. The half-life (t1/2) of prothioconazole was 173.29, 21.66, and 11.18 min under xenon, ultraviolet, and high-pressure mercury lamps, respectively. At pH values of 4.0, 7.0, and 9.0 under a xenon lamp light source, the t1/2 values were 693.15, 231.05, and 99.02 min, respectively. Inorganic substance NO3- clearly promoted the photodegradation of prothioconazole, with t1/2 values of 115.53, 77.02, and 69.32 min at NO3- concentrations of 1.0, 2.0, and 5.0 mg L-1, respectively. The photodegradation products were identified as C14H15Cl2N3O, C14H16ClN3OS, C14H15Cl2N3O2S, and C14H13Cl2N3 based on calculations and the Waters compound library. Furthermore, density functional theory (DFT) calculations showed that the C-S, C-Cl, C-N, and C-O bonds of prothioconazole were the reaction sites with high absolute charge values and greater bond lengths. Finally, the photodegradation pathway of prothioconazole was concluded, and the variation in energy of the photodegradation process was attributed to the decrease in activation energy caused by light excitation. This work provides new insight into the structural modification and photochemical stability improvement of prothioconazole, which plays an important role in decreasing safety risk during application that will reduce the exposure risk in field environment.
Collapse
Affiliation(s)
- Quan Gao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Hao Wu
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yeping Zhou
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Jinjing Xiao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yanhong Shi
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Haiqun Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
9
|
Zhang B, Pan X, Yang Y, Dong F, Xu J, Wu X, Zheng Y. Dissipation dynamics and comparative dietary exposure assessment of mefentrifluconazole in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114482. [PMID: 36586164 DOI: 10.1016/j.ecoenv.2022.114482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/08/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
A fast and sensitive analytical method based on UHPLC coupled with tandem mass spectrometry was established to investigate the dissipation and final residual amounts of mefentrifluconazole in rice, and dietary risk to consumers was evaluated. The method provided good linearity (R2 ≥ 0.9979), accuracy (recovery range, 79.0-101.5%), precision (relative standard deviation range, 1.3-13.9%), and sensitivity (limit of quantification, 0.005 mg/kg). The dissipation dynamics of mefentrifluconazole in rice followed first-order kinetics, with half-lives of 2.8-16.6 days. The final residues of mefentrifluconazole in various samples of harvested brown rice ranged from less than the limit of quantification to 0.092 mg/kg, the latter value being higher than the maximum residue limit recommended by the European Union. Comparative dietary exposure of mefentrifluconazole was assessed using field data and Chinese dietary patterns for different genders, regions, and age data. Although the results showed acceptable levels of risk for both acute exposure (the percentage of the acute reference dose ≤ 0.7483%) and chronic dietary intake (the percentage of acceptable daily intake ≤ 31.8516%), more studies of children are needed because they are at higher risk than other groups. This work provides the necessary data for registering and establishing the maximum residue limit for mefentrifluconazole in rice in China and reveals the potential risks to different groups of long-term application of mefentrifluconazole to rice and other crops.
Collapse
Affiliation(s)
- Binbin Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yun Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
10
|
Pszczolińska K, Perkons I, Bartkevics V, Drzewiecki S, Płonka J, Shakeel N, Barchanska H. Targeted and non-targeted analysis for the investigation of pesticides influence on wheat cultivated under field conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120468. [PMID: 36283473 DOI: 10.1016/j.envpol.2022.120468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
A comprehensive approach was applied to evaluate the effects of pesticides on the metabolism of wheat (Triticum aestivum L). The application of commercially available pesticide formulations under field cultivation conditions provided a source of metabolic data unlimited by model conditions, representing a novel approach to study the effects of pesticides on edible plants. Gas and liquid chromatography coupled to tandem mass spectrometry were employed for targeted and non-targeted analysis of wheat roots and shoots sampled six times during the six-week experiment. The applied pesticides: prothioconazole, tebuconazole, fluoxastrobin, diflufenican, florasulam, and penoxulam were found at concentrations ranging 0.0070-25.20 mg/kg and 0.0020-2.2 mg/kg in the wheat roots and shoots, respectively. The following pesticide metabolites were identified in shoots: prothioconazole-desthio (prothioconazole metabolite), 5-(4-chlorophenyl)-2,2-dimethyl-3-(1,2,4-triazol-1-ylmethyl)pentane-1,3-diol (tebuconazole metabolite), and N-(5,8-dimethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)-2,4-dihydroxy-6-(trifluoromethyl)benzene sulphonamide (penoxulam metabolite). The metabolic fingerprints and profiles changed during the experiment, reflecting the cumulative response of wheat to both its growth environment and pesticides, as well as their metabolites. Approximately 15 days after the herbicide treatment no further changes in the plant metabolic profiles were observed, despite the presence of pesticide and their metabolites in both roots and shoots. This is the first study to combine the determination of pesticides and their metabolites plant tissues with the evaluation of plant metabolic responses under field conditions. This exhaustive approach contributes to broadening the knowledge of pesticide effects on edible plants, relevant to food safety.
