1
|
Mazloomi N, Safari B, Can Karaca A, Karimzadeh L, Moghadasi S, Ghanbari M, Assadpour E, Sarabandi K, Jafari SM. Loading bioactive peptides within different nanocarriers to enhance their functionality and bioavailability; in vitro and in vivo studies. Adv Colloid Interface Sci 2024; 334:103318. [PMID: 39433020 DOI: 10.1016/j.cis.2024.103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
A hydrolyzed protein is a blend of peptides and amino acids which is the result of hydrolysis by enzymes, acids or alkalis. The Bioactive Peptides (BPs) show important biological roles including antioxidant, antimicrobial, anti-diabetic, anti-cancer, and anti-hypertensive effects, as well as positive effects on the immune, nervous, and digestive systems. Despite the benefits of BPs, challenges such as undesired organoleptic properties, solubility profile, chemical instability, and low bioavailability limit their use in functional food formulations and dietary supplements. Nanocarriers have emerged as a promising solution for overcoming these challenges by improving the stability, solubility, resistance to gastric digestion, and bioavailability, allowing for the targeted and controlled delivery, and reduction or masking of the undesirable flavor of BPs. This study reviews the recent scientific accomplishments concerning the loading of BPs into various nanocarriers including lipid, carbohydrate and protein based-nanocarriers. A special emphasis is given to their application in food formulations in accordance to the challenges associated with their use.
Collapse
Affiliation(s)
- Narges Mazloomi
- Department of Nutritional Sciences, School of Health, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Barbod Safari
- School of Literature and Humanities, Kharazmi University, Tehran, Iran
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Laleh Karimzadeh
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Food and Drug Administration, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shokufeh Moghadasi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoud Ghanbari
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Food and Drug Administration, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elham Assadpour
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Food Industry Research Co., Gorgan, Iran
| | - Khashayar Sarabandi
- Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
2
|
Xu C, Liu Y, Li K, Zhang J, Wei B, Wang H. Absorption of food-derived peptides: Mechanisms, influencing factors, and enhancement strategies. Food Res Int 2024; 197:115190. [PMID: 39593400 DOI: 10.1016/j.foodres.2024.115190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 11/28/2024]
Abstract
Food-derived peptides (FPs) are bioactive molecules produced from dietary proteins through enzymatic hydrolysis or fermentation. These peptides exhibit various biological activities. However, their efficacy largely depends on bioavailability, the ability to cross absorption barriers, and reach target sites within the body. This review addresses key issues in FP absorption, including barriers, pathways, influencing factors, and strategies to enhance absorption. The biochemical and physical barriers to FP absorption include pH variations, enzymes, unstirred water layer, mucus layer, and intestinal epithelial cells. FPs enter the bloodstream via four main pathways: carrier-mediated transport, endocytosis, paracellular, and passive diffusion. The barrier-crossing efficiency depends on the structural properties and state of FPs and coexisting substances. Absorption efficiency can be significantly improved with permeability enhancers, nano-delivery systems, and chemical modifications. These insights provide a scientific basis and practical guidance for optimizing the bioactivity and health benefits of food-derived peptides.
Collapse
Affiliation(s)
- Chengzhi Xu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Yuting Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Ke Li
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Juntao Zhang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Benmei Wei
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China.
| | - Haibo Wang
- College of Life Science and Technology, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, Hubei, China.
| |
Collapse
|
3
|
Chotphruethipong L, Senphan T, Sigh A, Hutamekalin P, Nuthong P, Benjakul S. Characteristics and Bioactivities of Protein Hydrolysate from Cricket ( Acheta domesticus) Powder Defatted Using Ethanol with Aid of Vacuum Impregnation. Foods 2024; 13:3250. [PMID: 39456312 PMCID: PMC11508068 DOI: 10.3390/foods13203250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Cricket is a potential proteinaceous source used for protein hydrolysate (PH) preparation, having several biological activities. Nevertheless, cricket has high lipid contents, which are susceptible to oxidation during PH preparation. Thus, ethanol was used together with vacuum impregnation (VI) to enhance defatting efficacy before PH preparation. Also, bioavailability of the digest of PH after gastrointestinal tract (GIT) digestion via the Caco-2 monolayer was assessed. Cricket powder was defatted using ethanol for 1-4 h. Lipid contents were decreased with enhancing time until 2 h. Additionally, the defatting efficacy was augmented when ethanol combined with VI at 4 cycles for 2 h (VI-E-2) was implemented. Lowered mono- and polyunsaturated fatty acid contents were also observed in the VI-E-2 sample. The VI-E-2 sample was used to prepare PH using Alcalase and Flavourzyme (0.2-0.4 units/g dry sample). PH prepared by Alcalase hydrolysis at 0.2 units/g dry sample (A-0.2) showed the higher ABTS radical-scavenging activity and FRAP, compared to that prepared by Flavourzyme hydrolysis (p < 0.05). Thus, the A-0.2 sample was selected for digestion via the GIT system. The obtained digest (500-1000 μg/mL) had bioavailability of peptides, depending on the levels used. Therefore, PH from defatted cricket powder could be a promising ingredient for food applications.
Collapse
Affiliation(s)
- Lalita Chotphruethipong
- Department of Food Science, Faculty of Science, Burapha University, Mueang Chonburi, Chonburi 20131, Thailand
| | - Theeraphol Senphan
- Program in Food Science and Technology, Faculty of Engineering and Agro-Industry, Maejo University, Sansai, Chiangmai 50290, Thailand;
| | - Avtar Sigh
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (A.S.); (S.B.)
| | - Pilaiwanwadee Hutamekalin
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Pornpot Nuthong
- Office of Scientific Instrument and Testing, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (A.S.); (S.B.)
