1
|
Duan R, Zhang S, Jiang S, Zhang S, Song Y, Luo M, Lu J. Glufosinate-ammonium increased nitrogen and phosphorus content in water and shaped microbial community in epiphytic biofilm of Hydrilla verticillata. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135674. [PMID: 39217929 DOI: 10.1016/j.jhazmat.2024.135674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 07/13/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Glufosinate-ammonium (GLAM) can be released into adjacent water bodies with rainfall runoff and return water from farmland irrigation. However, impacts of GLAM on aquatic organisms remain unclear. In this study, changes in water quality, plant physiological parameters and epiphytic microbial community were investigated in wetlands with Hydrilla verticillata exposed to GLAM for 24 days. We found GLAM addition damaged cell and reduced chlorophyll a content in Hydrilla verticillata leaves, and increased ammonium and phosphorus in water (p < 0.001). The α-diversity increased in bacterial community but decreased in eukaryotic community with GLAM exposure. Neutral community models explained 62.3 % and 55.0 % of the variance in bacterial and eukaryotic communities, respectively. Many GLAM micro-biomarkers were obtained, including some clades from Proteobacteria, Bacteroidete, Actinobacteriota, Phragmoplastophyta, Annelida and Arthropoda. Redundancy analysis revealed that GLAM concentration was positively correlated to Flavobacterium, Gomphonema and Closterium but negatively to Methyloglobulus and Methylocystis. Network analysis revealed that 15 mg/L GLAM disturbed the interactions among phytoplankton, protozoa, metazoan and bacteria and reduced the stability of the microbial communities compared to 8 mg/L GLAM. GLAM shaped the nitrogen and phosphorus cycle related bacterial genes. This study highlights that herbicides are non-neglectable factors affecting the efficiency of aquatic ecological restoration in agricultural areas to control agricultural non-point source pollution.
Collapse
Affiliation(s)
- Rufei Duan
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Shuaijie Jiang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shuyou Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yingying Song
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Min Luo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jianhui Lu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
2
|
Rosales CA, Sheedy KL, Wasslen KV, Manthorpe JM, Smith JC. Trimethylation Enhancement Using Diazomethane (TrEnDi) Enables Enhanced Detection of Glufosinate and 3-(Methylphosphinico)propionic Acid from Complex Canola Samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:140-150. [PMID: 38127770 DOI: 10.1021/jasms.3c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Over the past century, agriculture practices have transitioned from manual cultivation to the use of an array of chemical herbicides for weed control including phosphinothricin, or glufosinate (GLUF). Consequently, the potential for long-term residual GLUF exposure in the food chain has increased, highlighting the need for improved analytical strategies for its detection, as well as the detection of its main breakdown product 3-(methylphosphinico)propionic acid (MPPA). Chemical derivatization strategies have been developed to improve the detection of GLUF and MPPA via liquid chromatography tandem mass spectrometry analyses. Herein, we employ trimethylation enhancement using diazomethane (TrEnDi) for the first time as a means to confer analytical advantages via quantitatively derivatizing these analytes into permethylated GLUF ([GLUFTr]+) and MPPA ([MPPATr+H]+). Comparing [GLUFTr]+ and [MPPATr+H]+ to underivatized counterparts, TrEnDi yields 2.8-fold and 1.7-fold improvements in reversed-phase chromatographic retention, respectively, while MS-based sensitivity is enhanced 4.1-fold and 11.0-fold, respectively. Successful analyte derivatization (with >99% yields) was further demonstrated on a commercial herbicide solution imparting consistent analytical enhancements. To investigate the benefits of TrEnDi in a bona fide agricultural scenario, simple aqueous extractions from distinct parts of field-grown canola plants were performed to quantify GLUF and MPPA before and after TrEnDi derivatization. In their underivatized forms, GLUF and MPPA were undetectable in all field samples, whereas [GLUFTr]+ and [MPPATr+H]+ were readily quantifiable using the same analysis conditions. Our results demonstrate that TrEnDi continues to be a useful tool to enhance the analytical characteristics of organic molecules that are traditionally difficult to detect.