Collapse
Affiliation(s)
- Klaudia Pszczolińska
- Institute of Plant Protection - National Research Institute Branch Sośnicowice, 44-153, Sośnicowice, Gliwicka 29, Poland.
| | - Ingus Perkons
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga LV, 1076, Latvia.
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga LV, 1076, Latvia.
| | - Sławomir Drzewiecki
- Institute of Plant Protection - National Research Institute Branch Sośnicowice, 44-153, Sośnicowice, Gliwicka 29, Poland.
| | - Joanna Płonka
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland.
| | - Nasir Shakeel
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland.
| | - Hanna Barchanska
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland.
| |
Collapse
|
11
|
Tian S, Yan S, Meng Z, Sun W, Yan J, Huang S, Wang Y, Zhou Z, Diao J, Li L, Zhu W. Widening the Lens on Prothioconazole and Its Metabolite Prothioconazole-Desthio: Aryl Hydrocarbon Receptor-Mediated Reproductive Disorders through in Vivo, in Vitro, and in Silico Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17890-17901. [PMID: 36332113 DOI: 10.1021/acs.est.2c06236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Reproductive disorders are a serious public health problem worldwide. Epidemiological data suggest that exposure to environmental pollutants is associated with the onset of reproductive disorders. However, the effects in reproductive health and exact mechanism of action of representative agricultural compounds prothioconazole (PTC) and its metabolite prothioconazole-desthio (dPTC) on mammals remain unclear. Here, we studied the physiological effects of the exposure to environmentally relevant doses of PTC and dPTC in mice reproductive systems. Combining in vivo, in vitro, and in silico studies, we observed that PTC and dPTC disrupt reproductive health by inducing metabolic perturbation, induction of apoptosis, and inflammation in gonadal tissue, which are achieved via activation of the aryl hydrocarbon receptor (AhR). Convincingly, the addition of alternate-day injections of CH223191 (an AhR inhibitor) to the 30-day exposure regimen ameliorated ovarian tissue damage, as evidenced by decreased TUNEL-positive cells and partially restored the inflammation and apoptotic factor levels. This study comprehensively reports the toxic effects of low-dose PTC and dPTC in the reproductive system in vivo and identifies AhR as a potential therapeutic target for the amelioration of reproductive disorders caused by similar endocrine-disrupting chemicals.
Collapse
Affiliation(s)
- Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sen Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Zhiyuan Meng
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jin Yan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shiran Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yu Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Li Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Zhou R, Dong Z, Bian C, Wang L, Wu T, Zhou W, Li Y, Li B. Residue analysis, dissipation behavior, storage stability and dietary risk assessment of florpyrauxifen-benzyl in natural paddy field environment using UPLC-QTOF-MS/MS. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Li C, Liu C. Enantioselective effect of chiral fungicide prothioconazole on Fusarium graminearum: Fungicidal activity and DON biosynthesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119553. [PMID: 35640724 DOI: 10.1016/j.envpol.2022.119553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Prothioconazole, a chiral triazole fungicide, is widely used to control Fusarium head blight (FHB) of wheat. Fusarium graminearum (F. graminearum), as the main pathogen of FHB, can produce many secondary metabolites including deoxynivalenol (DON), which threatens the health of humans and animals. However, some fungicides may stimulate F. graminearum to synthesize more DON under certain conditions. Until now, the fungicidal activity and enantioselective effect of prothioconazole enantiomers on DON production, transcriptome and metabolome of F. graminearum were unclear. The fungicidal activity of R-(-)-prothioconazole against F. graminearum was 9.12-17.73 times higher than that of S-(+)-prothioconazole under all conditions. Prothioconazole enantiomers can induce F. graminearum to synthesize more DON under 0.99 water activity (aw) and 30 °C, especially R-(-)-prothioconazole. The expression levels of TRI6, TRI10 and TRI101 under R-(-)-prothioconazole treatment were significantly higher than those under S-(+)-prothioconazole treatment. Most genes in glycolysis, pyruvate metabolism, the target of rapamycin (TOR) signaling transduction pathway and the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling transduction pathway showed higher expression levels under R-(-)-prothioconazole treatment than uner S-(+)-prothioconazole treatment and the control. The peroxisome pathway displayed higher transcriptional activity under S-(+)-prothioconazole treatment compared with R-(-)-prothioconazole and the control. Based on metabolomic data, R-(-)-prothioconazole can significantly influence phenylalanine metabolism, and no significantly enriched pathway was found under S-(+)-prothioconazole treatment. These results are helpful to understand the risk of prothioconazole enantiomers on DON production of F. graminearum and uncover the relevant underlying mechanisms of prothioconazole enantiomers.
