1
|
Jiang J, Fan G, Wen R, Liu T, He S, Yang S, Zi S. Effects of osthole and Bacillus amyloliquefaciens on the physiological growth of Panax quinquefolius in a forest. Front Microbiol 2024; 15:1497987. [PMID: 39726959 PMCID: PMC11670745 DOI: 10.3389/fmicb.2024.1497987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction The biological activities of osthole have been widely reported in recent years. However, few studies have been conducted on osthole in agriculture, and its effects on plant growth have little been reported. Methods Three experimental treatments were set up in this experiment: blank control (CK), osthole (CLS), and B. amyloliquefaciens (LKWS). In this study, the effects of osthole and Bacillus amyloliquefaciens on the growth parameters, photosynthesis, antioxidant enzyme activities, disease incidence, and microbiome of forested P. quinquefolius were tested. Results This study demonstrates that the use of osthole and B. amyloliquefaciens significantly improved the growth of Panax quinquefolius in a forest compared to that in the control treatment, increased the total chlorophyll and carotenoid content of P. quinquefolius, significantly increased its net photosynthetic rate, and decreased the stomatal conductance and intercellular CO2 levels. In addition, the use of osthole and B. amyloliquefaciens significantly improved ascorbate peroxidase and peroxidase (POD) activities, enhanced antioxidant activities of the P. quinquefolius POD, and reduced the disease incidence and index of American ginseng anthracnose. Based on the American ginseng microbiome analysis, the use of osthole and B. amyloliquefaciens could change the structure of the American ginseng microbial community, significantly increase the diversity of American ginseng bacteria, significantly decrease the diversity of American ginseng fungi, stimulate the recruitment of more growth-promoting microorganisms to American ginseng, and build a more stable microbial network in American ginseng. Discussion In conclusion, we found that the application of osthole had a positive effect on the growth of American ginseng, providing a theoretical basis for its subsequent application in agriculture.
Collapse
Affiliation(s)
- Jinhui Jiang
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, China
| | - Guangxiong Fan
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, China
| | - Rong Wen
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, China
| | - Tao Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, China
| | - Shuran He
- College of Resources and Environment, Yunnan Agricultural University (YNAU), Kunming, China
| | - Shengchao Yang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, China
| | - Shuhui Zi
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, China
| |
Collapse
|
2
|
Wang C, Liu H, Li Z, Yang Q, Wang Q, Yang T, Tang D, Wang C, Liu J. Oleanolic acid 28-O-β-D-glucopyranoside: A novel therapeutic agent against ulcerative colitis via anti-inflammatory, barrier-preservation, and gut microbiota-modulation. Biomed Pharmacother 2024; 180:117534. [PMID: 39405905 DOI: 10.1016/j.biopha.2024.117534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 11/14/2024] Open
Abstract
Ulcerative colitis (UC), an incurable and recurrent inflammatory bowel disease, presents a significant threat to health and highlights the need for novel therapeutic strategies. Oleanolic acid 28-O-β-D-glucopyranoside (OAG) is a naturally occurring pentacyclic triterpenoid found in ginseng. In this study, we demonstrated that OAG exhibited remarkable anti-UC activity in LPS-induced Caco-2 cells and DSS-induced model mice. First, OAG alleviated the symptoms of UC by mitigating weight loss, reducing the DAI score, and increasing colon length. Second, the inflammatory response was inhibited after OAG intervention, evidenced decreases in the spleen coefficient, cytokine levels, and inflammatory cell infiltration in colon tissue. Thirdly, OAG also enhanced intestinal epithelial barrier function, as evidenced by elevated TEER values, increased expression of tight junction proteins, diminished bacterial translocation, and maintained intact ultrastructure of colonic mucosal cells. Notably, compared with 5-aminosalicylic acid, OAG demonstrated superior efficacy in enhancing mucosal barrier function. Fourth, OAG increased microbial diversity, promoted the abundance of beneficial bacteria, reduced the abundance of harmful bacteria, and rebalanced the gut microbiome. Finally, the PI3K-AKT and MAPK signaling pathways were identified as crucial mechanisms underlying the therapeutic effects of OAG against UC through multi-omics. In summary, we identified OAG as a novel therapeutic agent against UC, demonstrating anti-inflammatory, barrier-preserving, and gut microbiota-modulating effects, highlighting its promising potential as a candidate UC drug.