| |
Collapse
|
4
|
Yu T, Hu T, Na K, Zhang L, Lu S, Guo X. Glutamine-derived peptides: Current progress and future directions. Compr Rev Food Sci Food Saf 2024; 23:e13386. [PMID: 38847753 DOI: 10.1111/1541-4337.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/25/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Glutamine, the most abundant amino acid in the body, plays a critical role in preserving immune function, nitrogen balance, intestinal integrity, and resistance to infection. However, its limited solubility and instability present challenges for its use a functional nutrient. Consequently, there is a preference for utilizing glutamine-derived peptides as an alternative to achieve enhanced functionality. This article aims to review the applications of glutamine monomers in clinical, sports, and enteral nutrition. It compares the functional effectiveness of monomers and glutamine-derived peptides and provides a comprehensive assessment of glutamine-derived peptides in terms of their classification, preparation, mechanism of absorption, and biological activity. Furthermore, this study explores the potential integration of artificial intelligence (AI)-based peptidomics and synthetic biology in the de novo design and large-scale production of these peptides. The findings reveal that glutamine-derived peptides possess significant structure-related bioactivities, with the smaller molecular weight fraction serving as the primary active ingredient. These peptides possess the ability to promote intestinal homeostasis, exert hypotensive and hypoglycemic effects, and display antioxidant properties. However, our understanding of the structure-function relationships of glutamine-derived peptides remains largely exploratory at current stage. The combination of AI based peptidomics and synthetic biology presents an opportunity to explore the untapped resources of glutamine-derived peptides as functional food ingredients. Additionally, the utilization and bioavailability of these peptides can be enhanced through the use of delivery systems in vivo. This review serves as a valuable reference for future investigations of and developments in the discovery, functional validation, and biomanufacturing of glutamine-derived peptides in food science.
Collapse
Affiliation(s)
- Tianfei Yu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Tianshuo Hu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Kai Na
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Li Zhang
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Shuang Lu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, Wuhan City, China
| |
Collapse
|
5
|
Atma Y, Murray BS, Sadeghpour A, Goycoolea FM. Encapsulation of short-chain bioactive peptides (BAPs) for gastrointestinal delivery: a review. Food Funct 2024; 15:3959-3979. [PMID: 38568171 DOI: 10.1039/d3fo04195f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The majority of known peptides with high bioactivity (BAPs) such as antihypertensive, antidiabetic, antioxidant, hypocholesterolemic, anti-inflammatory and antimicrobial actions, are short-chain sequences of less than ten amino acids. These short-chain BAPs of varying natural and synthetic origin must be bioaccessible to be capable of being adsorbed systemically upon oral administration to show their full range of bioactivity. However, in general, in vitro and in vivo studies have shown that gastrointestinal digestion reduces BAPs bioactivity unless they are protected from degradation by encapsulation. This review gives a critical analysis of short-chain BAP encapsulation and performance with regard to the oral delivery route. In particular, it focuses on short-chain BAPs with antihypertensive and antidiabetic activity and encapsulation methods via nanoparticles and microparticles. Also addressed are the different wall materials used to form these particles and their associated payloads and release kinetics, along with the current challenges and a perspective of the future applications of these systems.
Collapse
Affiliation(s)
- Yoni Atma
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
- Department of Food Science and Technology, Universitas Trilogi, Jakarta, 12760, Indonesia
| | - Brent S Murray
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Amin Sadeghpour
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Francisco M Goycoolea
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
6
|
Wu CL, Ni ZF, Kuang XY, Li MF, Zong MH, Fan XD, Lou WY. Novel Multitarget ACE Inhibitory Peptides from Bovine Colostrum Immunoglobulin G: Cellular Transport, Efficacy in Regulating Endothelial Dysfunction, and Network Pharmacology Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4155-4169. [PMID: 38366990 DOI: 10.1021/acs.jafc.3c08795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
In this study, we used traditional laboratory methods, bioinformatics, and cellular models to screen novel ACE inhibitory (ACEI) peptides with strong ACEI activity, moderate absorption rates, and multiple targets from bovine colostrum immunoglobulin G (IgG). The purified fraction of the compound proteinase hydrolysate of IgG showed good ACEI activity. After nano-UPLC-MS/MS identification and in silico analysis, eight peptides were synthesized and verified. Among them, SFYPDY, TSFYPDY, FSWF, WYQQVPGSGL, and GVHTFP were identified as ACEI peptides, as they exhibited strong ACEI activity (with IC50 values of 104.7, 80.0, 121.2, 39.8, and 86.3 μM, respectively). They displayed good stability in an in vitro simulated gastrointestinal digestion assay. In a Caco-2 monolayer model, SFYPDY, FSWF, and WYQQVPGSGL exhibited better absorption rates and lower IC50 values than the other peptides and were thereby identified as novel ACEI peptides. Subsequently, in a H2O2-induced endothelial dysfunction (ED) model based on HUVECs, SFYPDY, FSWF, and WYQQVPGSGL regulated ED by reducing apoptosis and ROS accumulation while upregulating NOS3 mRNA expression. Network pharmacology analysis and RT-qPCR confirmed that they regulated multiple targets. Overall, our results suggest that SFYPDY, FSWF, and WYQQVPGSGL can serve as novel multitarget ACEI peptides.
Collapse
Affiliation(s)
- Chu-Li Wu
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, Guangdong China
| | - Zi-Fu Ni
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, Guangdong China
| | - Xiao-Yan Kuang
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, Guangdong China
| | - Meng-Fan Li
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, Guangdong China
| | - Min-Hua Zong
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, Guangdong China
| | - Xiao-Dan Fan
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, Guangdong China
| | - Wen-Yong Lou
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, Guangdong China
| |
Collapse
|
7
|
Luo M, Yuan Q, Liu M, Song X, Xu Y, Zhang T, Zeng X, Wu Z, Pan D, Guo Y. Astaxanthin nanoparticles ameliorate dextran sulfate sodium-induced colitis by alleviating oxidative stress, regulating intestinal flora, and protecting the intestinal barrier. Food Funct 2023; 14:9567-9579. [PMID: 37800998 DOI: 10.1039/d3fo03331g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
This study aimed to develop a novel astaxanthin nanoparticle using gum arabic (GA) and whey protein powder enriched with milk fat globule membranes (MFGM-WPI) as carriers and to investigate its effect and alleviation mechanism on colitis in mice. We demonstrated that MFGM-GA-astaxanthin could improve the bioaccessibility of astaxanthin and cope with oxidative stress more effectively in a Caco-2 cell model. In vivo studies demonstrated that MFGM-GA-astaxanthin alleviated colitis symptoms and repaired intestinal barrier function by increasing the expression of mucin 2, occludin, and zonula occludens-1. This was attributed to the alleviating effect of MFGM-GA-astaxanthin on oxidative stress. Moreover, MFGM-GA-astaxanthin restored the abnormalities of flora caused by dextran sulfate sodium, including Lactobacillus, Bacteroides, Ruminococcus, and Shigella. This study provides a basis for the therapeutic effect of astaxanthin nanoparticles on colon diseases.