Collapse
Affiliation(s)
- Chaofeng Li
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture& Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China.
| | - Chenglan Liu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture& Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China.
| |
Collapse
|
14
|
Huang J, Lin S, Zhou J, Chen H, Tang S, Wu J, Huang S, Cheng D, Zhang Z. Dissipation and Distribution of Prochloraz in Bananas and a Risk Assessment of Its Dietary Intake. TOXICS 2022; 10:435. [PMID: 36006113 PMCID: PMC9415821 DOI: 10.3390/toxics10080435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND As a systematic fungicide, prochloraz is often used to control banana freckle disease, and it is significant to assess the safety and risk of prochloraz. METHODS The dissipation kinetics and distribution of prochloraz in bananas were measured by high-performance liquid chromatography (HPLC). RESULTS The results showed that the fortified recoveries in bananas were 83.01-99.12%, and the relative standard deviations (RSDs) were 2.45-7.84%. The half-life of prochloraz in banana peel (3.93-5.60 d) was significantly lower than it was in whole banana (8.25-10.80 d) and banana pulp (10.35-12.84 d). The terminal residue of prochloraz in banana fruits was below the maximum residue level (MRL, China) at pre-harvest intervals (PHI) of 21 d. Moreover, the residue of prochloraz in banana peel was always 1.06-7.71 times greater than it was in banana pulp. The dietary risk assessment results indicated that the prochloraz residue in bananas at PHI of 21 d was safe for representative populations. (4) Conclusions: We found that a 26.7% prochloraz emulsion oil in water (EW) diluted 1000-fold and sprayed three times under field conditions was safe and reliable, providing a reference for the safe application of prochloraz in bananas.
Collapse
Affiliation(s)
- Jiajian Huang
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (J.H.); (S.L.); (J.Z.); (H.C.); (S.T.); (J.W.)
| | - Sukun Lin
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (J.H.); (S.L.); (J.Z.); (H.C.); (S.T.); (J.W.)
| | - Jingtong Zhou
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (J.H.); (S.L.); (J.Z.); (H.C.); (S.T.); (J.W.)
| | - Huiya Chen
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (J.H.); (S.L.); (J.Z.); (H.C.); (S.T.); (J.W.)
| | - Shiqi Tang
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (J.H.); (S.L.); (J.Z.); (H.C.); (S.T.); (J.W.)
| | - Jian Wu
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (J.H.); (S.L.); (J.Z.); (H.C.); (S.T.); (J.W.)
| | - Suqing Huang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Dongmei Cheng
- Department of Plant Protection, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhixiang Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (J.H.); (S.L.); (J.Z.); (H.C.); (S.T.); (J.W.)
| |
Collapse
|
15
|
Zhang Z, Xie Y, Ye Y, Yang Y, Hua R, Wu X. Toxification metabolism and treatment strategy of the chiral triazole fungicide prothioconazole in water. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128650. [PMID: 35290892 DOI: 10.1016/j.jhazmat.2022.128650] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Toxification metabolism of the chiral triazole fungicide prothioconazole in the environment has attracted an increasing amount of attention. To better understand the fate of prothioconazole in aquatic ecosystems and develop a treatment strategy, the stereoselective toxicity, degradation and bioconcentration of prothioconazole were investigated in water with algae at the enantiomer level. There was remarkable enantioselectivity against Chlorella pyrenoidosa, and the highly toxic S-prothioconazole was preferentially degraded with enantiomer fraction values ranging from 0.5 to 0.74. Metabolism experiment results showed that the parent compound was quickly eliminated driven by biodegradation and abiotic degradation (hydrolysis, photolysis). Fourteen phase I and two phase II metabolites involved in the reactions of hydroxylation, methylation, dechlorinating, desulfuration, dehydration and conjugation were identified, where prothioconazole-desthio was the major metabolite. The highly toxic metabolite prothioconazole-desthio persisted in water and hardly degraded with or without C. pyrenoidosa. Furthermore, the reaction system including 1 mg of cobalt coated in nitrogen doped carbon nanotubes and 0.156 g of peroxymonosulfate was used to eliminate prothioconazole-desthio. Approximately 96% prothioconazole-desthio was eliminated and transformed to low toxicity metabolites. This work provides a strategy for the risk evaluation of prothioconazole in aquatic ecosystems and proposes a workable plan for the elimination of pesticide residues in water.