Collapse
Affiliation(s)
- Caixia Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hanlin Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhuoqiao Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Qingya Yang
- Department of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Qianyun Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Ting Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Daohao Tang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
3
|
Yu H, Wang C, Wu J, Wang Q, Liu H, Li Z, He S, Wang C, Liu J. Study on the Anti-Ulcerative Colitis Effect of Pseudo-Ginsenoside RT4 Based on Gut Microbiota, Pharmacokinetics, and Tissue Distribution. Int J Mol Sci 2024; 25:835. [PMID: 38255909 PMCID: PMC10815824 DOI: 10.3390/ijms25020835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
The purpose of this study was to explore the therapeutic effect of the oral administration of pseudo-ginsenoside RT4 (RT4) on ulcerative colitis (UC), and to determine the rate of absorption and distribution of RT4 in mice with UC. Balb/c mice were induced using dextran sulfate sodium salts (DSS) to establish the UC model, and 10, 20, or 40 mg/kg of RT4 was subsequently administered via gavage. The clinical symptoms, inflammatory response, intestinal barrier, content of total short-chain fatty acids (SCFAs), and gut microbiota were investigated. Caco-2 cells were induced to establish the epithelial barrier damage model using LPS, and an intervention was performed using 4, 8, and 16 µg/mL of RT4. The inflammatory factors, transient electrical resistance (TEER), and tight-junction protein expression were determined. Finally, pharmacokinetic and tissue distribution studies following the intragastric administration of RT4 in UC mice were performed. According to the results in mice, RT4 decreased the disease activity index (DAI) score, restored the colon length, reduced the levels of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), and boosted the levels of immunosuppressive cytokine IL-10, increased the content of SCFAs, improved the colonic histopathology, maintained the ultrastructure of colonic mucosal epithelial cells, and corrected disturbances in the intestinal microbiota. Based on the results in caco-2 cells, RT4 reduced the levels of TNF-α, IL-6, and IL-1β; protected integrity of monolayers; and increased tight-junction protein expression. Additionally, the main pharmacokinetic parameters (Cmax, Tmax, t1/2, Vd, CL, AUC) were obtained, the absolute bioavailability was calculated as 18.90% ± 2.70%, and the main distribution tissues were the small intestine and colon. In conclusion, RT4, with the features of slow elimination and directional distribution, could alleviate UC by inhibiting inflammatory factors, repairing the intestinal mucosal barrier, boosting the dominant intestinal microflora, and modulating the expression of SCFAs.
Collapse
Affiliation(s)
- Hui Yu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (H.Y.); (C.W.); (J.W.); (Q.W.); (H.L.); (Z.L.); (S.H.); (C.W.)
| | - Caixia Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (H.Y.); (C.W.); (J.W.); (Q.W.); (H.L.); (Z.L.); (S.H.); (C.W.)
| | - Junzhe Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (H.Y.); (C.W.); (J.W.); (Q.W.); (H.L.); (Z.L.); (S.H.); (C.W.)
| | - Qianyun Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (H.Y.); (C.W.); (J.W.); (Q.W.); (H.L.); (Z.L.); (S.H.); (C.W.)
| | - Hanlin Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (H.Y.); (C.W.); (J.W.); (Q.W.); (H.L.); (Z.L.); (S.H.); (C.W.)
| | - Zhuoqiao Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (H.Y.); (C.W.); (J.W.); (Q.W.); (H.L.); (Z.L.); (S.H.); (C.W.)
| | - Shanmei He
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (H.Y.); (C.W.); (J.W.); (Q.W.); (H.L.); (Z.L.); (S.H.); (C.W.)
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (H.Y.); (C.W.); (J.W.); (Q.W.); (H.L.); (Z.L.); (S.H.); (C.W.)
- Research Center of Natural Drug, Jilin University, Changchun 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (H.Y.); (C.W.); (J.W.); (Q.W.); (H.L.); (Z.L.); (S.H.); (C.W.)