Collapse
Affiliation(s)
- Mengfan Luo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| | - Qiaoyue Yuan
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| | - Mingzhen Liu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| | - Xingye Song
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| | - Yingjie Xu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| | - Tao Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, PR China.
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, PR China.
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, PR China.
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, PR China.
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Yuxing Guo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| |
Collapse
|
8
|
Lu Y, Wu L, Lin M, Bao X, Zhong H, Ke P, Dai Q, Yang Q, Tang X, Xu W, Xu D, Han M. Double layer spherical nanoparticles with hyaluronic acid coating to enhance oral delivery of exenatide in T2DM rats. Eur J Pharm Biopharm 2023; 191:205-218. [PMID: 37683898 DOI: 10.1016/j.ejpb.2023.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
Soybean phospholipid was used as an amphiphilic material to form reverse micelles (RMs) in medium glycerol monolinoleate (Maisine) with Exenatide (EXT.) encapsulated in the polar core formed by the hydrophilic part of phospholipid. Cremopher RH40 and caprylocaproyl macrogol-8 glycerides EP/caprylocaproyl polyoxyl-8 glycerides NF (Labrasol) were added as surfactants to prepare reverse micelles-self emulsifying drug delivery system (RMs-SEDDS). On this basis, oil in water (O/W) emulsion was further prepared. By adding DOTAP, the surface of the emulsion was positively charged. Finally, hyaluronic acid wrapping in the outermost layer by electrostatic adsorption and reverse micelles-O/W-sodium hyaluronate (RMs-O/W-HA) nanoparticles containing Exenatide were prepared. RMs-SEDDS was spherical with an average particle size of 213.6 nm and RMs-O/W-HA was double-layered spherical nanoparticle with an average particle size of 309.2 nm. HA coating enhanced the adhesion of nanoparticles (NPs), and RMs-O/W-HA increased cellular uptake through CD44-mediated endocytosis. Pharmacodynamics results showed that RMs-SEDDS and RMs-O/W-HA could reduce blood glucose in type 2 diabetic rats, protect pancreatic β cells to a certain extent, and relieve insulin resistance and hyperlipemia complications with good safety.
Collapse
Affiliation(s)
- Yiying Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Linjie Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mengting Lin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyan Bao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haiqing Zhong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peng Ke
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Qi Dai
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiyao Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinjiang Tang
- Hangzhou Leading Pharmatech Co., Ltd., 1500 Wenyi West Road, Building 4, 7th Floor, Hangzhou City, Zhejiang Province, China
| | - WenHong Xu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - DongHang Xu
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, China.
| |
Collapse
|
9
|
Liu F, Liu M, Zhang T, Zhao X, Wang X, Kong W, Cui L, Luo H, Guo L, Guo Y. Transportation of whey protein-derived peptides using Caco-2 cell model and identification of novel cholesterol-lowering peptides. Food Nutr Res 2023; 67:9079. [PMID: 37288087 PMCID: PMC10243119 DOI: 10.29219/fnr.v67.9079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/11/2023] [Accepted: 04/02/2023] [Indexed: 06/09/2023] Open
Abstract
Background The increasing morbidity and mortality of cardiovascular disease have become a major factor in human death. Serum cholesterol is considered to be an important risk factor for inducing coronary heart disease, atherosclerosis and other cardiovascular diseases. To screen intestinal absorbable functional small peptides with cholesterol-lowering activity by enzymatic hydrolysis of whey protein and develop cholesterol-based functional food that may become a substitute for chemically synthesized drugs, providing new ideas for diseases caused by high cholesterol. Objective This study aimed to evaluate the cholesterol-lowering activity of intestinal absorbable whey protein-derived peptides hydrolyzed by alkaline protease, trypsin and chymotrypsin, respectively. Method The whey protein hydrolysates acquired by enzymatic hydrolysis under optimal conditions were purified by a hollow fiber ultrafiltration membrane with a molecular weight cutoff of 10 kDa. The fractions obtained by Sephadex G-10 gel filtration chromatography were transported through a Caco-2 cell monolayer. The transported peptides were detected in the basolateral aspect of Caco-2 cell monolayers using ultra- performance liquid chromatography-tandem mass spectrometry (UPLC-MS). Results His-Thr-Ser-Gly-Tyr (HTSGY), Ala-Val-Phe-Lys (AVFK) and Ala-Leu-Pro-Met (ALPM) were unreported peptides with cholesterol-lowering activity. The cholesterol-lowering activities of the three peptides did not change significantly during simulated gastrointestinal digestion. Conclusion This study not only provides theoretical support for the development of bioactive peptides that can be directly absorbed by the human body, but also provides new treatment ideas for hypercholesterolemia.
Collapse
Affiliation(s)
- Feifan Liu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Mingzhen Liu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Tao Zhang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Xuan Zhao
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Xiaozhi Wang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Weimei Kong
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Li Cui
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
| | - Haibo Luo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Lili Guo
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, PR China
| | - Yuxing Guo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| |
Collapse
|
10
|
Shi J, Wang H, Wang Y, Peng Y, Huang X, Zhang Y, Geng H, Wang Y, Li X, Liu C, Liu C. Mitochondrion-targeting and in situ photocontrolled protein delivery via photocages. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112624. [PMID: 36521315 DOI: 10.1016/j.jphotobiol.2022.112624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Defects in mitochondrial proteostasis contribute to many disorders, including cancer, neurodegeneration, and metabolic and genetic diseases. A strategy aimed at restoring the damaged mitochondrial proteostasis is the mitochondrion-targeting and carrier-free delivery of exogenous functional proteins that can replace the endogenous dysfunctional proteins. The modification of a protein with a photolabile protecting group (PPG, i.e., photocage group) can be activated in situ by response to illumination, leading to release of the protein from its photocage. Here, the Cys and peptide photocages with coumarin were first prepared and characterized for proof of concept. Then, we designed a pair of photocage groups PPG-RhB and PPG-TPP using coumarin and mitochondrion-targeting Rhodamine B (RhB) and triphenylphosphine (TPP), and another pair of organelle-nontarget photocage groups Br-PPG and NO2-PPG for comparison. The proteins modified with these two pairs of photocage groups undergo photolysis in solutions, and can penetrate cell membrane toward their destinations in the carrier-free fashions. The intracellular protein photocages are in situ activated by illumination at 405 nm, and the proteins are released from their photocages in mitochondria and cytoplasm, respectively. This strategy of light-responsive and carrier-free cellular delivery enables mitochondrial and cytoplasmic accumulation of exogenous proteins.
