1
|
Mesas FA, Mendieta JR, Torres Nicolini A, de Oliveira JL, Germano-Costa T, Bilesky-José N, De Lima R, Fernandes Fraceto L, Alvarez VA, Terrile MC. Deciphering physical and functional properties of chitosan-based particles for agriculture applications. Int J Biol Macromol 2024; 285:138153. [PMID: 39613074 DOI: 10.1016/j.ijbiomac.2024.138153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Traditional methods for controlling plant pathogens rely on toxic chemicals, posing environmental and health risks. Developing sustainable, eco-friendly alternatives is crucial. Chitosan (CS)-based materials offer promising solutions for sustainable agriculture. We aimed to synthesize and characterize CS-based microparticles with varying properties and assess their antimicrobial performance to establish correlations between variations in physicochemical characteristics and their impact on performance within biological systems. We adjusted the synthesis parameters, producing particles labeled P1, P2, and P3, which have sizes of 0.19 ± 0.07 μm, 0.45 ± 0.32 μm, and 1.22 ± 0.32 μm, and zeta potentials of +7.6 ± 4.25 mV, +22 ± 3.51 mV, and + 12.9 ± 4.54 mV, respectively. Extensive toxicological screenings showed that these CS-based microparticles were non-toxic across cell cultures, mouse red blood cells, soil microbiota, nitrogen-cycling bacteria, and plant toxicity assays. Encouraged by these results, we evaluated their antimicrobial potential against economically important crop pathogens. The CS-based microparticles exhibited antimicrobial effects against the bacterium Pseudomonas syringae pv. tomato DC3000 and the fungus Fusarium solani f. sp. eumartii. Higher zeta potentials correlated with greater antimicrobial efficacy, evidenced by lower IC50 and minimum inhibitory concentration (MIC) values. These findings indicate that all three microparticles analyzed displayed antimicrobial activity against two economically significant crop pathogens, with P2 showing solid performance attributed to its physicochemical characteristics. Therefore, CS-based microparticles represent a promising, nontoxic, and environmentally friendly alternative for modern agriculture, with their biological activities potentially predictable through careful selection of physicochemical properties before the synthesis process.
Collapse
Affiliation(s)
- Florencia Anabel Mesas
- Instituto de Investigaciones Biológicas, UE CONICET-Universidad Nacional de Mar del Plata (UNMdP), Facultad de Ciencias Exactas y Naturales, UNMdP, Mar del Plata, Argentina
| | - Julieta Renée Mendieta
- Instituto de Investigaciones Biológicas, UE CONICET-Universidad Nacional de Mar del Plata (UNMdP), Facultad de Ciencias Exactas y Naturales, UNMdP, Mar del Plata, Argentina
| | - Andrés Torres Nicolini
- UNMdP, CONICET, Instituto de Investigaciones en Ciencia y Tecnología de Materiales INTEMA, Grupo Materiales Compuestos Termoplásticos CoMP, UE CONICET-UNMdP, Mar del Plata, Argentina
| | - Jhones Luiz de Oliveira
- Departamento de Ingeniería Ambiental, Universidad Estatal de São Paulo, Sorocaba 18087-180, Brazil
| | - Tais Germano-Costa
- Departamento de Biotecnología, Universidad de Sorocaba, Sorocaba 18023-000, Brazil
| | - Natalia Bilesky-José
- Departamento de Biotecnología, Universidad de Sorocaba, Sorocaba 18023-000, Brazil
| | - Renata De Lima
- Departamento de Biotecnología, Universidad de Sorocaba, Sorocaba 18023-000, Brazil
| | | | - Vera Alejandra Alvarez
- UNMdP, CONICET, Instituto de Investigaciones en Ciencia y Tecnología de Materiales INTEMA, Grupo Materiales Compuestos Termoplásticos CoMP, UE CONICET-UNMdP, Mar del Plata, Argentina
| | - Maria Cecilia Terrile
- Instituto de Investigaciones Biológicas, UE CONICET-Universidad Nacional de Mar del Plata (UNMdP), Facultad de Ciencias Exactas y Naturales, UNMdP, Mar del Plata, Argentina.