Collapse
Affiliation(s)
- Zhaoxian Zhang
- Key Laboratory of Agri-food Safety of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yiwen Xie
- Key Laboratory of Agri-food Safety of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yingzi Ye
- Key Laboratory of Agri-food Safety of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yaling Yang
- Key Laboratory of Agri-food Safety of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Rimao Hua
- Key Laboratory of Agri-food Safety of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xiangwei Wu
- Key Laboratory of Agri-food Safety of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
16
|
Zhai W, Zhang L, Liu H, Zhang C, Liu D, Wang P, Zhou Z. Enantioselective degradation of prothioconazole in soil and the impacts on the enzymes and microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153658. [PMID: 35151744 DOI: 10.1016/j.scitotenv.2022.153658] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
In this work, the stereoselective degradation of prothioconazole in five soils was investigated and the metabolite prothioconazole-desthio was determined. The effects of prothioconazole on soil enzymes activities and microbial community were also studied. The dissipation of prothioconazole fitted with a first-order kinetic equation with half-lives ranging from 3.45 to 9.90 days. In addition, R-prothioconazole degraded preferentially than S-prothioconazole in all soils with EF values >0.5. Prothioconazole-desthio formed rapidly with preference in R-enantiomer, and the concentration kept at a considerable level even at the end of the incubation, indicating it was relatively persistent in soil. Prothioconazole and its metabolite inhibited the activity of dehydrogenase, catalase and urease in soils, and could affect the diversity of the soil microbiota as well. Redundancy analysis (RDA) and Spearman analysis showed the abundance of Proteobacteria, Fusobacteria, Firmicutes, Thaumarchaeota, Saccharibacteria, Chloroflexi, Chlorobi, Actinobacteria and Nitrospirae might be related to the enantioselective degradation. The work was helpful for understanding the environmental behavior of the fungicide prothioconazole and its primary metabolite on an enantiomeric level.
Collapse
Affiliation(s)
- Wangjing Zhai
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Linlin Zhang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Hui Liu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Chuntao Zhang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Donghui Liu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Peng Wang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
17
|
Zhu M, Tang J, Shi T, Ma X, Wang Y, Wu X, Li H, Hua R. Uptake, translocation and metabolism of imidacloprid loaded within fluorescent mesoporous silica nanoparticles in tomato (Solanum lycopersicum). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113243. [PMID: 35093815 DOI: 10.1016/j.ecoenv.2022.113243] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Fluorescence-labeling technology has been widely used for rapid detection of pesticides in agricultural production. However, there are few studies on the use of this technology to investigate pesticide uptake and transport in plants with fluorescent nanoparticle formulations. Here, we investigated uptake, transport, accumulation and metabolism of imidacloprid loaded in fluorescent mesoporous SiO2 nanoparticles (Im@FL-MSNs) in tomato plants, and compared the results with the pesticide application in granular formulation. The results revealed that Im@FL-MSNs applied via root uptake and foliar spray both could effectively transport in tomato plants and carry the imidacloprid to plant tissues. Neither Im@FL-MSNs nor imidacloprid was detected inside of tomato fruits from root uptake or foliar spray applications. Compared with the foliar application of granular formulation, imidacloprid in Im@FL-MSNs demonstrated a higher concentration in leaves (1.14 ± 0.07 mg/kg > 1.08 ± 0.04 mg/kg, 1.13 ± 0.09 mg/kg > 1.11 ± 0.02 mg/kg), longer half-life (0.84 d < 1.31 d, 0.90 d < 1.36 d) and small numbers of metabolites formed. These results suggest that mesoporous silica nanoparticles could serve as an effective and efficient pesticide carrier for achieving the high use efficiency in plant protection. The information is also helpful to guide the pesticide applications and assess the risks associated with environmental quality and dietary consumption of vegetables.