- Research Center of Natural Drug, Jilin University, Changchun 130021, China
| |
Collapse
|
4
|
Chen H, Li X, Chi H, Li Z, Wang C, Wang Q, Feng H, Li P. A Qualitative Analysis of Cultured Adventitious Ginseng Root's Chemical Composition and Immunomodulatory Effects. Molecules 2023; 29:111. [PMID: 38202694 PMCID: PMC10780104 DOI: 10.3390/molecules29010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The cultivation of ginseng in fields is time-consuming and labor-intensive. Thus, culturing adventitious ginseng root in vitro constitutes an effective approach to accumulating ginsenosides. In this study, we employed UPLC-QTOF-MS to analyze the composition of the cultured adventitious root (cAR) of ginseng, identifying 60 chemical ingredients. We also investigated the immunomodulatory effect of cAR extract using various mouse models. The results demonstrated that the cAR extract showed significant activity in enhancing the immune response in mice. The mechanism underlying the immunomodulatory effect of cAR was analyzed through network pharmacology analysis, revealing potential 'key protein targets', namely TNF, AKT1, IL-6, VEGFA, and IL-1β, affected by potential 'key components', namely the ginsenosides PPT, F1, Rh2, CK, and 20(S)-Rg3. The signaling pathways PI3K-Akt, AGE-RAGE, and MAPK may play a vital role in this process.
Collapse
Affiliation(s)
- Hong Chen
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
- Tonghua Herbal Biotechnology, Co., Ltd., Tonghua 134123, China; (X.L.); (H.C.)
| | - Xiangzhu Li
- Tonghua Herbal Biotechnology, Co., Ltd., Tonghua 134123, China; (X.L.); (H.C.)
| | - Hang Chi
- Tonghua Herbal Biotechnology, Co., Ltd., Tonghua 134123, China; (X.L.); (H.C.)
| | - Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Z.L.); (C.W.); (Q.W.)
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Z.L.); (C.W.); (Q.W.)
| | - Qianyun Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Z.L.); (C.W.); (Q.W.)
| | - Hao Feng
- College of Basic Medicine Sciences, Jilin University, Changchun 130021, China;
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Z.L.); (C.W.); (Q.W.)
| |
Collapse
|
5
|
Pang S, Piao X, Zhang X, Chen X, Zhang H, Jin Y, Li Z, Wang Y. Discrimination for geographical origin of Panax quinquefolius L. using UPLC Q-Orbitrap MS-based metabolomics approach. Food Sci Nutr 2023; 11:4843-4852. [PMID: 37576031 PMCID: PMC10420767 DOI: 10.1002/fsn3.3461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/11/2023] [Accepted: 05/20/2023] [Indexed: 08/15/2023] Open
Abstract
American ginseng, Panax quinquefolius L., is an important medicinal plant with multiple pharmacological effects and high nutritional value. American ginseng from different geographical origins varies in quality and price. However, there was no approach for discriminating American ginseng from different geographical origins to date. In this study, a metabolomic method based on the UPLC-Orbitrap fusion platform was established to comprehensively determine and analyze metabolites of American ginseng from America and Canada, Heilongjiang, Jilin, Liaoning, and Shandong provinces in China. A total of 382 metabolites were detected, including 230 saponins, 30 amino acids and derivatives, 27 organic acids and derivatives, 25 lipids, 17 carbohydrates and derivatives, 10 phenols, 8 nucleotides, and derivatives, as well as 35 other metabolites. Metabolite differences between North America and Asia producing areas were more obvious than within Asia. Twenty metabolites, contributed most to the differentiation of producing areas, were identified as potential markers with prediction accuracy higher than 91%. The results provide new insights into the metabolite composition of American ginseng from different origins, which will help discriminate origins and promote quality control of American ginseng.