| |
Collapse
|
2
|
Yan D, Gao Y, Zhang Y, Li D, Dirk LMA, Downie AB, Zhao T. Raffinose catabolism enhances maize waterlogging tolerance by stimulating adventitious root growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5955-5970. [PMID: 38938017 DOI: 10.1093/jxb/erae284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
Raffinose mitigates plant heat, drought, and cold stresses; however, whether raffinose contributes to plant waterlogging tolerance is unknown. The maize raffinose synthase mutant zmrafs-1 had seedlings that lack raffinose, generated fewer and shorter adventitious roots, and were more sensitive to waterlogging stress, while overexpression of the raffinose synthase gene, ZmRAFS, increased raffinose content, stimulated adventitious root formation, and enhanced waterlogging tolerance of maize seedlings. Transcriptome analysis of null segregant seedlings compared with zmrafs-1, particularly when waterlogged, revealed that the expression of genes related to galactose metabolism and the auxin biosynthetic pathway were up-regulated by raffinose. Additionally, indole-3-acetic acid content was significantly decreased in zmrafs-1 seedlings and increased in ZmRAFS-overexpressing seedlings. Inhibition of the hydrolysis of raffinose by 1-deoxygalactonojirimycin decreased the waterlogging tolerance of maize seedlings, the expression of genes encoding proteins related to auxin transport-related genes, and the indole-3-acetic acid level in the seedlings, indicating that the hydrolysis of raffinose is necessary for maize waterlogging tolerance. These data demonstrate that raffinose catabolism stimulates adventitious root formation via the auxin signaling pathway to enhance maize waterlogging tolerance.
Collapse
Affiliation(s)
- Dong Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yu Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yumin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lynnette M A Dirk
- Department of Horticulture, Seed Biology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - A Bruce Downie
- Department of Horticulture, Seed Biology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Tianyong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
3
|
Colman SL, Salcedo MF, Iglesias MJ, Alvarez VA, Fiol DF, Casalongué CA, Foresi NP. Chitosan microparticles mitigate nitrogen deficiency in tomato plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108728. [PMID: 38772165 DOI: 10.1016/j.plaphy.2024.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024]
Abstract
Nitrogen (N) deficiency is one of the most prevalent nutrient deficiencies in plants, and has a significant impact on crop yields. In this work we aimed to develop and evaluate innovative strategies to mitigate N deficiency. We studied the effect of supplementing tomato plants grown under suboptimal N nutrition with chitosan microparticles (CS-MPs) during short- and long-term periods. We observed that the supplementation with CS-MPs prevented the reduction of aerial biomass and the elongation of lateral roots (LR) triggered by N deficiency in tomato plantlets. In addition, levels of nitrates, amino acids and chlorophyll, which decreased drastically upon N deficiency, were either partial or totally restored upon CS-MPs addition to N deficient media. Finally, we showed that CS-MPs treatments increased nitric oxide (NO) levels in root tips and caused the up-regulation of genes involved in N metabolism. Altogether, we suggest that CS-MPs enhance the growth and development of tomato plants under N deficiency through the induction of biochemical and transcriptional responses that lead to increased N metabolism. We propose treatments with CS-MPs as an efficient practice focused to mitigate the nutritional deficiencies in N impoverished soils.
Collapse
Affiliation(s)
- Silvana Lorena Colman
- Instituto de Investigaciones Biológicas (IIB), UE CONICET-UNMdP, FCEyN, Mar Del Plata, Argentina.
| | - María Florencia Salcedo
- Instituto de Investigaciones Biológicas (IIB), UE CONICET-UNMdP, FCEyN, Mar Del Plata, Argentina
| | - María José Iglesias
- Instituto de Investigaciones Biológicas (IIB), UE CONICET-UNMdP, FCEyN, Mar Del Plata, Argentina
| | - Vera Alejandra Alvarez
- Instituto de Investigación en Ciencia & Tecnología de Materiales (INTEMA), UE CONICET-UNMdP, Grupo Materiales Compuestos Termoplásticos (CoMP), Mar Del Plata, Argentina
| | - Diego Fernando Fiol
- Instituto de Investigaciones Biológicas (IIB), UE CONICET-UNMdP, FCEyN, Mar Del Plata, Argentina
| | | | - Noelia Pamela Foresi
- Instituto de Investigaciones Biológicas (IIB), UE CONICET-UNMdP, FCEyN, Mar Del Plata, Argentina.