Collapse
Affiliation(s)
- Meiqing Zhu
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China; School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Jun Tang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Taozhong Shi
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Xin Ma
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Yi Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Xiangwei Wu
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.
| | - Rimao Hua
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China.
| |
Collapse
|
18
|
Lin S, Zhou Y, Wu J, Zhang Z, Cheng D. Dissipation and residue of fosthiazate in tomato and cherry tomato and a risk assessment of dietary intake. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9248-9256. [PMID: 34505248 DOI: 10.1007/s11356-021-16305-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
In this study, the safety and risk of fosthiazate as a nematicide against root-knot nematode in tomato and cherry tomato were evaluated. The dissipation and residue of fosthiazate for 28 days in tomatoes and cherry tomatoes were determined and studied by HPLC after simple, rapid pre-treatment. The mean recovery was 83.79~94.18%, and the relative standard deviations were 3.97~7.40%. Results showed that the half-lives of fosthiazate in tomatoes (4.81~5.37 days) were significantly lower than that in cherry tomatoes (5.25~5.73 days). At the pre-harvest interval (PHI) of 21 days, the residues of tomatoes and cherry tomatoes were 0.032~0.046 mg/kg, which were lower than the maximum residue level (MRL) established in China. The potential risks of fosthiazate exposure through the dietary intake of tomatoes and cherry tomatoes to different populations were also studied. According to the results of dietary risk assessment, the residual levels of fosthiazate were within the acceptable range of long-term dietary risk in different populations in China within the sampling interval of 21 days after the application of fosthiazate. Our results show that fosthiazate at 2250 g.a.i./ha in the field control of root-knot nematode has high safety and low risk, and can provide a reference for the safe and reasonable use of fosthiazate as a nematicide in the field.
Collapse
Affiliation(s)
- Sukun Lin
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Yi Zhou
- Department of Plant Protection, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jiyingzi Wu
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Zhixiang Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Dongmei Cheng
- Department of Plant Protection, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
19
|
Dong G, Zhang R, Hu Q, Martin EM, Qin Y, Lu C, Xia Y, Wang X, Du G. Prothioconazole induces cell cycle arrest by up-regulation of EIF4EBP1 in extravillous trophoblast cells. Arch Toxicol 2022; 96:559-570. [PMID: 35048155 DOI: 10.1007/s00204-021-03203-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
Prothioconazole (PTC) is a new broad-spectrum triazole antibacterial agent that is being widely used in agriculture. PTC has been linked to a number of reproductive outcomes including embryo implantation disorder; however, the exact mechanism underlying this relationship has yet to be determined. Proper trophoblast proliferation and migration is a prerequisite for successful embryo implantation. To elucidate the underlying molecular perturbations, we detect the effect of PTC on extravillous trophoblast cells proliferation and migration, and investigate its potential mechanisms. Exposure to different concentrations of PTC (0-500 μM) significantly inhibited the cell viability and migration ability (5 μM PTC exposure), and also caused the cell cycle arrest at the lowest dose (1 μM PTC exposure). Transcriptome analysis revealed that PTC exposure disturbed multiple biological processes including cell cycle and apoptosis, consistent with cell phenotype. Specifically, eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1, 4E-BP1) was identified as up-regulated in PTC exposure group and knockdown of EIF4EBP1, and attenuated the G1 phase arrest induced by PTC exposure. In summary, our data demonstrated that 4E-BP1 participated in PTC-induced cell cycle arrest in extravillous trophoblast cells by regulating cyclin D1. These findings shed light on the potential adverse effect of PTC exposure on the embryo implantation.