Collapse
Affiliation(s)
- Shifeng Pang
- Institute of Special Animal and Plant SciencesChinese Academy of Agricultural SciencesChangchunChina
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and PropagationChangchunChina
| | - Xiangmin Piao
- State‐Local Joint Engineering Research Center of Ginseng Breeding and ApplicationJilin Agricultural UniversityChangchunChina
| | - Xiaohao Zhang
- Department of CardiologyThe Second Hospital of Jilin UniversityChangchunChina
| | - Xiaolin Chen
- Ginseng Antler Office of Jilin Province (TCM Development Center of Department of Agriculture and Rural Affairs of Jilin Province)ChangchunChina
| | - Hao Zhang
- Institute of Special Animal and Plant SciencesChinese Academy of Agricultural SciencesChangchunChina
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and PropagationChangchunChina
| | - Yinping Jin
- Institute of Special Animal and Plant SciencesChinese Academy of Agricultural SciencesChangchunChina
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and PropagationChangchunChina
| | - Zheng Li
- Institute of Special Animal and Plant SciencesChinese Academy of Agricultural SciencesChangchunChina
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and PropagationChangchunChina
| | - Yingping Wang
- State‐Local Joint Engineering Research Center of Ginseng Breeding and ApplicationJilin Agricultural UniversityChangchunChina
| |
Collapse
|
6
|
Metabolite Fingerprinting for Identification of Panax ginseng Metabolites Using Internal Extractive Electrospray Ionization Mass Spectrometry. Foods 2023; 12:foods12061152. [PMID: 36981079 PMCID: PMC10048038 DOI: 10.3390/foods12061152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
Ginseng, a kind of functional food and medicine with high nutritional value, contains various pharmacological metabolites that influence human metabolic functions. Therefore, it is very important to analyze the composition and metabolites of ginseng. However, the analysis of active metabolites in ginseng samples usually involves various experimental steps, such as extraction, chromatographic separation, and characterization, which may be time-consuming and laborious. In this study, an internal extractive electrospray ionization mass spectrometry (iEESI-MS) method was developed to analyze active metabolites in ginseng samples with sequential sampling and no pretreatment. A total of 44 metabolites, with 32 ginsenosides, 6 sugars, and 6 organic acids, were identified in the ginseng samples. The orthogonal partial least-squares discriminant analysis (OPLS-DA) score plot showed a clear separation of ginseng samples from different origins, indicating that metabolic changes occurred under different growing conditions. This study demonstrated that different cultivation conditions of ginseng can be successfully discriminated when using iEESI-MS-based metabolite fingerprints, which provide an alternative solution for the quality identification of plant drugs.
Collapse
|
7
|
Jin Y, Hao Y, Zhang H, Qu Z, Wang Y, Piao X. Dynamic changes of ginsenosides in Panax quinquefolium fruit at different development stages measured using UHPLC-Orbitrap MS. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9270. [PMID: 35178804 DOI: 10.1002/rcm.9270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
RATIONALE Some studies have shown that Panax quinquefolium fruit (PQF) could also be used as a potential medicinal resource. However, little is known about the composition of ginsenosides and their dynamic changes at different development stages of PQF. Therefore, this study is of great significance for the metabolomics and rational utilization of PQF. METHODS The samples were analyzed using ultra-high-performance liquid chromatography combined with an Orbitrap mass spectrometer (UHPLC-Orbitrap MS), and the method of metabonomics was applied to profile the dynamic changes of ginsenosides in PQF at different development stages. RESULTS A total of 109 ginsenosides were identified or tentatively characterized. Samples collected from different development stages were significantly discriminated according to ginsenoside contents. A total of 25 potential chemical markers enabling the differentiation were discovered. CONCLUSIONS For the first time, the study developed an UHPLC-Orbitrap MS-based approach to detect ginsenoside in PQF at different development stages using a non-targeted mode. This comprehensive phytochemical profile study revealed the structural diversity and discrimination of ginsenosides in PQF at different development stages, which could provide the basis for the metabolomics and rational application of PQF.