| |
Collapse
|
4
|
Suwanchaikasem P, Nie S, Selby‐Pham J, Walker R, Boughton BA, Idnurm A. Hormonal and proteomic analyses of southern blight disease caused by Athelia rolfsii and root chitosan priming on Cannabis sativa in an in vitro hydroponic system. PLANT DIRECT 2023; 7:e528. [PMID: 37692128 PMCID: PMC10485662 DOI: 10.1002/pld3.528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/05/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023]
Abstract
Southern blight disease, caused by the fungal pathogen Athelia rolfsii, suppresses plant growth and reduces product yield in Cannabis sativa agriculture. Mechanisms of pathology of this soil-borne disease remain poorly understood, with disease management strategies reliant upon broad-spectrum antifungal use. Exposure to chitosan, a natural elicitor, has been proposed as an alternative method to control diverse fungal diseases in an eco-friendly manner. In this study, C. sativa plants were grown in the Root-TRAPR system, a transparent hydroponic growth device, where plant roots were primed with .2% colloidal chitosan prior to A. rolfsii inoculation. Both chitosan-primed and unprimed inoculated plants displayed classical symptoms of wilting and yellowish leaves, indicating successful infection. Non-primed infected plants showed increased shoot defense responses with doubling of peroxidase and chitinase activities. The levels of growth and defense hormones including auxin, cytokinin, and jasmonic acid were increased 2-5-fold. In chitosan-primed infected plants, shoot peroxidase activity and phytohormone levels were decreased 1.5-4-fold relative to the unprimed infected plants. When compared with shoots, roots were less impacted by A. rolfsii infection, but the pathogen secreted cell wall-degrading enzymes into the root-growth solution. Chitosan priming inhibited root growth, with root lengths of chitosan-primed plants approximately 65% shorter than the control, but activated root defense responses, with root peroxidase activity increased 2.7-fold along with increased secretion of defense proteins. The results suggest that chitosan could be an alternative platform to manage southern blight disease in C. sativa cultivation; however, further optimization is required to maximize effectiveness of chitosan.
Collapse
Affiliation(s)
| | - Shuai Nie
- Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneMelbourneVictoriaAustralia
| | - Jamie Selby‐Pham
- School of BioSciencesUniversity of MelbourneMelbourneVictoriaAustralia
- Cannabis and Biostimulants Research Group Pty LtdMelbourneVictoriaAustralia
| | - Robert Walker
- School of BioSciencesUniversity of MelbourneMelbourneVictoriaAustralia
| | - Berin A. Boughton
- School of BioSciencesUniversity of MelbourneMelbourneVictoriaAustralia
- Australian National Phenome CentreMurdoch UniversityPerthWestern AustraliaAustralia
| | - Alexander Idnurm
- School of BioSciencesUniversity of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
5
|
Zungu B, Kamdem Paumo H, Gaorongwe JL, Tsuene GN, Ruzvidzo O, Katata-Seru L. Zn nutrients-loaded chitosan nanocomposites and their efficacy as nanopriming agents for maize ( Zea mays) seeds. Front Chem 2023; 11:1243884. [PMID: 37638104 PMCID: PMC10457009 DOI: 10.3389/fchem.2023.1243884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Recent breakthroughs in agro-inputs research have led to the development of nanomaterials that can promote precision agriculture and better environmental security. The agricultural sector is increasingly facing the negative impacts of changing climates due to various stress conditions. To curb this scenario, economical and low-risk practices such as decreasing fertilizer inputs and seed priming have been promoted. In the current study, the H. odoratissimum aqueous extract was used to nucleate the Zn ionic species and grow the zinc oxide nanoparticles (ZnO NPs). The developed nanocomposites and their ionic zinc precursor were then integrated into tripolyphosphate (TPP)-crosslinked chitosan (CS/TPP) nanostructures by ionic gelation. Advanced physicochemical characterization techniques (SEM, EDS, TEM, DLS, FTIR, TGA, and XPS) were exploited to report the morphology, hydrodynamic size, surface charge, and structural organization of the developed nanomaterials. These revealed positively charged particles with hydrodynamic size in the 149-257 nm range. The NPs were used as priming agents for Zea mays seeds. At 0.04%, the ZnO-loaded CS/TPP NPs achieved higher root and shoot elongation in 10-day old seedlings compared to other treatments. The pristine CS/TPP NPs, Zn(II)-laden CS/TPP NPs, and ZnO-loaded CS/TPP NPs at 0.01% significantly promoted the early seedling development of seeds under salt stress. This represents the first report showing ZnO integrated chitosan nanocomposites as an auspicious nanopriming agent for stimulating the seed germination of maize. The study envisages offering perspectives on utilizing green nanotechnology to improve the early seedling development of maize. Furthermore, it has the potential to contribute towards UN SDG 2, thus addressing the threats to global food insecurity and doubling agricultural productivity by 2030.