Collapse
Affiliation(s)
- Christian A Rosales
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Krysten L Sheedy
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Karl V Wasslen
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jeffrey M Manthorpe
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jeffrey C Smith
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
3
|
Zhang Y, Dang Y, Pei F, Yuan Y, Yuan J, Gu Z, Wang J. Sub-acute toxicity of the herbicide glufosinate-ammonium exposure in adult red swamp crayfish (Procambarus clarkii). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122605. [PMID: 37742863 DOI: 10.1016/j.envpol.2023.122605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Glufosinateammonium (GLA) is one of the most widely used agricultural herbicides. It is frequently detected in surface waters near farmland and may pose a risk to non-target aquatic species. This study aimed to explore the toxicity of subacute GLA exposure in crayfish. Adult red swamp crayfish were exposed to GLA (0, 1, 10, and 100 mg/L) for 21 days. Bioaccumulation, oxidative stress, nonspecific immunity, and the expression of genes encoding xenobiotic detoxification-related enzymes were examined. The results showed GLA accumulation and hepatopancreatic histopathological changes (dilation of hepatic tubules and vacuolation of hepatocytes) in the exposed crayfish. GLA exposure induced ROS production, inhibited glutathione expression, and catalase activity in the crayfish hepatopancreas, as well as inhibited immunoenzyme expression (acid phosphatase, alkaline phosphatase, and lysozyme) in the hemolymph. In addition, the total hemocyte number decreased, and the proportion of hemocyte subsets changed significantly. Superoxide dismutase first increased and then decreased with increasing GLA dosage. GLA promoted the expression of biotransformation enzymes (cypb5, gst) in the hepatopancreas. Our results suggest that subacute GLA exposure caused structural damage to the hepatopancreatic tissue and decreased antioxidant capacity and non-specific immunity in crayfish. These findings provide insight into the toxicity of herbicides on non-target organisms.
Collapse
Affiliation(s)
- Yang Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Fucheng Pei
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongchao Yuan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junfa Yuan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Zemao Gu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Zhu Y, Xu Y, Dai Y, Zhang G, Ji C, Zhang Q, Zhao M. Comparing the enantioselective toxicity on cell cycle and apoptosis of DL-glufosinate and L-glufosinate to SH-SY5Y cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165106. [PMID: 37356769 DOI: 10.1016/j.scitotenv.2023.165106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Glufosinate (Glu), a broad-spectrum and highly effective non-selective herbicide, behaves in typical chiral features to target organisms. However, the information on the enantioselective toxicity of DL-Glu and L-Glu against non-target organisms is still limited especially at environmental concentrations. In this study, we investigated the potential mechanism accounting for the enantioselective cytotoxicity of Glu based on cell cycle and apoptosis. Results showed that DL-Glu and L-Glu had no suppression on cell viability at 10-5 M, however, SH-SY5Y cells were significantly arrested at G1/G0 phase after L-Glu exposure compared with DL-Glu. The apoptosis assay exhibited an increase in late apoptosis cells and a decrease in viable cells for DL-Glu and L-Glu treatment. The bioinformatics analysis demonstrated that alterations in transcription translation and signal transduction including "calcium signaling pathway", "Wnt signaling pathway", "FoxO signaling pathway" were the possible pathways responsible for Glu-induced enantioselectivity in cell cycle and apoptosis. Interestingly, the Gene Set Enrichment Analysis (GSEA) also revealed the probable association between DL-Glu exposure and degenerative diseases. These findings serve as a reminder that caution should be exercised not only when using pesticide racemates but also when promoting or applying single- or enriched-isomer pesticides.
Collapse
Affiliation(s)
- Yingying Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China; College of Life Science, Taizhou University, Taizhou 318000, PR China
| | - Yongan Xu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Yaoyao Dai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Guizhen Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Chenyang Ji
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, PR China.