Collapse
Affiliation(s)
- Yinping Jin
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yan Hao
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Hao Zhang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhengyi Qu
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yingping Wang
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Xiangmin Piao
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| |
Collapse
|
8
|
Lin H, Wang C, Yu H, Liu Y, Tan L, He S, Li Z, Wang C, Wang F, Li P, Liu J. Protective effect of total Saponins from American ginseng against cigarette smoke-induced COPD in mice based on integrated metabolomics and network pharmacology. Biomed Pharmacother 2022; 149:112823. [PMID: 35334426 DOI: 10.1016/j.biopha.2022.112823] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 11/02/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent respiratory disease. Aiming at assessing the effect of total saponins from American ginseng on COPD, both the chemical composition and anti-COPD activity of total saponins from wild-simulated American ginseng (TSW) and field-grown American ginseng (TSF) were investigated in this study. Firstly, a HPLC-ELSD chromatographic method was established to simultaneously determine the contents of 22 saponins in TSW and TSF. Secondly, CS-induced COPD mouse model was established to evaluate the activity of TSW and TSF. The results indicated that both TSW and TSF had the protective effect against COPD by alleviating oxidative stress and inflammatory response. TSW showed a stronger effect than TSF. Thirdly, an integrated approach involving metabolomics and network pharmacology was used to construct the "biomarker-reaction-enzyme-target" correlation network aiming at further exploring the observed effects. As the results, 15 biomarkers, 9 targets and 5 pathways were identified to play vital roles in the treatment of TSW and TSF on COPD. Fourthly, based on network pharmacology and the CS-stimulated A549 cell model, ginsenoside Rgl, Rc, oleanolic acid, notoginsenoside R1, Fe, silphioside B were certified to be the material basis for the stronger effect of TSW than TSF. Finally, the molecular docking were performed to visualize the binding modes. Our findings suggested that both TSW and TSF could effectively ameliorate the progression of COPD and might be used for the treatment of COPD.
Collapse
Affiliation(s)
- Hongqiang Lin
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Caixia Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hui Yu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yunhe Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Luying Tan
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Shanmei He
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhuoqiao Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; Research Center of Natural Drug, Jilin University, Changchun 130021, China
| | - Fang Wang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; Research Center of Natural Drug, Jilin University, Changchun 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; Research Center of Natural Drug, Jilin University, Changchun 130021, China.
| |
Collapse
|
9
|
Chen LH, Zhang YB, Yang XW, Xu W, Wang YP. Characterization and quantification of ginsenosides from the root of Panax quinquefolius L. by integrating untargeted metabolites and targeted analysis using UPLC-Triple TOF-MS coupled with UFLC-ESI-MS/MS. Food Chem 2022; 384:132466. [PMID: 35202989 DOI: 10.1016/j.foodchem.2022.132466] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 11/04/2022]
Abstract
The root of Panax quinquefolius L. (RPQ) is considered as an important functional food and rich in bioactive components, ginsenosides. To comprehensively characterize ginsenosides and evaluate the quality of RPQ from different sources, UPLC-Triple TOF-MS coupled with UFLC-ESI-MS/MS was applied to untargeted metabolites and targeted analysis for the first time. In untargeted metabolites analysis, a total of 225 ginsenosides were identified from RPQ using UPLC-Triple TOF-MS combined with SWATH data-independent strategy. Furthermore, the contents of 39 targeted ginsenoside markers in 14 RPQ samples were analyzed by a rapid and sensitive UFLC-ESI-MS/MS method. In addition, the results of chemometric analysis showed the quality of American RPQ was distinguished from that of Chinese RPQ according to the amount of targeted ginsenosides. This newly developed approach provides a powerful tool for enriching the diversity of saponins database and assessing the quality of RPQ, which can be further extended to other ginseng products and functional foods.