Collapse
Affiliation(s)
- Bongiwe Zungu
- Department of Chemistry, Material Science Innovation and Modelling (MaSIM) Research Focus Area, North-West University, Mmabatho, South Africa
| | - Hugues Kamdem Paumo
- Department of Chemistry, Material Science Innovation and Modelling (MaSIM) Research Focus Area, North-West University, Mmabatho, South Africa
| | - Joseph Lesibe Gaorongwe
- Department of Botany, School of Biological Sciences, North-West University, Potchefstroom, South Africa
| | - Gaborone Neo Tsuene
- Department of Botany, School of Biological Sciences, North-West University, Potchefstroom, South Africa
| | - Oziniel Ruzvidzo
- Department of Botany, School of Biological Sciences, North-West University, Potchefstroom, South Africa
| | - Lebogang Katata-Seru
- Department of Chemistry, Material Science Innovation and Modelling (MaSIM) Research Focus Area, North-West University, Mmabatho, South Africa
| |
Collapse
|
6
|
Mukarram M, Ali J, Dadkhah-Aghdash H, Kurjak D, Kačík F, Ďurkovič J. Chitosan-induced biotic stress tolerance and crosstalk with phytohormones, antioxidants, and other signalling molecules. FRONTIERS IN PLANT SCIENCE 2023; 14:1217822. [PMID: 37538057 PMCID: PMC10394624 DOI: 10.3389/fpls.2023.1217822] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023]
Abstract
Several polysaccharides augment plant growth and productivity and galvanise defence against pathogens. Such elicitors have ecological superiority over traditional growth regulators, considering their amplified biocompatibility, biodegradability, bioactivity, non-toxicity, ubiquity, and inexpensiveness. Chitosan is a chitin-derived polysaccharide that has recently been spotlighted among plant scientists. Chitosan supports plant growth and development and protects against microbial entities such as fungi, bacteria, viruses, nematodes, and insects. In this review, we discuss the current knowledge of chitosan's antimicrobial and insecticidal potential with recent updates. These effects are further explored with the possibilities of chitosan's active correspondence with phytohormones such as jasmonic acid (JA), salicylic acid (SA), indole acetic acid (IAA), abscisic acid (ABA), and gibberellic acid (GA). The stress-induced redox shift in cellular organelles could be substantiated by the intricate participation of chitosan with reactive oxygen species (ROS) and antioxidant metabolism, including hydrogen peroxide (H2O2), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). Furthermore, we propose how chitosan could be intertwined with cellular signalling through Ca2+, ROS, nitric oxide (NO), transcription factors (TFs), and defensive gene activation.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Jamin Ali
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
| | - Hamed Dadkhah-Aghdash
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - František Kačík
- Department of Chemistry and Chemical Technologies, Faculty of Wood Sciences and Technology, Technical University in Zvolen, Zvolen, Slovakia
| | - Jaroslav Ďurkovič
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| |
Collapse
|
7
|
Suwanchaikasem P, Nie S, Idnurm A, Selby‐Pham J, Walker R, Boughton BA. Effects of chitin and chitosan on root growth, biochemical defense response and exudate proteome of Cannabis sativa. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:115-133. [PMID: 37362423 PMCID: PMC10290428 DOI: 10.1002/pei3.10106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 06/28/2023]
Abstract
Fungal pathogens pose a major threat to Cannabis sativa production, requiring safe and effective management procedures to control disease. Chitin and chitosan are natural molecules that elicit plant defense responses. Investigation of their effects on C. sativa will advance understanding of plant responses towards elicitors and provide a potential pathway to enhance plant resistance against diseases. Plants were grown in the in vitro Root-TRAPR system and treated with colloidal chitin and chitosan. Plant morphology was monitored, then plant tissues and exudates were collected for enzymatic activity assays, phytohormone quantification, qPCR analysis and proteomics profiling. Chitosan treatments showed increased total chitinase activity and expression of pathogenesis-related (PR) genes by 3-5 times in the root tissues. In the exudates, total peroxidase and chitinase activities and levels of defense proteins such as PR protein 1 and endochitinase 2 were increased. Shoot development was unaffected, but root development was inhibited after chitosan exposure. In contrast, chitin treatments had no significant impact on any defense parameters, including enzymatic activities, hormone quantities, gene expression levels and root secreted proteins. These results indicate that colloidal chitosan, significantly enhancing defense responses in C. sativa root system, could be used as a potential elicitor, particularly in hydroponic scenarios to manage crop diseases.