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
5
|
Xu JM, Wu ZS, Zhao KJ, Xi ZJ, Wang LY, Cheng F, Xue YP, Zheng YG. IPTG-induced high protein expression for whole-cell biosynthesis of L-phosphinothricin. Biotechnol J 2023; 18:e2300027. [PMID: 37265188 DOI: 10.1002/biot.202300027] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/20/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Biocatalytic production of L-phosphinothricin (L-PPT) is currently the most promising method. In this work, we use an Escherichia coli strain coexpressing of D-amino acid oxidase and catalase (E. coli DAAO-CAT) to oxidation biocatalytic D-PPT to PPO, then use the second E. coli strain coexpressing glutamate dehydrogenase and formate dehydrogenase (E. coli GluDH-FDH) to reduce biocatalytic PPO to L-PPT. MAIN METHODS AND MAJOR RESULTS We compared the effects of different concentrations of IPTG or lactose on protein expression and enzyme activity in 5 L fermenter. The best induction conditions for E. coli DAAO-CAT were 0.05 mM IPTG, induction for 18 h at 28°C. The specific enzyme activities of DAAO and CAT were 153.20 U g-1 and 896.23 U g-1 , respectively. The optimal induction conditions for E. coli GluDH-FDH were 0.2 mM IPTG, induction for 19 h at 28°C. The specific enzyme activities of GluDH and FDH were 41.72 U g-1 and 109.70 U g-1 , respectively. The 200 mM D-PPT was biocatalyzed by E. coli DAAO-CAT for 4 h with space-time yield of 9.0 g·L-1 ·h-1 and conversion rate of over 99.0%. Then 220 mM PPO was converted to L-PPT by E. coli GluDH-FDH for 3 h with space-time yield of 14.5 g·L-1 ·h-1 and conversion rate of over 99.0%. To our knowledge, this is the most efficient biocatalytic reaction for L-PPT production. CONCLUSIONS AND IMPLICATIONS We found that IPTG has advantages compared with lactose in the enzyme activity and biomass of E. coli DAAO-CAT and E. coli GluDH-FDH, and IPTG is more environmentally friendly. Our data implicated that IPTG can replace lactose in terms of economic feasibility and effectiveness for scaled-up industrial fermentations.
Collapse
Affiliation(s)
- Jian-Miao Xu
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Zhou-Sheng Wu
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ke-Ji Zhao
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Zhi-Jie Xi
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Liu-Yu Wang
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Feng Cheng
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ya-Ping Xue
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yu-Guo Zheng
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
6
|
Feng T, Mou L, Ou G, Liu L, Zhang Y, Hu D. Comparative analysis of toxicity and metabolomic profiling of rac-glufosinate and L-glufosinate in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106618. [PMID: 37451187 DOI: 10.1016/j.aquatox.2023.106618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
Glufosinate is a chiral pesticide, with commercial formulations such as racemic glufosinate (rac-glufosinate) and pure L-glufosinate enantiomer (L-glufosinate) on the market. There has been little research on the difference in toxicity to non-target organisms between these two main ingredients. The effects of rac-glufosinate and L-glufosinate on glutathione reductase (GR), catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) levels in zebrafish were investigated in this study. The effect of two glufosinate agents at low concentrations (0.01 and 0.1 mg/L) on these four oxidative indicators was found to be significantly lower than that of high concentrations (1 and 10 mg/L). L-glufosinate had a stronger enhancing effect on CAT, GR, and MDA content than rac-glufosinate and a stronger inhibitory effect on SOD activity than rac-glufosinate. The researchers used ultra-high-performance liquid chromatography coupled with high-resolution mass spectroscopy metabolomics to compare rac-glufosinate and L-glufosinate for metabolic disorders in adult zebrafish. Stable and obvious metabolic maps of the two agents were obtained using multivariate statistical results, such as principal component analysis and orthogonal partial minimum discriminant analysis. Compared to the control group, the rac-glufosinate and L-glufosinate treatment groups shared 151 differential metabolites, which primarily affected zebrafish energy metabolism, amino acid metabolism, and other metabolic pathways. Caffeine metabolism and biotin metabolism were among the unique pathways disrupted in rac-glufosinate-exposed zebrafish. Contrarily, L-glufosinate treatment primarily affected eight metabolic pathways, including arginine biosynthesis, melanogenesis, and glutathione metabolism. These findings may provide more detailed information on the toxicity of rac-glufosinate and L-glufosinate in zebrafish, as well as some context for assessing the environmental risk of the two glufosinate agents to aquatic organisms.