Collapse
Affiliation(s)
- Li-Hua Chen
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - You-Bo Zhang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiu-Wei Yang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Wei Xu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying-Ping Wang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, International Joint Research Center of Plants of the Genus Panax, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
10
|
Li L, Liu Y, Yu H, Li Z, Lin H, Wu F, Tan L, Wang C, Li P, Liu J. Comprehensive phytochemicals analysis and anti-myocardial ischemia activity of total saponins of American ginseng berry. J Food Biochem 2022; 46:e14042. [PMID: 34981530 DOI: 10.1111/jfbc.14042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/28/2022]
Abstract
American ginseng berry (AGB) is a new medicinal source. Total saponins of American ginseng berry (TSAGB) are the main active ingredients. The effects and active saponins of TSAGB on myocardial ischemia (MI) rats were evaluated for the first time. First, there were 69 saponins identified or tentatively characterized by Ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS/MS) combined with UNIFI platform, among which, about 28 saponins were first identified in AGB. Second, MI model was established by ligating left coronary artery. It has been demonstrated that TSAGB could prevent the ST-segment elevation, reduce myocardial infarct size and levels of aspartate aminotransferase (AST), creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MDA), and elevate the superoxide dismutase (SOD) level. Finally, network pharmacology combined with molecular docking to screen out four active saponins (ginsenoside Re, Rb3 , Rg3 , and PF11 ) and five key targets (SOD1, LDHA, CKB, GOT2, and ROS1) closely related to MI. PRACTICAL APPLICATIONS: This study enriches the chemical composition of TSAGB, and provides a basis for clarifying the pharmacological substances for anti-myocardial ischemia. TSAGB might be a potential anti-myocardial ischemia agent. The effect might be related to alleviating oxidative stress.
Collapse
Affiliation(s)
- Le Li
- School of Pharmaceutical Sciences, Jilin Uni, Changchun, China
| | - Yunhe Liu
- School of Pharmaceutical Sciences, Jilin Uni, Changchun, China
| | - Hui Yu
- School of Pharmaceutical Sciences, Jilin Uni, Changchun, China
| | - Zhuo Li
- School of Pharmaceutical Sciences, Jilin Uni, Changchun, China
| | - Hongqiang Lin
- School of Pharmaceutical Sciences, Jilin Uni, Changchun, China
| | - Fulin Wu
- School of Pharmaceutical Sciences, Jilin Uni, Changchun, China
| | - Luying Tan
- School of Pharmaceutical Sciences, Jilin Uni, Changchun, China
| | - Caixia Wang
- School of Pharmaceutical Sciences, Jilin Uni, Changchun, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin Uni, Changchun, China.,Research Centre of Natural Drugs, Jilin University, Changchun, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin Uni, Changchun, China.,Research Centre of Natural Drugs, Jilin University, Changchun, China
| |
Collapse
|
11
|
Si Y, Jiao Y, Li L, Lin H, Wang C, Zhou B, Liu Y, Li Z, Li P. Comprehensive investigation on metabolites of Panax quinquefolium L. in two main producing areas of China based on ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4791. [PMID: 34905806 DOI: 10.1002/jms.4791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/04/2021] [Accepted: 09/23/2021] [Indexed: 06/14/2023]
Abstract
Jilin Province and Shandong Province are two main American ginseng (AG) producing areas in China. The geographical difference existed in these two provinces. Aiming at evaluating the similarities and differences of the secondary metabolites, the comprehensive metabolite profiling of AG from Jilin Province (AGJ) and Shandong Province (AGS) was performed based on UPLC-QTOF-MS for the first time. In screening analysis, a total of 111 shared compounds, with ginsenosides being major components, were identified or tentatively characterized, which indicated that AGJ and AGS were all rich in phytochemicals and contained similar structural types. Untargeted metabolomics analysis indicated that there were significant differences in the contents of certain constituents in AGJ and AGS. Nineteen (12 for AGJ, 7 for AGS) potential producing area-dependent chemical markers were discovered. Based on the contents and MS responses, ginsenoside Rg1, Re, and pseudoginsenoside F11 could be considered as the characteristical markers of AGJ, whereas ginsenoside Rg3 and Rh2 of AGS. This comprehensive phytochemical profile study could provide valuable chemical evidence for evaluating the characteristics qualities of AG from various producing areas.