Collapse
Affiliation(s)
| | - Shuai Nie
- Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneMelbourneVictoria3052Australia
| | - Alexander Idnurm
- School of BioSciencesUniversity of MelbourneMelbourneVictoria3010Australia
| | - Jamie Selby‐Pham
- School of BioSciencesUniversity of MelbourneMelbourneVictoria3010Australia
- Cannabis and Biostimulants Research Group Pty LtdMelbourneVictoria3020Australia
| | - Robert Walker
- School of BioSciencesUniversity of MelbourneMelbourneVictoria3010Australia
| | - Berin A. Boughton
- School of BioSciencesUniversity of MelbourneMelbourneVictoria3010Australia
- Australian National Phenome CentreMurdoch UniversityPerthWestern Australia6150Australia
| |
Collapse
|
8
|
Lyalina T, Shagdarova B, Zhuikova Y, Il’ina A, Lunkov A, Varlamov V. Effect of Seed Priming with Chitosan Hydrolysate on Lettuce ( Lactuca sativa) Growth Parameters. Molecules 2023; 28:1915. [PMID: 36838903 PMCID: PMC9959803 DOI: 10.3390/molecules28041915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Seed priming increases germination, yield, and resistance to abiotic factors and phytopathogens. Chitosan is considered an ecofriendly growth stimulant and crop protection agent. Chitosan hydrolysate (CH) is an unfractionated product of hydrolysis of high-molecular-weight crab shell chitosan with a molecular weight of 1040 kDa and a degree of deacetylation of 85% with nitric acid. The average molecular weight of the main fraction in CH was 39 kDa. Lettuce seeds were soaked in 0.01-1 mg/mL CH for 6 h before sowing. The effects of CH on seed germination, plant morphology, and biochemical indicators at different growth stages were evaluated. Under the 0.1 mg/mL CH treatment, earlier seed germination was detected compared to the control. Increased root branching was observed, along with 100% and 67% increases in fresh weight (FW) at the 24th and 38th days after sowing (DAS), respectively. An increase in the shoot FW was found in CH-treated plants (33% and 4% at the 24th and 38th DAS, respectively). Significant increases in chlorophyll and carotenoid content compared to the control were observed at the 10th DAS. There were no significant differences in the activity of phenylalanine ammonia-lyase, polyphenol oxidase, β-1,3-glucanase, and chitinase at the 24th and 38th DAS. Seed priming with CH could increase the yield and uniformity of plants within the group. This effect is important for commercial vegetable production.