Collapse
Affiliation(s)
- Tianyou Feng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lianhong Mou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Guipeng Ou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ling Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yuping Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Deyu Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
7
|
Chen M, Guo HM, Di SS, Zhao Y, Zhou DD, Cao YW, Tian P, Yang ZH, Zhao HY. Stereoselective behaviors and enantiomeric effects of paclobutrazol on microorganisms during Chinese cabbage pickling process. Chirality 2023; 35:376-386. [PMID: 36924145 DOI: 10.1002/chir.23549] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 03/18/2023]
Abstract
Studies on the differences between chiral pesticide enantiomers have caused widespread concern in the last decade. In the current work, the selective behaviors and different biological activities of paclobutrazol enantiomers during Chinese cabbage pickling process were evaluated. Results of degradation kinetics indicated that when paclobutrazol reside in raw material (Chinese cabbage) and was introduced into the pickling process, the degradation rates of the two paclobutrazol enantiomers were significantly different, the half-lives of (2R, 3R)-paclobutrazol (R-paclobutrazol) and (2S, 3S)-paclobutrazol (S-paclobutrazol) were 18.24 and 6.19 d, respectively. Besides, the conversion between the two enantiomers could also be observed, and the conversion rate of R-paclobutrazol to S-paclobutrazol was slower than that of reverse process. In addition, from the analysis of 16S rRNA and ITS sequencing, we inferred that the degradation of paclobutrazol was probably due to the presence of Pseudomonas and Serratia. Moreover, there has a significant difference in biological activity between R-paclobutrazol and S-paclobutrazol and shown an obviously enantiomeric effects on microbial community composition of pickling system. Besides, the analysis of microbial community displayed R-paclobutrazol might inhibit the growth of Erwinia (a sort of plant pathogens). Results from this study served to enhance our understanding of chiral pesticide residues on food safety and the potential risks to human health.
Collapse
Affiliation(s)
- Min Chen
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan, China
| | - Hao-Ming Guo
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan, China
| | - Shan-Shan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China.,Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, P. R. China
| | - Yue Zhao
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan, China
| | - Dong-Dong Zhou
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan, China
| | - Yi-Wen Cao
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan, China
| | - Pei Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China.,Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, P. R. China
| | - Zhong-Hua Yang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan, China
| | - Hui-Yu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China.,Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, P. R. China
| |
Collapse
|
8
|
Zhao X, Fu K, Xiang KP, Wang LY, Zhang YF, Luo YP. Comparison of the chronic and multigenerational toxicity of racemic glufosinate and l-glufosinate to Caenorhabditis elegans at environmental concentrations. CHEMOSPHERE 2023; 316:137863. [PMID: 36649895 DOI: 10.1016/j.chemosphere.2023.137863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Glufosinate-ammonium, the second largest transgene crop resistant herbicide, is classified as a mobile persistent pollutant by the U.S. Environmental Protection Agencybecause of its slow decomposition and easy mobile transfer in a water environment. The chronic and multigeneration toxicity of this compound to environmental organisms are alarming. In this study, racemic glufosinate-ammonium and the effective isomer, l-glufosinate-ammonium, were used as the test agents. The developmental, neurotoxic and reproductive toxicities of Caenorhabditis elegans to their parents and progeny were studied by continuous exposure in water at concentrations of 0.1, 1, 10 and 100 μg/L. The causes of toxicity differences were analysed from oxidative stress and transcription levels. Through oxidative stress of C. elegans, racemic glufosinate-ammonium and l-glufosinate-ammonium both mediated the developmental toxicity (shortened developmental cycle, reduced body length and width, promoted ageingand decreased longevity), neurotoxicity (inhibited head swinging, body bending frequency and acetylcholinesterase [AchE] activity) and reproductive toxicity (significant reductions in the number of eggs and offspring in vivo and induced apoptosis of gonadal cells). These phenomena caused oxidative damage (protein and membrane lipid peroxidation) and further induced apoptosis. The changes in various indicators caused by racemic glufosinate-ammonium exposure were more significant than those caused by l-glufosinate-ammonium exposure, and the reproduction-related indicators were more significant than the developmental and neurological indicators. A continuous accumulation of toxicity was observed after multiple generations of continuous exposure. These research results provide a data reference for the ecotoxicological evaluation and risk assessment of glufosinate-ammonium and contribute to the revision and improvement of the related environmental policies of glufosinate-ammonium.