Collapse
Affiliation(s)
- Guangzhu Dong
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, No. 101 Longmian Road, Nanjing, 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Baijiahu Community Health Service Center, Moling Street, Jiangning District, Nanjing, 211102, China
| | - Rui Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, No. 101 Longmian Road, Nanjing, 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qi Hu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, No. 101 Longmian Road, Nanjing, 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Center for Disease Control and Prevention, Beilun District, Ningbo, 315899, China
| | - Elizabeth M Martin
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, 27709, USA.,Department of Health and Human Services, Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Yufeng Qin
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Department of Microbes and Infection, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, No. 101 Longmian Road, Nanjing, 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, No. 101 Longmian Road, Nanjing, 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, No. 101 Longmian Road, Nanjing, 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Guizhen Du
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, No. 101 Longmian Road, Nanjing, 211166, China. .,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
20
|
Tian S, Yan H, Meng Z, Jia M, Sun W, Huang S, Wang Y, Zhou Z, Diao J, Zhu W. Prothioconazole and prothioconazole-desthio induced different hepatotoxicities via interfering with glycolipid metabolism in mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 180:104983. [PMID: 34955176 DOI: 10.1016/j.pestbp.2021.104983] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Prothioconazole (PTA), a new triazole fungicide, has been widely used worldwide. A recent study has confirmed that PTA and its main metabolite prothioconazole-desthio (dPTA) interfere with the liver metabolism in reptiles. However, little is known about liver toxicity of these two pollutants in mammals. Here, female mice were orally exposed to PTA (1.5 mg/kg body weight/day) and dPTA (1.5 mg/kg body weight/day) for 30 days. Additionally, growth phenotype and indexes related to serum and liver function were examined. Using metabolomics and gene expression analysis, PTA- and dPTA-induced hepatotoxicity was studied to clarify its potential underlying mechanism of action. Together, the results indicated that PTA and dPTA exposure caused changes in growth phenotypes, including elevated blood glucose levels, triglyceride accumulation, and damage of liver function. Additionally, exposure to PTA and dPTA caused changes in genes and metabolites related to glycolipid metabolism in female mice, thereby interfering with the pyruvate metabolism and glycolysis/gluconeogenesis pathways, ultimately leading to hepatic metabolism disorders. In particular, the effect of dPTA on hepatotoxicity has been proven to be more significant than that of PTA. Thus, these findings help us understand the underlying mechanism of action of PTA and dPTA exposure-induced hepatotoxicity in mammals and possibly humans.
Collapse
Affiliation(s)
- Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Hang Yan
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Zhiyuan Meng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ming Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Shiran Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yu Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
21
|
Liang Y, Chen X, Hu J. Terminal residue and dietary intake risk assessment of prothioconazole-desthio and fluoxastrobin in wheat field ecosystem. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4900-4906. [PMID: 33543480 DOI: 10.1002/jsfa.11133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/08/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Wheat is one of the most important cereal crops worldwide, and use of fungicides is an essential part of wheat production. Both prothioconazole and fluoxastrobin give excellent control of important seed and soilborne pathogens. The combination of these two fungicides shows a complementary mode of action and has a wide usage around the world. But the residue levels of these fungicides in the wheat matrix are still unknown. RESULTS In the current study, a simple, low-cost and highly sensitive method using modified QuECHERS procedure combined with high-performance liquid chromatography-tandem mass spectrometry was developed to simultaneously quantify E- and Z-fluoxastrobin and the main metabolite prothioconazole-desthio of prothioconazole in the wheat matrix. The recoveries of prothioconazole-desthio, E-fluoxastrobin and Z-fluoxastrobin ranged from 84% to 101%, with relative standard deviation of less than 13.2%. The terminal residues of prothioconazole-desthio and E- and Z-fluoxastrobin were studied in wheat grain and straw under field conditions. The results showed that the terminal residue of the target compounds ranged from <0.01 to 0.029 mg kg-1 and <0.05 to 7.6 mg kg-1 in wheat grain and straw (expressed as dry weight), respectively. The risk quotients of prothioconazole-desthio and fluoxastrobin were 0.2% and 3.2%. CONCLUSIONS The residue levels of the target analytes in wheat grain were lower than the maximum residue limits recommended by the Chinese Ministry of Agriculture. And the calculated risk quotient values were far below 100%, indicating a low dietary intake health risk to consumers. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yiran Liang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaoxin Chen
- College of Chemistry and Environmental Science, Hebei University, Baoding, China
| | - Jiye Hu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
22
|
Koushkestani M, Abbasi-Moayed S, Ghasemi F, Mahdavi V, Hormozi-Nezhad MR. Simultaneous detection and identification of thiometon, phosalone, and prothioconazole pesticides using a nanoplasmonic sensor array. Food Chem Toxicol 2021; 151:112109. [PMID: 33716053 DOI: 10.1016/j.fct.2021.112109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/22/2021] [Accepted: 03/06/2021] [Indexed: 02/01/2023]
Abstract
In this work, a colorimetric sensor array has been designed for the identification and discrimination of thiometon (TM) and phosalone (PS) as organophosphate pesticides and prothioconazole (PC) as a triazole pesticide. For this purpose, two different plasmonic nanoparticles including unmodified gold nanoparticles (AuNPs) and unmodified silver nanoparticles (AgNPs) were used as sensing elements. The principle of the proposed strategy relied on the aggregation AuNPs and AgNPs through the cross-reactive interaction between the target pesticides and plasmonic nanoparticles. Therefore, these aggregation-induced UV-Vis spectra changes were utilized to discriminate the target pesticides with the help of linear discriminant analysis (LDA). Besides, we have employed the bar plots and the heat maps as visual non-statistical methods to differentiate the pesticides in a wide range of concentrations (i.e., 20-5000 ng mL-1). Multivariate calibration plots from partial least squares (PLS)- regression indicated that the responses linearly depend on the pesticide concentrations in the range of 100-1000 ng mL-1 with the limit of detections (LOD) of 66.8, 68.3, and 41.4 ng mL-1, for TM, PS, and PC, respectively. Finally, the potential applicability of the proposed sensor array has been evaluated for the detection and identification of the pesticides in the mixtures, water samples, and cucumber fruit.