Collapse
Affiliation(s)
- Yu Si
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Yufeng Jiao
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Le Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Hongqiang Lin
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
- Research Center of Natural Drug, Jilin University, Changchun, Jilin, China
| | - Baisong Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Yunhe Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
- Research Center of Natural Drug, Jilin University, Changchun, Jilin, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
- Research Center of Natural Drug, Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Liu F, Ding H, Wang M, Li X. A multi-evaluating strategy for Weikangling capsules: Chemical profiling, fingerprinting combined with quantitative analysis, quantity transfer, and dissolution curve. J Pharm Biomed Anal 2021; 206:114347. [PMID: 34536823 DOI: 10.1016/j.jpba.2021.114347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/03/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022]
Abstract
Weikangling capsules (WKLCs), a Chinese patent medicine consisting of 8 Chinese drugs, have been widely used in clinic to treat gastrointestinal diseases for more than 30 years. The current "Chinese Pharmacopoeia" (2020 Edition, ChP2020) uses paeoniflorin content (≥ 1.0 mg per capsule) as the standard of quality control, but it is insufficient to evaluate the overall quality of WKLCs. An efficient and economic method for quality control is urgently needed to ensure the quality consistency and clinical effects of WKLCs. Herein, a systematic and reliable method for the rapid analysis of chemical components in WKLCs was established for the first time based on ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS). A total of 115 components covering 7 herbs in WKLCs were preliminarily identified by comparison with standard substances or literature. To evaluate the quality of 26 batches of WKLCs, a new method of fingerprinting combined with quantitative analysis was established, and 16 common peaks were selected to establish the fingerprint similarity model (similarity>0.90). Simultaneously, the contents of albiflorin, paeoniflorin, dactylorhin A, militarine, and glycyrrhizic acid were determined to be 0.82 ± 0.22, 2.09 ± 0.24, 1.15 ± 0.40, 3.73 ± 0.76 and 0.99 ± 0.20 mg/capsule, respectively. The transfer rates and dissolution curves of the five compounds were successfully detected in WKLCs, and the average transfer rates were 67.2%, 33.0%, 68.3%, 54.7%, and 33.7%, respectively. Notably, the dissolution profiles of different manufacturers presented remarkable differences in pH 1.2 hydrochloric acid solution. This method not only qualitatively identified the chemical components of Chinese patent medicines at the microlevel but also evaluated the quality consistency between batches at the macrolevel, which provided a comprehensive reference for the quality consistency of Chinese patent medicines between batches.
Collapse
Affiliation(s)
- Feng Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haoran Ding
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengyue Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
13
|
Jiao Y, Si Y, Li L, Wang C, Lin H, Liu J, Liu Y, Liu J, Li P, Li Z. Comprehensive phytochemical profiling of American ginseng in Jilin province of China based on ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4787. [PMID: 34725896 DOI: 10.1002/jms.4787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/04/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
American ginseng (AG), the underground part of Panax quinquefolium L., is composed of four morphological regions, including main root (MR), lateral root (LR), fibrous root (FR), and rhizome (RH). In the clinical, MR is the main medicinal region, other regions are rarely attention. Aiming at revealing the chemical composition of AG and making better use of AG, screening analysis and metabolomic analysis were both performed to profile MR, LR, FR, and RH. First, in the systematical screening analysis, a total of 134 compounds (including 122 shared components) with various structural patterns were identified and tentatively characterized. The results indicated that the phytochemicals with various structural types were rich in MR, LR, FR, and RH. Second, 6, 4, 8, and 11 chemical markers were identified from MR, LR, FR, and RH, respectively. Seven triterpene saponins (protopanaxatriol, quinquenoside R1 , ginsenoside Rc, Rk1 , Rg1 , Re, and vinaginsenoside R1 ) might be used for rapid differentiation of four morphological regions. This comprehensive profile study of metabolites illustrated the similarities and differences of phytochemicals in four morphological regions of AG. The results could be used for the quality control of AG and furnish a basis for the further development and utilization of AG sources.