Collapse
Affiliation(s)
- Jiayuan Shi
- Key Laboratory of Pesticide and Chemical Biology of Ministry Education, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Huiling Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry Education, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Yuhui Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry Education, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Yujie Peng
- Key Laboratory of Pesticide and Chemical Biology of Ministry Education, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Xiaoping Huang
- Key Laboratory of Pesticide and Chemical Biology of Ministry Education, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Yunfeng Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry Education, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Hongen Geng
- Key Laboratory of Pesticide and Chemical Biology of Ministry Education, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Yi Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry Education, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Xiang Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry Education, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China; College of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China.
| | - Chunrong Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry Education, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Changlin Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry Education, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China.
| |
Collapse
|
11
|
Zhang X, Li X, Zhao Y, Zheng Q, Wu Q, Yu Y. Nanocarrier system: An emerging strategy for bioactive peptide delivery. Front Nutr 2022; 9:1050647. [PMID: 36545472 PMCID: PMC9760884 DOI: 10.3389/fnut.2022.1050647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Compared with small-molecule synthetic drugs, bioactive peptides have desirable advantages in efficiency, selectivity, safety, tolerance, and side effects, which are accepted by attracting extensive attention from researchers in food, medicine, and other fields. However, unacceptable barriers, including mucus barrier, digestive enzyme barrier, and epithelial barrier, cause the weakening or the loss of bioavailability and biostability of bioactive peptides. The nanocarrier system for bioactive peptide delivery needs to be further probed. We provide a comprehensive update on the application of versatile delivery systems for embedding bioactive peptides, including liposomes, polymer nanoparticles, polysaccharides, hydrogels, and self-emulsifying delivery systems, and further clarify their structural characterization, advantages, and disadvantages as delivery systems. It aims to provide a reference for the maximum utilization of bioactive peptides. It is expected to be an effective strategy for improving the bioavailability and biostability of bioactive peptides.
Collapse
|
12
|
Qi X, Chen H, Guan K, Sun Y, Wang R, Ma Y. Identification, inhibitory mechanism and transepithelial transport of xanthine oxidase inhibitory peptides from whey protein after simulated gastrointestinal digestion and intestinal absorption. Food Res Int 2022; 162:111959. [DOI: 10.1016/j.foodres.2022.111959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/02/2022] [Accepted: 09/18/2022] [Indexed: 11/04/2022]
|
13
|
Polysaccharides-based delivery system for efficient encapsulation and controlled release of food-derived active peptides. Carbohydr Polym 2022; 291:119580. [DOI: 10.1016/j.carbpol.2022.119580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/18/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022]
|
14
|
Hu S, Lin S, He X, Sun N. Iron delivery systems for controlled release of iron and enhancement of iron absorption and bioavailability. Crit Rev Food Sci Nutr 2022; 63:10197-10216. [PMID: 35588258 DOI: 10.1080/10408398.2022.2076652] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Iron deficiency is a global nutritional problem, and adding iron salts directly to food will have certain side effects on the human body. Therefore, there is growing interest in food-grade iron delivery systems. This review provides an overview of iron delivery systems, with emphasis on the controlled release of iron during gastrointestinal digestion, as well as the enhancement of iron absorption and bioavailability. Iron-bearing proteins are easily degraded by digestive enzymes and absorbed through receptor-mediated endocytosis. Instead, protein aggregates are slowly degraded in the stomach, which delays iron release and serves as a potential iron supplement. Amino acids, peptides and polysaccharides can bind iron through iron binding sites, but the formed compounds are prone to dissociation in the stomach. Moreover, peptides and polysaccharides can deliver iron by mediating the formation of ferric oxyhydroxide which is absorbed through endocytosis or bivalent transporter 1. In addition, liposomes are unstable during gastric digestion and iron is released in large quantities. Complexes formed by polysaccharides and proteins, and microcapsules formed by polysaccharides can delay the release of iron in the gastric environment and prolong iron release in the intestinal environment. This review is conducive to the development of iron functional ingredients and dietary supplements.
Collapse
Affiliation(s)
- Shengjie Hu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Xueqing He
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
15
|
Cardioprotective Peptides from Milk Processing and Dairy Products: From Bioactivity to Final Products including Commercialization and Legislation. Foods 2022; 11:foods11091270. [PMID: 35563993 PMCID: PMC9101964 DOI: 10.3390/foods11091270] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Recent research has revealed the potential of peptides derived from dairy products preventing cardiovascular disorders, one of the main causes of death worldwide. This review provides an overview of the main cardioprotective effects (assayed in vitro, in vivo, and ex vivo) of bioactive peptides derived from different dairy processing methods (fermentation and enzymatic hydrolysis) and dairy products (yogurt, cheese, and kefir), as well as the beneficial or detrimental effects of the process of gastrointestinal digestion following oral consumption on the biological activities of dairy-derived peptides. The main literature available on the structure–function relationship of dairy bioactive peptides, such as molecular docking and quantitative structure–activity relationships, and their allergenicity and toxicity will also be covered together with the main legislative frameworks governing the commercialization of these compounds. The current products and companies currently commercializing their products as a source of bioactive peptides will also be summarized, emphasizing the main challenges and opportunities for the industrial exploitation of dairy bioactive peptides in the market of functional food and nutraceuticals.