Collapse
Affiliation(s)
- Marjan Koushkestani
- Department of Chemistry, Sharif University of Technology, Tehran, 11155-9516, Iran
| | - Samira Abbasi-Moayed
- Department of Chemistry, Sharif University of Technology, Tehran, 11155-9516, Iran
| | - Forough Ghasemi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, 3135933151, Iran.
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education, and Extension Organization (AREEO), Tehran, 1475744741, Iran
| | | |
Collapse
|
23
|
Jing X, Huang X, Wang H, Xue H, Wu B, Wang X, Jia L. Popping candy-assisted dispersive liquid-liquid microextraction for enantioselective determination of prothioconazole and its chiral metabolite in water, beer, Baijiu, and vinegar samples by HPLC. Food Chem 2021; 348:129147. [PMID: 33508607 DOI: 10.1016/j.foodchem.2021.129147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
To simultaneously determine the enantiomers of prothioconazole and its chiral metabolite prothioconazole-desthio in water, beer, Baijiu, and vinegar samples by HPLC, a simple, fast, environmentally-friendly popping candy-assisted dispersive liquid-liquid microextraction technique was developed. A green medium-chain fatty acid (decanoic acid) and popping candy could be used as the extractant and solid dispersant respectively to avoid the use of toxic organic solvents. Decanoic acid was collected after extraction by solidification at room temperature. The linear range of this technique was from 27.1 to 1000 µg L-1. The limits of detection and quantification were within the ranges of 8.1-11.2 μg L-1 and 27.1-37.3 μg L-1, respectively. The extraction recovery was 80.8% to 102.5% with the relative standard deviation ranged from 1.1 to 7.1%. This technique has been successfully applied to enantioselectively determine the residues of prothioconazole and prothioconazole-desthio in water, beer, Baijiu, and vinegar samples.
Collapse
Affiliation(s)
- Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Shanxi 030801, PR China
| | - Xin Huang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Shanxi 030801, PR China
| | - Huihui Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Haoyue Xue
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Shanxi 030801, PR China
| | - Beiqi Wu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Liyan Jia
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Shanxi 030801, PR China.
| |
Collapse
|
24
|
Zhang Z, Zhang J, Zhao X, Gao B, He Z, Li L, Shi H, Wang M. Stereoselective uptake and metabolism of prothioconazole caused oxidative stress in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122756. [PMID: 32353726 DOI: 10.1016/j.jhazmat.2020.122756] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/15/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Prothioconazole (PTA) is a novel, broad-spectrum, chiral triazole fungicide that is mainly used to prevent and control the disease of cereal crops. However, the adverse effects of PTA and its major metabolite on nontarget organisms have aroused wide concern. In the present work, the acute toxic of the metabolite prothioconazole-desthio (PTA-desthio), with an LC50 of 1.31 mg L-1, was 3.5-fold more toxic than the parent compound, indicating that the metabolism of PTA in zebrafish was toxic. The stereoselective uptake and metabolism of PTA and PTA-desthio in zebrafish was firstly investigated using LC-MS/MS. Remarkable enantioselectivity was observed: S-PTA and S-PTA-desthio were preferentially uptake with the uptake rate constants of 8.22 and 8.15 d-1 at exposure concentration of 0.5 mg L-1, respectively, and the R-PTA-desthio were preferentially metabolized. PTA-desthio was rapidly formed during the uptake processes. The antioxidant enzyme activities in the zebrafish changed significantly, and these effects were reversible. A metabolic pathway including 13 phase I metabolites and 2 phase II metabolites was firstly proposed. A glucuronic acid conjugate and sulfate conjugate were observed in zebrafish. The results of this work provide information that highlights and can help mitigate the potential toxicity of PTA to the ecological environment and humans health.