Collapse
Affiliation(s)
- Xu Zhao
- School of Plant Protection, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Kan Fu
- School of Plant Protection, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Hainan Radiation Environmental Monitoring Station, Haikou, 571126, China
| | - Kai-Ping Xiang
- School of Plant Protection, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Lan-Ying Wang
- School of Plant Protection, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Yun-Fei Zhang
- School of Plant Protection, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Yan-Ping Luo
- School of Plant Protection, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|
9
|
López-Vázquez J, Pérez-Mayán L, Fernández-Fernández V, Cela R, Rodríguez I. Direct, automated and sensitive determination of glyphosate and related anionic pesticides in environmental water samples using solid-phase extraction on-line combined with liquid chromatography tandem mass spectrometry. J Chromatogr A 2023; 1687:463697. [PMID: 36508766 DOI: 10.1016/j.chroma.2022.463697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
An automated procedure for the simultaneous determination of six anionic pesticides, including glyphosate (GLY) and its transformation product aminomethylphosphonic acid (AMPA), was developed and applied to the analysis of environmental water samples. The proposed method combines on-line concentration of water samples (0.160 mL), with compounds separation in an anion-exchange liquid chromatography (LC) column, followed by their selective determination by tandem mass spectrometry (MS/MS). The global procedure was completed in 25 min, providing limits of quantification (LOQs) between 5 ng L-1 and 20 ng L-1, with reduced effect of the surface water matrix in the efficiency of process (SPE and ionization yields). The method was applied to the analysis of grab samples obtained from three watersheds, in two rural and one residential area, in Galicia (Northwest Spain). Out of six investigated compounds, Fosetyl, AMPA and GLY were noticed in the set of processed samples. Their detection frequencies increased from 12% (Fosetyl) to 88% (AMPA). Median concentrations followed the same trend varying from 9 ng L-1 (Fosetyl) to 44 ng L-1 (AMPA). The higher levels and the large seasonal variations in the residues of the latter species were noticed in small rivers affected by discharges of municipal sewage treatment plants (STPs).
Collapse
Affiliation(s)
- J López-Vázquez
- Department of Analytical Chemistry, Nutrition and Food Sciences. Research Institute on Chemical and Biological Analysis (IAQBUS). Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | - L Pérez-Mayán
- Department of Analytical Chemistry, Nutrition and Food Sciences. Research Institute on Chemical and Biological Analysis (IAQBUS). Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | - V Fernández-Fernández
- Department of Analytical Chemistry, Nutrition and Food Sciences. Research Institute on Chemical and Biological Analysis (IAQBUS). Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | - R Cela
- Department of Analytical Chemistry, Nutrition and Food Sciences. Research Institute on Chemical and Biological Analysis (IAQBUS). Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | - I Rodríguez
- Department of Analytical Chemistry, Nutrition and Food Sciences. Research Institute on Chemical and Biological Analysis (IAQBUS). Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain.
| |
Collapse
|
10
|
The fate and behavior of glufosinate-enantiomers and their metabolites in open-field soil and weeds. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Accumulation, metabolites formation and elimination behavior of rac-glufosinate-ammonium and glufosinate-P in zebrafish (Danio rerio). Food Chem X 2022; 15:100383. [PMID: 36211745 PMCID: PMC9532730 DOI: 10.1016/j.fochx.2022.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/22/2022] [Accepted: 07/03/2022] [Indexed: 11/22/2022] Open
Abstract
Zebrafish samples were purified with diatomaceous earth, CH2Cl2 and Oasis PRiME HLB SPE column. The bioaccumulation of glufosinate in zebrafish is enantioselective. The accumulation of glufosinate-P in zebrafish was greater than that of rac-glufosinate. The elimination half-life of glufosinate in zebrafish is less than 2.3 d. NAG and MPP produced in fish was not over 4% of the parent culture concentration.