Collapse
|
16
|
Peng S, Song H, Chen Y, Li S, Guan X. Oral Delivery of Food-derived Bioactive Peptides: Challenges and Strategies. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Shiyu Peng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Yaqiong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
17
|
Wenhui T, Shumin H, Yongliang Z, Liping S, Hua Y. Identification of in vitro angiotensin-converting enzyme and dipeptidyl peptidase IV inhibitory peptides from draft beer by virtual screening and molecular docking. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1085-1094. [PMID: 34309842 DOI: 10.1002/jsfa.11445] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Hypertension and diabetes are two kinds of senile diseases which often occur simultaneously. The commonly used drugs in clinic may produce certain side effects. Food-derived polypeptide is a kind of polypeptide with great development potential, which has many functions of regulating human physiological function. Beer is rich in nutrition but there are few researches on bioactive peptides in beer. RESULTS In this study, a rapid virtual screening method was established to obtain bioactive peptides from Tsingtao draft beer. The peptide sequence was analyzed by ultra-performance liquid chromatography-quadrupole-Orbitrap-tandem mass spectrometry (UPLC-Q-Orbitrap-MS2 ), and 50 peptides were identified. Eight peptides with potential biological activities were screened by using Peptide Ranker software and previous literature references. On the basis of absorption prediction, toxicity prediction, and molecular docking analysis, LNFDPNR and LPQQQAQFK were finally confirmed. The molecular docking results showed that two peptides could bind angiotensin-converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV) tightly by hydrogen bonding and hydrophobic interaction. The in vitro activity evaluation results showed that two peptides had obvious ACE and DPP-IV inhibitory activity. CONCLUSION This study established a method for rapidly screening bioactive peptides from Tsingtao draft beer, screened two ACE and DPP-IV inhibitory peptides in beer and analyzed their active action mechanism. This article may have great theoretical significance and practical value to further explore the health function of beer. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tian Wenhui
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd. Qingdao, Qingdao, China
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China
| | - Hu Shumin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd. Qingdao, Qingdao, China
| | - Zhuang Yongliang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China
| | - Sun Liping
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China
| | - Yin Hua
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd. Qingdao, Qingdao, China
| |
Collapse
|
18
|
Liu M, Zhang T, Liang X, Yuan Q, Zeng X, Wu Z, Pan D, Tao M, Guo Y. Production and transepithelial transportation of casein-derived peptides and identification a novel antioxidant peptide LHSMK. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Yu J, Wang S, Qi J, Yu Z, Xian Y, Liu W, Wang X, Liu C, Wei M. Mannose-modified liposome designed for epitope peptide drug delivery in cancer immunotherapy. Int Immunopharmacol 2021; 101:108148. [PMID: 34653955 DOI: 10.1016/j.intimp.2021.108148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Based on the interaction between cytotoxic T lymphocyte (CTL) dominant epitopes and dendritic cells (DCs), CD8+T cells are specifically activated into CTL cells. Targeted killing is a type of tumor vaccine for immunotherapy with great development potential. However, because of the disadvantages of poor stability in vivo and low uptake rate of DCs caused by single use of dominant epitope peptide drugs, its use is limited. Here, we investigated the antitumor potential of M-YL/LA-Lipo, a novel liposome drug delivery system. METHODS We assembled mannose on the surface of liposome, which has a highly targeted effect on the mannose receptor on the surface of DCs. The dominant epitope peptide drugs were encapsulated into the liposome using membrane hydration method, and the encapsulation rate, release rate, in vitro stability, and microstructure were characterized using ultrafiltration method, dialysis method, and negative staining transmission electron microscopy. In addition, its targeting ability was verified by in vitro interaction with DCs, and its anticancer effect was verified by animal experiments. RESULTS We have successfully prepared a liposome drug delivery system with stable physical and chemical properties. Moreover, we demonstrated that it was highly uptaken by DCs and promoted DC maturation in vitro. Furthermore, in vivo animal experiments indicated that M-YL/LA-Lipo specific CTL significantly inhibited the hematogenous spread of lung metastasis of triple negative breast cancer. CONCLUSIONS we successfully constructed a new polypeptide liposome drug delivery system by avoiding the disadvantages of single use of dominant epitope peptide drugs and accurate targeted therapy for tumors.
Collapse
Affiliation(s)
- Jiankun Yu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shanshan Wang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Jing Qi
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zhaojin Yu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yunkai Xian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Wensi Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xiangyi Wang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Chao Liu
- Liaoning Medical Diagnosis and Treatment Technology R&D Center Co, Ltd., Shenyang 110167, China; Shenyang Kangwei Medical Analysis Laboratory Co, Ltd., Shenyang 110167, China
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
20
|
Jiang X, Pan D, Tao M, Zhang T, Zeng X, Wu Z, Guo Y. New Nanocarrier System for Liposomes Coated with Lactobacillus acidophilus S-Layer Protein to Improve Leu-Gln-Pro-Glu Absorption through the Intestinal Epithelium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7593-7602. [PMID: 34190554 DOI: 10.1021/acs.jafc.1c01498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The present study describes the development of a novel liposome nanocarrier system. The liposome was coated with Lactobacillus acidophilus CICC 6074 S-layer protein (SLP) to improve the intestinal absorption of the cholesterol-lowering peptide Leu-Gln-Pro-Glu (LQPE). The SLP-coated liposomes were prepared and characterized with morphology, particle size, zeta potential, membrane stability, Fourier transform infrared spectroscopy, and dual-channel surface plasma resonance. The results showed that SLP could successfully self-assemble on liposomes. Then, LQPE liposomes and SLP-coated LQPE liposomes (SLP-L-LQPE) were prepared. SLP-L-LQPE not only showed better sustained release properties and gastrointestinal tolerance in vitro but also increased the retention time in mice intestine. Transepithelial transport experiment indicates that the transshipment of LQPE increased significantly after being embedded by liposomes and coated with SLP. The research provides a theoretical basis for the study of SLP-coated liposomes and a potential drug delivery system for improving the intestinal absorption of peptides.
Collapse
Affiliation(s)
- Xiaoxiao Jiang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Daodong Pan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Mingxuan Tao
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Tao Zhang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Xiaoqun Zeng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Zhen Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Yuxing Guo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
21
|
Chotphruethipong L, Hutamekalin P, Sukketsiri W, Benjakul S. Effects of sonication and ultrasound on properties and bioactivities of liposomes loaded with hydrolyzed collagen from defatted sea bass skin conjugated with epigallocatechin gallate. J Food Biochem 2021; 45:e13809. [PMID: 34145603 DOI: 10.1111/jfbc.13809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
Hydrolyzed collagen (HC) from defatted sea bass skin conjugated with 3% epigallocatechin gallate (EGCG) was prepared and the resulting HC-EGCG conjugate at various levels (0.25%-2%, w/v) was loaded into liposome. The obtained liposomes were subjected to sonication (S). Liposome loaded with 1% conjugate showed the highest encapsulation efficiency (EE) (p < .05). When the ultrasound-assisted process (UAP) at different amplitudes (20% and 40%) and times (2, 5, 10, and 15 min) were implemented, the highest EE of conjugate-loaded liposome was found at 20% amplitude for 2 min (p < .05). When S-liposome and UAP-liposome were lyophilized, decreasing EE of both samples was observed (p < .05). Lyophilized UAP-liposome had higher stability than lyophilized S-liposome during storage at 25℃ for 28 days. Additionally, antioxidant activity in the gastrointestinal track model system (GIMs) and digest obtained from GIMs were higher for UAP-liposome (p < .05). Therefore, liposome can be used for the delivery of conjugate. PRACTICAL APPLICATIONS: HC from defatted sea bass skin is considered to possess several bioactivities, especially skin nourishment and bone strengthening. Nevertheless, antioxidant activity, related to the treatment of several ailments, is still low for HC. Thus, grafting of HC with polyphenol such as EGCG via free radical method can be used for the enhancement of the antioxidant activity of HC. Although the resulting conjugate has augmented activity, it is unstable during storage and in the gastrointestinal digestion system. Liposome is a promising means to stabilize the conjugate under harsh condition, especially with the aid of the UAP. Thus, liposome loaded with conjugate having the reduced size has higher antioxidant activity with increased stability, which can have a wider range of applications.