Collapse
Affiliation(s)
- Tatiana Lyalina
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., 119071 Moscow, Russia
| | | | | | | | | | - Valery Varlamov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., 119071 Moscow, Russia
| |
Collapse
|
9
|
Suwanchaikasem P, Idnurm A, Selby-Pham J, Walker R, Boughton BA. Root-TRAPR: a modular plant growth device to visualize root development and monitor growth parameters, as applied to an elicitor response of Cannabis sativa. PLANT METHODS 2022; 18:46. [PMID: 35397608 PMCID: PMC8994333 DOI: 10.1186/s13007-022-00875-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/14/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND Plant growth devices, for example, rhizoponics, rhizoboxes, and ecosystem fabrication (EcoFAB), have been developed to facilitate studies of plant root morphology and plant-microbe interactions in controlled laboratory settings. However, several of these designs are suitable only for studying small model plants such as Arabidopsis thaliana and Brachypodium distachyon and therefore require modification to be extended to larger plant species like crop plants. In addition, specific tools and technical skills needed for fabricating these devices may not be available to researchers. Hence, this study aimed to establish an alternative protocol to generate a larger, modular and reusable plant growth device based on different available resources. RESULTS Root-TRAPR (Root-Transparent, Reusable, Affordable three-dimensional Printed Rhizo-hydroponic) system was successfully developed. It consists of two main parts, an internal root growth chamber and an external structural frame. The internal root growth chamber comprises a polydimethylsiloxane (PDMS) gasket, microscope slide and acrylic sheet, while the external frame is printed from a three-dimensional (3D) printer and secured with nylon screws. To test the efficiency and applicability of the system, industrial hemp (Cannabis sativa) was grown with or without exposure to chitosan, a well-known plant elicitor used for stimulating plant defense. Plant root morphology was detected in the system, and plant tissues were easily collected and processed to examine plant biological responses. Upon chitosan treatment, chitinase and peroxidase activities increased in root tissues (1.7- and 2.3-fold, respectively) and exudates (7.2- and 21.6-fold, respectively). In addition, root to shoot ratio of phytohormone contents were increased in response to chitosan. Within 2 weeks of observation, hemp plants exhibited dwarf growth in the Root-TRAPR system, easing plant handling and allowing increased replication under limited growing space. CONCLUSION The Root-TRAPR system facilitates the exploration of root morphology and root exudate of C. sativa under controlled conditions and at a smaller scale. The device is easy to fabricate and applicable for investigating plant responses toward elicitor challenge. In addition, this fabrication protocol is adaptable to study other plants and can be applied to investigate plant physiology in different biological contexts, such as plant responses against biotic and abiotic stresses.
Collapse
Affiliation(s)
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Jamie Selby-Pham
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia
- Nutrifield Pty Ltd, Melbourne, VIC, 3020, Australia
| | - Robert Walker
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Berin A Boughton
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia
- Australian National Phenome Centre, Murdoch University, Perth, WA, 6150, Australia
| |
Collapse
|
10
|
Shahrajabian MH, Chaski C, Polyzos N, Petropoulos SA. Biostimulants Application: A Low Input Cropping Management Tool for Sustainable Farming of Vegetables. Biomolecules 2021; 11:biom11050698. [PMID: 34067181 PMCID: PMC8150747 DOI: 10.3390/biom11050698] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Biostimulants, are a diverse class of compounds including substances or microorganism which have positive impacts on plant growth, yield and chemical composition as well as boosting effects to biotic and abiotic stress tolerance. The major plant biostimulants are hydrolysates of plant or animal protein and other compounds that contain nitrogen, humic substances, extracts of seaweeds, biopolymers, compounds of microbial origin, phosphite, and silicon, among others. The mechanisms involved in the protective effects of biostimulants are varied depending on the compound and/or crop and mostly related with improved physiological processes and plant morphology aspects such as the enhanced root formation and elongation, increased nutrient uptake, improvement in seed germination rates and better crop establishment, increased cation exchange, decreased leaching, detoxification of heavy metals, mechanisms involved in stomatal conductance and plant transpiration or the stimulation of plant immune systems against stressors. The aim of this review was to provide an overview of the application of plant biostimulants on different crops within the framework of sustainable crop management, aiming to gather critical information regarding their positive effects on plant growth and yield, as well as on the quality of the final product. Moreover, the main limitations of such practice as well as the future prospects of biostimulants research will be presented.