An efficient trace detection method for the determination of residues of the glufosinate enantiomers and metabolites in zebrafish by HPLC–Q-Exactive Orbitrap Mass Spectrometry was developed. After the purification of dichloromethane and Oasis PRiME HLB SPE column, the recovery ranges from 77% to 104%, with RSD < 10.03%. The limits of quantitation in zebrafish were 0.006–0.02 mg/kg. The results revealed zebrafish absorbed glufosinate slowly, reaching a steady state in 10–14 days, and the bioaccumulation factor (BCF) of D/L-glufosinate-ammonium was less than 0.3. L-glufosinate-ammonium accumulated preferentially in zebrafish. The residue of the metabolite N-acetyl glutamate (NAG) was smaller than that of 3-methyl phosphonic acid (MPP). D/L-glufosinate-ammonium had an elimination half-life of less than 2.3 days during the elimination phase. The bioaccumulation and elimination behavior of glufosinate-ammonium in zebrafish aquatic system was shown in this work, which offered scientific data for assessing the food safety of rac-glufosinate-ammonium and glufosinate-P (pure L-glufosinate-ammonium) in fish.
Collapse
|
12
|
Meng X, Wang F, Li Y, Deng P, Hu D, Zhang Y. Comparing toxicity and biodegradation of racemic glufosinate and L-glufosinate in green algae Scenedesmus obliquus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153791. [PMID: 35150682 DOI: 10.1016/j.scitotenv.2022.153791] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/06/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Glufosinate-ammonium, a widely used chiral herbicide, has become the focus of attention because of its toxicity toward non-target organisms and its degradation behavior in the environment. With the introduction of L-glufosinate-ammonium products, the toxicity and environmental behavior of rac-glufosinate-ammonium and L-glufosinate-ammonium have become the subject of increasing interest. The overall goal of this study was to investigate the differences in toxicity and biodegradation of rac-glufosinate-ammonium and L-glufosinate-ammonium in an aquatic organism, Scenedesmus obliquus. The toxicity of rac-glufosinate-ammonium and L-glufosinate-ammonium to S. obliquus was compared by measuring EC50, malondialdehyde (MDA) content, protein content and antioxidant enzyme activity. The 96-h EC50 values of rac-glufosinate-ammonium and L-glufosinate-ammonium were 57.22 μg/mL and 25.55 μg/mL, respectively, which indicated that L-glufosinate-ammonium was more toxic to S. obliquus than rac-glufosinate-ammonium. Based on the MDA content, protein content, and antioxidant enzyme (SOD and CAT) activity, we found that L-glufosinate-ammonium could cause more serious oxidative damage than rac-glufosinate-ammonium. The residual amount of glufosinate-ammonium and its metabolites in the culture medium and S. obliquus were determined by HPLC-HRMS. Comparison of glufosinate-ammonium concentrations in algae-free and algae-containing media, showed that glufosinate-ammonium degradation in the S. obliquus system was significantly increased, and the degradation rate of L-glufosinate-ammonium was faster than that of D-glufosinate-ammonium. No enantiomerization was observed for pure L-glufosinate-ammonium treatment. N-acetyl-glufosinate was identified as the main metabolite of glufosinate-ammonium.