Collapse
Affiliation(s)
- Lalita Chotphruethipong
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Pilaiwanwadee Hutamekalin
- Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Wanida Sukketsiri
- Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
22
|
Zhang T, Su M, Liu M, Tao M, Yang Y, Liu C, Zeng X, Pan D, Wu Z, Guo Y. Optimization of Encapsulation Using Milk Polar Lipid Liposomes with S-Layer Protein and Transport Study of the ACE-Inhibitory Peptide RLSFNP. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7049-7056. [PMID: 34132090 DOI: 10.1021/acs.jafc.1c02216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The purpose of this study is to develop a new type of nanodrug delivery material by modifying milk polar lipid (MPL) liposomes with the S-layer protein. LIP-RLSFNP (MPL liposomes encapsulating RLSFNP (Arg-Leu-Ser-Phe-Asn-Pro)) and SLP-LIP-RLSFNP (S-layer protein-modified LIP-RLSFNP) were prepared and characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, confocal laser scanning microscopy, surface plasmon resonance, and mastersizer dynamic light scattering measurements. The results showed that the S-layer protein could modify the surface of MPL liposomes, stabilize the shape of the vesicles, and improve the resistance to external interference. Furthermore, SLP-LIP-RLSFNP showed better performance in in vitro and in vivo experiments compared with LIP-RLSFNP in terms of promoting absorption and delayed release. The findings suggested that MPL liposomes modified with the S-layer protein have potential for use as an effective delivery system for therapeutic proteins and peptides.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, Jiangsu, P. R. China
| | - Mi Su
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, Jiangsu, P. R. China
| | - Mingzhen Liu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, Jiangsu, P. R. China
| | - Mingxuan Tao
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, Jiangsu, P. R. China
| | - Yao Yang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, Jiangsu, P. R. China
| | - Chen Liu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, Jiangsu, P. R. China
| | - Xiaoqun Zeng
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Daodong Pan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Zhen Wu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Yuxing Guo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, Jiangsu, P. R. China
| |
Collapse
|
23
|
Ghiasi F, Eskandari MH, Golmakani MT, Rubio RG, Ortega F. Build-Up of a 3D Organogel Network within the Bilayer Shell of Nanoliposomes. A Novel Delivery System for Vitamin D 3: Preparation, Characterization, and Physicochemical Stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2585-2594. [PMID: 33617257 PMCID: PMC8478283 DOI: 10.1021/acs.jafc.0c06680] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The inherent thermodynamic instability of liposomes during production and storage has limited their widespread applications. Therefore, a novel structure of food-grade nanoliposomes stabilized by a 3D organogel network within the bilayer shell was developed through the extrusion process and successfully applied to encapsulate vitamin D3. A huge flocculation and a significant reduction of zeta potential (-17 mV) were observed in control nanoliposomes (without the organogel shell) after 2 months of storage at 4 °C, while the sample with a gelled bilayer showed excellent stability with a particle diameter of 105 nm and a high negative zeta potential (-63.4 mV), even after 3 months. The development of spherical vesicles was confirmed by TEM. Interestingly, the gelled bilayer shell led to improved stability against osmotically active divalent salt ions. Electron paramagnetic resonance confirmed the higher rigidity of the shell bilayer upon gelation. The novel liposome offered a dramatic increase in encapsulation efficiency and loading of vitamin D3 compared to those of control.
Collapse
Affiliation(s)
- Fatemeh Ghiasi
- Department
of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71946-84636, Iran
| | - Mohammad Hadi Eskandari
- Department
of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71946-84636, Iran
| | - Mohammad-Taghi Golmakani
- Department
of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71946-84636, Iran
| | - Ramón G. Rubio
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria S/n, Madrid 28040, Spain
- Instituto
Pluridisciplinar, Universidad Complutense
de Madrid, Paseo Juan
XXIII 1, Madrid 28040, Spain
| | - Francisco Ortega
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria S/n, Madrid 28040, Spain
- Instituto
Pluridisciplinar, Universidad Complutense
de Madrid, Paseo Juan
XXIII 1, Madrid 28040, Spain
| |
Collapse
|
24
|
Xue L, Yin R, Howell K, Zhang P. Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme-inhibitory peptides. Compr Rev Food Sci Food Saf 2021; 20:1150-1187. [PMID: 33527706 DOI: 10.1111/1541-4337.12711] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022]
Abstract
Angiotensin-I-converting enzyme (ACE) inhibitory peptides are able to inhibit the activity of ACE, which is the key enzymatic factor mediating systemic hypertension. ACE-inhibitory peptides can be obtained from edible proteins and have the function of antihypertension. The amino acid sequences and the secondary structures of ACE-inhibitory peptides determine the inhibitory activities and stability. The resistance of ACE-inhibitory peptides to digestive enzymes and peptidase affect their antihypertensive bioactivity in vivo. In this paper, the mechanism of ACE-inhibition, sources of the inhibitory peptides, structure-activity relationships, stability during digestion, absorption and transportation of ACE-inhibitory peptides, and consumption of ACE-inhibitory peptides are reviewed, which provide guidance to the development of new functional foods and production of antihypertensive nutraceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Lu Xue
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.,School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Rongxin Yin
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Kate Howell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Christensen B, Toth AE, Nielsen SSE, Scavenius C, Petersen SV, Enghild JJ, Rasmussen JT, Nielsen MS, Sørensen ES. Transport of a Peptide from Bovine α s1-Casein across Models of the Intestinal and Blood-Brain Barriers. Nutrients 2020; 12:nu12103157. [PMID: 33081105 PMCID: PMC7602804 DOI: 10.3390/nu12103157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
The effect of food components on brain growth and development has attracted increasing attention. Milk has been shown to contain peptides that deliver important signals to the brains of neonates and infants. In order to reach the brain, milk peptides have to resist proteolytic degradation in the gastrointestinal tract, cross the gastrointestinal barrier and later cross the highly selective blood–brain barrier (BBB). To investigate this, we purified and characterized endogenous peptides from bovine milk and investigated their apical to basal transport by using human intestinal Caco-2 cells and primary porcine brain endothelial cell monolayer models. Among 192 characterized milk peptides, only the αS1-casein peptide 185PIGSENSEKTTMPLW199, and especially fragments of this peptide processed during the transport, could cross both the intestinal barrier and the BBB cell monolayer models. This peptide was also shown to resist simulated gastrointestinal digestion. This study demonstrates that a milk derived peptide can cross the major biological barriers in vitro and potentially reach the brain, where it may deliver physiological signals.