Collapse
Affiliation(s)
- Zhaoxian Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Ministry of Education, Nanjing, 20095, PR China
| | - Jing Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Ministry of Education, Nanjing, 20095, PR China
| | - Xuejun Zhao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Ministry of Education, Nanjing, 20095, PR China
| | - Beibei Gao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Ministry of Education, Nanjing, 20095, PR China
| | - Zongzhe He
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Ministry of Education, Nanjing, 20095, PR China
| | - Lianshan Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Ministry of Education, Nanjing, 20095, PR China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Ministry of Education, Nanjing, 20095, PR China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Ministry of Education, Nanjing, 20095, PR China.
| |
Collapse
|
25
|
Gao Q, Ma J, Liu Q, Liao M, Xiao J, Jiang M, Shi Y, Cao H. Effect of application method and formulation on prothioconazole residue behavior and mycotoxin contamination in wheat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:139019. [PMID: 32361459 DOI: 10.1016/j.scitotenv.2020.139019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
In this study, efficient and sensitive analytical methods based on liquid chromatography-tandem mass spectrometry were established to evaluate the degradation behavior of prothioconazole and prothioconazole-desthio along with mycotoxin contamination in wheat samples. The mean recoveries of prothioconazole and prothioconazole-desthio ranged from 76.05% to 96.17% with intraday relative standard deviations (RSDs) of 0.84%-14.38%. Mean recoveries of the five mycotoxins were 85.82%-103.24% with RSDs of 1.82%-7.03%. The residue and degradation behavior of prothioconazole was studied in wheat plant and grain under field conditions with different spraying equipment and prothioconazole formulations. Both application method and formulation affected prothioconazole degradation, and the content of all mycotoxin was lower than the national standards. The proposed analytic methods can be used to systematically evaluate prothioconazole and prothioconazole-desthio along with mycotoxin contamination in food. These results suggest that prothioconazole is safe for the control Fusarium head blight in wheat.
Collapse
Affiliation(s)
- Quan Gao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei 230036, PR China
| | - Jinjuan Ma
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei 230036, PR China
| | - Qing Liu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei 230036, PR China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei 230036, PR China
| | - Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei 230036, PR China
| | - Minghao Jiang
- School of Resource and Environment, Anhui Agricultural University, Hefei 230036, PR China
| | - Yanhong Shi
- School of Resource and Environment, Anhui Agricultural University, Hefei 230036, PR China; Provincial Key Laboratory for Agri-Food Safety, Hefei 230036, PR China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
26
|
Zheng Q, Qin D, Yang L, Liu B, Lin S, Ma Q, Zhang Z. Dissipation and distribution of difenoconazole in bananas and a risk assessment of dietary intake. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15365-15374. [PMID: 32077026 DOI: 10.1007/s11356-020-08030-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
The dissipation and terminal residues of difenoconazole in whole bananas and pulp were investigated under field conditions. The residual levels of difenoconazole in various parts of bananas grown in Guangdong, Hainan and Yunnan were determined by a GC-ECD detection method after simple, rapid pretreatment. The mean recovery was 80.66~107.40%, and the relative standard deviation was 3.36~9.84%. The results showed that the half-lives of difenoconazole in whole bananas and in the pulp were 12.16~13.33 days and 17.77~20.38 days, respectively. At harvest intervals of 28 and 35 days after the last application, the terminal residues of difenoconazole in whole bananas and pulp were 0.45~0.84 mg/kg and 0.19~0.37 mg/kg, respectively, which were lower than the maximum residue level established in China. The distribution of difenoconazole in banana pulp and peels was studied. The results showed that until harvesting, the residue in the peels was always 2.19~12.30 times larger than that in the pulp. Difenoconazole was mainly absorbed by the banana peels but did not easily penetrate into the pulp. Based on dietary risk assessment results, the residual levels of difenoconazole at the sampling interval of 28 days after the last application were within acceptable limits for chronic and acute dietary risks in different populations in China. This study can provide a reference for the safe and rational use of difenoconazole as a fungicide and for the future research and application of banana pulp and peels.
Collapse
Affiliation(s)
- Qun Zheng
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Deqiang Qin
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Liupeng Yang
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Benju Liu
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Sukun Lin
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Qianli Ma
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Zhixiang Zhang
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
27
|
Zhou Y, Li C, Liu R, Chen Z, Li L, Li W, He Y, Yuan L. Label-Free Colorimetric Detection of Prothioconazole Using Gold Nanoparticles Based on One-Step Reaction. ACS Biomater Sci Eng 2020; 6:2805-2811. [DOI: 10.1021/acsbiomaterials.0c00208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Congdi Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Rong Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yujian He
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Longfei Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
28
|
Dissipation dynamics and dietary risk assessment of pyraclonil residues in rice (Oryza sativa L.). Microchem J 2020. [DOI: 10.1016/j.microc.2019.104440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|