Collapse
|
11
|
Suarez-Fernandez M, Marhuenda-Egea FC, Lopez-Moya F, Arnao MB, Cabrera-Escribano F, Nueda MJ, Gunsé B, Lopez-Llorca LV. Chitosan Induces Plant Hormones and Defenses in Tomato Root Exudates. FRONTIERS IN PLANT SCIENCE 2020; 11:572087. [PMID: 33250907 PMCID: PMC7672008 DOI: 10.3389/fpls.2020.572087] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/08/2020] [Indexed: 05/23/2023]
Abstract
In this work, we use electrophysiological and metabolomic tools to determine the role of chitosan as plant defense elicitor in soil for preventing or manage root pests and diseases sustainably. Root exudates include a wide variety of molecules that plants and root microbiota use to communicate in the rhizosphere. Tomato plants were treated with chitosan. Root exudates from tomato plants were analyzed at 3, 10, 20, and 30 days after planting (dap). We found, using high performance liquid chromatography (HPLC) and excitation emission matrix (EEM) fluorescence, that chitosan induces plant hormones, lipid signaling and defense compounds in tomato root exudates, including phenolics. High doses of chitosan induce membrane depolarization and affect membrane integrity. 1H-NMR showed the dynamic of exudation, detecting the largest number of signals in 20 dap root exudates. Root exudates from plants irrigated with chitosan inhibit ca. twofold growth kinetics of the tomato root parasitic fungus Fusarium oxysporum f. sp. radicis-lycopersici. and reduced ca. 1.5-fold egg hatching of the root-knot nematode Meloidogyne javanica.
Collapse
Affiliation(s)
- Marta Suarez-Fernandez
- Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies Ramon Margalef, University of Alicante, Alicante, Spain
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| | - Frutos Carlos Marhuenda-Egea
- Department of Agrochemistry and Biochemistry, Multidisciplinary Institute for Environmental Studies Ramon Margalef, University of Alicante, Alicante, Spain
| | - Federico Lopez-Moya
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| | - Marino B. Arnao
- Department of Plant Biology (Plant Physiology), University of Murcia, Murcia, Spain
| | | | - Maria Jose Nueda
- Department of Mathematics, University of Alicante, Alicante, Spain
| | - Benet Gunsé
- Plant Physiology Laboratory, Faculty of Biosciences, Universidad Autonoma de Barcelona, Bellaterra, Spain
| | - Luis Vicente Lopez-Llorca
- Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies Ramon Margalef, University of Alicante, Alicante, Spain
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| |
Collapse
|
12
|
Colman SL, Salcedo MF, Mansilla AY, Iglesias MJ, Fiol DF, Martín-Saldaña S, Alvarez VA, Chevalier AA, Casalongué CA. Chitosan microparticles improve tomato seedling biomass and modulate hormonal, redox and defense pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:203-211. [PMID: 31518851 DOI: 10.1016/j.plaphy.2019.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/20/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Agrobiotechnology challenges involve the generation of new sustainable bioactives with emerging properties as plant biostimulants with reduced environment impact. We analyzed the potential use of recently developed chitosan microparticles (CS-MP) as growth promoters of tomato which constitutes one of the most consumed vegetable crops worldwide. Treatments of tomato seeds with CS-MP improved germination and vigor index. In addition, CS-MP sustained application triggered an improvement in root and shoot biomass reinforcing tomato performance before transplanting. The level of reactive oxygen species (ROS), antioxidant enzyme activities and defense protein markers were modulated by CS-MP treatment in tomato plantlets. Analyses of ARR5:GUS and DR5:GUS transgenic reporter tomato lines highlighted the participation of cytokinin and auxin signaling pathways during tomato root promotion mediated by CS-MP. Our findings claim a high commercial potential of CS-MP to be incorporated as a sustainable input for tomato production.
Collapse
Affiliation(s)
- Silvana Lorena Colman
- Instituto de Investigaciones Biológicas, UE-CONICET-UNMdP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - María Florencia Salcedo
- Instituto de Investigaciones Biológicas, UE-CONICET-UNMdP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Andrea Yamila Mansilla
- Instituto de Investigaciones Biológicas, UE-CONICET-UNMdP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - María José Iglesias
- Instituto de Investigaciones Biológicas, UE-CONICET-UNMdP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Diego Fernando Fiol
- Instituto de Investigaciones Biológicas, UE-CONICET-UNMdP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | | | - Vera Alejandra Alvarez
- Instituto de Investigación en Ciencia & Tecnología de Materiales INTEMA, UE-CONICET-UNMdP, Grupo Materiales Compuestos Termoplásticos, Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | | | - Claudia Anahí Casalongué
- Instituto de Investigaciones Biológicas, UE-CONICET-UNMdP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
| |
Collapse
|