Collapse
Affiliation(s)
- Brian Christensen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark; (B.C.); (C.S.); (J.J.E.); (J.T.R.)
- iFood Center, Aarhus University, DK-8000 Aarhus, Denmark
| | - Andrea E. Toth
- Department of Biomedicine, Faculty of Health, Aarhus University, DK-8000 Aarhus, Denmark; (A.E.T.); (S.S.E.N.); (S.V.P.); (M.S.N.)
| | - Simone S. E. Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, DK-8000 Aarhus, Denmark; (A.E.T.); (S.S.E.N.); (S.V.P.); (M.S.N.)
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark; (B.C.); (C.S.); (J.J.E.); (J.T.R.)
- Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus, Denmark
| | - Steen V. Petersen
- Department of Biomedicine, Faculty of Health, Aarhus University, DK-8000 Aarhus, Denmark; (A.E.T.); (S.S.E.N.); (S.V.P.); (M.S.N.)
| | - Jan J. Enghild
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark; (B.C.); (C.S.); (J.J.E.); (J.T.R.)
- Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus, Denmark
| | - Jan T. Rasmussen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark; (B.C.); (C.S.); (J.J.E.); (J.T.R.)
| | - Morten S. Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, DK-8000 Aarhus, Denmark; (A.E.T.); (S.S.E.N.); (S.V.P.); (M.S.N.)
| | - Esben S. Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark; (B.C.); (C.S.); (J.J.E.); (J.T.R.)
- iFood Center, Aarhus University, DK-8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus, Denmark
- Correspondence: ; Tel.: +45-87155461
| |
Collapse
|
26
|
Taguchi S, Kang BS, Suga K, Okamoto Y, Jung HS, Umakoshi H. A novel method of vesicle preparation by simple dilution of bicelle solution. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Amigo L, Hernández-Ledesma B. Current Evidence on the Bioavailability of Food Bioactive Peptides. Molecules 2020; 25:E4479. [PMID: 33003506 PMCID: PMC7582556 DOI: 10.3390/molecules25194479] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022] Open
Abstract
Food protein-derived bioactive peptides are recognized as valuable ingredients of functional foods and/or nutraceuticals to promote health and reduce the risk of chronic diseases. However, although peptides have been demonstrated to exert multiple benefits by biochemical assays, cell culture, and animal models, the ability to translate the new findings into practical or commercial uses remains delayed. This fact is mainly due to the lack of correlation of in vitro findings with in vivo functions of peptides because of their low bioavailability. Once ingested, peptides need to resist the action of digestive enzymes during their transit through the gastrointestinal tract and cross the intestinal epithelial barrier to reach the target organs in an intact and active form to exert their health-promoting properties. Thus, for a better understanding of the in vivo physiological effects of food bioactive peptides, extensive research studies on their gastrointestinal stability and transport are needed. This review summarizes the most current evidence on those factors affecting the digestive and absorptive processes of food bioactive peptides, the recently designed models mimicking the gastrointestinal environment, as well as the novel strategies developed and currently applied to enhance the absorption and bioavailability of peptides.
Collapse
Affiliation(s)
| | - Blanca Hernández-Ledesma
- Department of Bioactivity and Food Analysis, Institute of Research in Food Sciences (CIAL, CSIC-UAM, CEI-UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain;
| |
Collapse
|
28
|
Shi J, Zhao D, Li X, Ding F, Tang X, Liu N, Huang H, Liu C. The conjugation of rhodamine B enables carrier-free mitochondrial delivery of functional proteins. Org Biomol Chem 2020; 18:6829-6839. [PMID: 32761021 DOI: 10.1039/d0ob01305f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The development of protein-based therapeutics faces many challenges, for example, carrier-dependence, safety concerns, endocytosis-dependence, and uncertain in vivo therapeutic outcomes. Small molecules are rarely used for intracellular organelle-targeting and disease tissue-specific carrier-independent delivery of therapeutic proteins. Here, we report that rhodamine B, after modification with proteins, is able to guide carrier-free delivery into mitochondria and tissue-dependent distributions of functional proteins through organic cation transporters (OCTs). The enrichment of the modified catalase in the cancer tissue efficiently suppresses xenograft human lung tumor in mice. This carrier-free delivery platform of proteins may emerge as a simple yet powerful approach for cancer treatment.
Collapse
Affiliation(s)
- Jiayuan Shi
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079 China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Weng Y, Ding X, Oliveira JCA, Xu X, Kaplaneris N, Zhu M, Chen H, Chen Z, Ackermann L. Peptide late-stage C(sp 3)-H arylation by native asparagine assistance without exogenous directing groups. Chem Sci 2020; 11:9290-9295. [PMID: 34094199 PMCID: PMC8161531 DOI: 10.1039/d0sc03830j] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
There is a strong demand for novel native peptide motifs for post-synthetic modifications of peptides without pre-installation and subsequent removal of directing groups. Herein, we report an efficient method for peptide late-stage C(sp3)-H arylations assisted by the unmodified side chain of asparagine (Asn) without any exogenous directing group. Thereby, site-selective arylations of C(sp3)-H bonds at the N-terminus of di-, tri-, and tetrapeptides have been achieved. Likewise, we have constructed a key building block for accessing agouti-related protein (AGRP) active loop analogues in a concise manner.