Collapse
Affiliation(s)
- Xiurou Meng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Fei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Yunfang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Pengyu Deng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Yuping Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
13
|
Dmitrović S, Dragićević M, Savić J, Milutinović M, Živković S, Maksimović V, Matekalo D, Perišić M, Mišić D. Antagonistic Interaction between Phosphinothricin and Nepeta rtanjensis Essential Oil Affected Ammonium Metabolism and Antioxidant Defense of Arabidopsis Grown In Vitro. PLANTS 2021; 10:plants10010142. [PMID: 33445496 PMCID: PMC7828019 DOI: 10.3390/plants10010142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 11/17/2022]
Abstract
Phosphinothricin (PPT) is one of the most widely used herbicides. PTT targets glutamine synthetase (GS) activity in plants, and its phytotoxicity is ascribed to ammonium accumulation and reactive oxygen species bursts, which drives rapid lipid peroxidation of cell membranes. In agricultural fields, PPT is extensively sprayed on plant foliage; however, a portion of the herbicide reaches the soil. According to the present study, PPT absorbed via roots can be phytotoxic to Arabidopsis, inducing more adverse effects in roots than in shoots. Alterations in plant physiology caused by 10 days exposure to herbicide via roots are reflected through growth suppression, reduced chlorophyll content, perturbations in the sugar and organic acid metabolism, modifications in the activities and abundances of GS, catalase, peroxidase, and superoxide dismutase. Antagonistic interaction of Nepeta rtanjensis essential oil (NrEO) and PPT, emphasizes the existence of complex control mechanisms at the transcriptional and posttranslational level, which result in the mitigation of PPT-induced ammonium toxicity and in providing more efficient antioxidant defense of plants. Simultaneous application of the two agents in the field cannot be recommended; however, NrEO might be considered as the PPT post-treatment for reducing harmful effects of herbicide residues in the soil on non-target plants.
Collapse
Affiliation(s)
- Slavica Dmitrović
- Institute for Biological Research ‘‘Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (M.D.); (J.S.); (M.M.); (S.Ž.); (D.M.)
- Correspondence: (S.D.); (D.M.); Tel.: +381112078385 (D.M.)
| | - Milan Dragićević
- Institute for Biological Research ‘‘Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (M.D.); (J.S.); (M.M.); (S.Ž.); (D.M.)
| | - Jelena Savić
- Institute for Biological Research ‘‘Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (M.D.); (J.S.); (M.M.); (S.Ž.); (D.M.)
| | - Milica Milutinović
- Institute for Biological Research ‘‘Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (M.D.); (J.S.); (M.M.); (S.Ž.); (D.M.)
| | - Suzana Živković
- Institute for Biological Research ‘‘Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (M.D.); (J.S.); (M.M.); (S.Ž.); (D.M.)
| | - Vuk Maksimović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia;
| | - Dragana Matekalo
- Institute for Biological Research ‘‘Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (M.D.); (J.S.); (M.M.); (S.Ž.); (D.M.)
| | - Mirjana Perišić
- Institute of Physics Belgrade—National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia;
| | - Danijela Mišić
- Institute for Biological Research ‘‘Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (M.D.); (J.S.); (M.M.); (S.Ž.); (D.M.)
- Correspondence: (S.D.); (D.M.); Tel.: +381112078385 (D.M.)
| |
Collapse
|
14
|
Takano HK, Dayan FE. Glufosinate-ammonium: a review of the current state of knowledge. PEST MANAGEMENT SCIENCE 2020; 76:3911-3925. [PMID: 32578317 DOI: 10.1002/ps.5965] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 05/11/2023]
Abstract
Glufosinate is a key herbicide to manage glyphosate-resistant weeds mainly because it is a broad-spectrum herbicide, and transgenic glufosinate-resistant crops are available. Although glufosinate use has increased exponentially over the past decade, the treated area with this herbicide is far less than that with glyphosate. This is because glufosinate often provides inconsistent performance in the field, which is attributed to several factors including environmental conditions, application technology, and weed species. Glufosinate is also highly hydrophilic and does not translocate well in plants, generally providing poor control of grasses and perennial species. In the soil, glufosinate is rapidly degraded by microorganisms, leaving no residual activity. While there have been concerns regarding glufosinate toxicology, its proper use can be considered safe. Glufosinate is a fast-acting herbicide that was first discovered as a natural product, and is the only herbicide presently targeting glutamine synthetase. The mode of action of glufosinate has been controversial, and the causes for the rapid phytotoxicity have often been attributed to ammonia accumulation. Recent studies indicate that the contact activity of glufosinate results from the accumulation of reactive oxygen species and subsequent lipid peroxidation. Glufosinate disrupts both photorespiration and the light reactions of photosynthesis, leading to photoreduction of molecular oxygen, which generates reactive oxygen species. The new understanding of the mode of action provided new ideas to improve the herbicidal activity of glufosinate. Finally, a very few weed species have evolved glufosinate resistance in the field, and the resistance mechanisms are generally not well understood requiring further investigation. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hudson K Takano
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Franck E Dayan
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|