Collapse
Affiliation(s)
- Yiyi Weng
- College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou 310014 P. R. China
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Goettingen Tammannstrasse 2 Goettingen 37077 Germany
| | - Xingxing Ding
- College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - João C A Oliveira
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Goettingen Tammannstrasse 2 Goettingen 37077 Germany
| | - Xiaobin Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Nikolaos Kaplaneris
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Goettingen Tammannstrasse 2 Goettingen 37077 Germany
| | - Meijie Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Hantao Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Zhuo Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Lutz Ackermann
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Goettingen Tammannstrasse 2 Goettingen 37077 Germany
| |
Collapse
|
30
|
Gomes C, Ferreira D, Carvalho JPF, Barreto CAV, Fernandes J, Gouveia M, Ribeiro F, Duque AS, Vieira SI. Current genetic engineering strategies for the production of antihypertensive ACEI peptides. Biotechnol Bioeng 2020; 117:2610-2628. [PMID: 32369185 DOI: 10.1002/bit.27373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/16/2020] [Accepted: 05/02/2020] [Indexed: 12/16/2022]
Abstract
Hypertension is a major and highly prevalent risk factor for various diseases. Among the most frequently prescribed antihypertensive first-line drugs are synthetic angiotensin I-converting enzyme inhibitors (ACEI). However, since their use in hypertension therapy has been linked to various side effects, interest in the application of food-derived ACEI peptides (ACEIp) as antihypertensive agents is rapidly growing. Although promising, the industrial production of ACEIp through conventional methods such as chemical synthesis or enzymatic hydrolysis of food proteins has been proven troublesome. We here provide an overview of current antihypertensive therapeutics, focusing on ACEI, and illustrate how biotechnology and bioengineering can overcome the limitations of ACEIp large-scale production. Latest advances in ACEIp research and current genetic engineering-based strategies for heterologous production of ACEIp (and precursors) are also presented. Cloning approaches include tandem repeats of single ACEIp, ACEIp fusion to proteins/polypeptides, joining multivariate ACEIp into bioactive polypeptides, and producing ACEIp-containing modified plant storage proteins. Although bacteria have been privileged ACEIp heterologous hosts, particularly when testing for new genetic engineering strategies, plants and microalgae-based platforms are now emerging. Besides being generally safer, cost-effective and scalable, these "pharming" platforms can perform therelevant posttranslational modifications and produce (and eventually deliver) biologically active protein/peptide-based antihypertensive medicines.
Collapse
Affiliation(s)
- Carolina Gomes
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland.,Plant Cell Biotechnology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Green-it Unit, Oeiras, Portugal
| | - Diana Ferreira
- Department of Medical Sciences (DCM), Institute of Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| | - João P F Carvalho
- Department of Medical Sciences (DCM), Institute of Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| | - Carlos A V Barreto
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Joana Fernandes
- Department of Medical Sciences (DCM), Institute of Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| | - Marisol Gouveia
- Department of Medical Sciences (DCM), Institute of Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| | - Fernando Ribeiro
- School of Health Sciences (ESSUA), Institute of Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| | - Ana S Duque
- Plant Cell Biotechnology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Green-it Unit, Oeiras, Portugal
| | - Sandra I Vieira
- Department of Medical Sciences (DCM), Institute of Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
31
|
Fujie T, Yoshimoto M. Rapid leakage from PEGylated liposomes triggered by bubbles. SOFT MATTER 2019; 15:9537-9546. [PMID: 31712795 DOI: 10.1039/c9sm01820d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Liposomes are applicable to fabrication of colloidal carriers of drugs and proteins. Physicochemical stimuli-triggered leakage from liposomes offers a wide variety of applications in biochemical and biomedical fields. In this work, effects of bubbles on the characteristics of PEGylated liposomes encapsulating 5(6)-carboxyfluorescein were examined. The liposomes were composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-10 mol% 1,2-distearoyl-sn-glycero-3-phosphoethanolamine conjugated with poly(ethylene glycol) (DSPE-PEG). The mean molecular mass Mr,PEG of the PEG moiety was 550 or 5000. A bubble column was used for generating air bubbles at a superficial gas velocity of 0.58-0.88 cm s-1. Leakage from the PEGylated liposomes was remarkably accelerated at 25 or 40 °C by introducing air to a liposome suspension at pH 7.4, whereas the dye molecules practically remained encapsulated in the liposomes being suspended in static liquid. The apparent rate constant for the dye release from the liposomes composed of DOPC and 1 mol% DSPE-PEG (Mr,PEG = 5000) being suspended in the gas-liquid flow was 168 times larger than that obtained with respect to the same liposomes in static liquid. Leakage from non-PEGylated liposomes was not pronounced even in the gas-liquid flow. Furthermore, the release rate of the dye from the PEGylated liposomes in liquid shear flow (no bubble) was clearly smaller than that in the gas-liquid flow, meaning that the interaction between bubbles and the liposomes was responsible for the observed rapid leakage. Adsorption of the PEGylated lipids to bubbles was indicated to induce leaky lipid bilayers, which was discussed on the basis of the conformational state of the PEG moiety.
Collapse
Affiliation(s)
- Tetsuya Fujie
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan.
| | - Makoto Yoshimoto
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan.
| |
Collapse
|
32
|
Improving Health-Promoting Effects of Food-Derived Bioactive Peptides through Rational Design and Oral Delivery Strategies. Nutrients 2019; 11:nu11102545. [PMID: 31652543 PMCID: PMC6836114 DOI: 10.3390/nu11102545] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Over the last few decades, scientific interest in food-derived bioactive peptides has grown as an alternative to pharmacological treatments in the control of lifestyle-associated diseases, which represent a serious health problem worldwide. Interest has been directed towards the control of hypertension, the management of type 2 diabetes and oxidative stress. Many food-derived antihypertensive peptides act primarily by inhibiting angiotensin I-converting enzyme (ACE), and to a lesser extent, renin enzyme activities. Antidiabetic peptides mainly inhibit dipeptidyl peptidase-IV (DPP-IV) activity, whereas antioxidant peptides act through inactivation of reactive oxygen species, free radicals scavenging, chelation of pro-oxidative transition metals and promoting the activities of intracellular antioxidant enzymes. However, food-derived bioactive peptides have intrinsic weaknesses, including poor chemical and physical stability and a short circulating plasma half-life that must be addressed for their application as nutraceuticals or in functional foods. This review summarizes the application of common pharmaceutical approaches such as rational design and oral delivery strategies to improve the health-promoting effects of food-derived bioactive peptides. We review the structural requirements of antihypertensive, antidiabetic and antioxidant peptides established by integrated computational methods and provide relevant examples of effective oral delivery systems to enhance solubility, stability and permeability of bioactive peptides.
Collapse
|