Collapse
Affiliation(s)
- Yufeng Jiao
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yu Si
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Le Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Hongqiang Lin
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Junli Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yunhe Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Research Center of Natural Drug, Jilin University, Changchun, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Research Center of Natural Drug, Jilin University, Changchun, China
| | - Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
14
|
Li L, Wang D, Sun C, Li Y, Lu H, Wang X. Comprehensive Lipidome and Metabolome Profiling Investigations of Panax quinquefolius and Application in Different Growing Regions Using Liquid Chromatography Coupled with Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6710-6719. [PMID: 34080852 DOI: 10.1021/acs.jafc.1c02241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Panax quinquefolius is one of the most recognized ginseng species. In this study, lipidome and metabolome extraction methods for P. quinquefolius were optimized with methanol/methyl-tert-butyl ether/water (0.3 mg/1 μL/6 μL/8 μL). A total of 497 metabolites were identified, including 365 lipids and 76 ginsenosides. Comprehensive lipidome profiling was first performed for P. quinquefolius, in which 32.6% glycerophospholipids, 39.5% glycerolipids, 9.3% sphingolipids, 3.3% sterol lipids, and 15.3% fatty acyls were identified. Orthogonal partial least squares discrimination analysis (OPLS-DA) showed obvious metabolomic differences in two growing regions of China. In the northern growing region, the ratio of bilayer- to nonbilayer-forming membrane lipids (PCs/PEs, DGDGs/MGDGs), the degree of unsaturation of acyl chains in galactolipids, and the content of membrane glycerophospholipids were increased. In the eastern growing region, the synthesis of storage lipids, ceramides, and fatty acyls was increased, and secondary metabolism was enhanced with 24 differential ginsenosides found. The investigation deepens the understanding of metabolic regulation mechanisms of P. quinquefolius.
Collapse
Affiliation(s)
- Lili Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Daijie Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Chenglong Sun
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yue Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Heng Lu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
15
|
He Y, Pan L, Yang T, Wang W, Li C, Chen B, Shen Y. Metabolomic and Confocal Laser Scanning Microscopy (CLSM) Analyses Reveal the Important Function of Flavonoids in Amygdalus pedunculata Pall Leaves With Temporal Changes. FRONTIERS IN PLANT SCIENCE 2021; 12:648277. [PMID: 34093611 PMCID: PMC8170035 DOI: 10.3389/fpls.2021.648277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Amygdalus pedunculata Pall [Rosaceae, Prunus, Prunus pedunculata (Pall.) Maxim.] belongs to the Rosaceae family and is resistant to cold and drought. Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry and metabolomics were used to track the changes in bioactive metabolites during several stages of Amygdalus pedunculata Pall growth. A total of 827 different metabolites were detected, including 169 flavonoids, 68 organic acids, 35 terpenoids and 2 tannins. Flavonoid biosynthesis and flavone and flavonol biosynthesis were the main synthetic sources of flavonoids. Quercetin, isoquercitrin, and epicatechin as biomarkers related to growth and development were found. Quercetin connects the biosynthesis of flavonoids and the biosynthesis of flavones and flavonols. The contents of isoquercitrin and epicatechin increased uniformly during the whole growth process from the flowering stage to the fruit ripening stage, indicating that play key roles in the fruit growth and ripening stages of this plant. The tissue location and quantitative analysis of flavonoids in leaves at different stages were performed by confocal laser scanning microscopy. The flavonoids were mainly distributed in the palisade tissue and spongy tissue, indicating the need for protection of these sensitive tissues in particular. Through comprehensive and systematic analysis, the temporal distribution of flavonoids in the process of their leaves growth was determined. These results clarify the important role of flavonoids in the developmental process of Amygdalus pedunculata Pall.
Collapse
Affiliation(s)
- Yueyue He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, China
| | - Lei Pan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, China
| | - Tao Yang
- Shaanxi Academy of Forestry, Xi’an, China
- Technology Research Center of Amygdalus pedunculata of State Forestry and Grassland Administration, Yulin, China
| | - Wei Wang
- Key Laboratory of Silviculture of the State Forestry Administration, The Institute of Forestry, The Chinese Academy of Forestry, Beijing, China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, China
| | - Bang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, China
| |
Collapse
|
16
|
Comprehensive Quality Evaluation of American Ginseng for Different Parts and Abnormal Trait Based on the Major Ginsenoside Contents and Morphological Characteristics. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8831080. [PMID: 33834075 PMCID: PMC8016571 DOI: 10.1155/2021/8831080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/02/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022]
Abstract
The demand for American ginseng, a famous traditional medicine and high-grade healthy food, has increased dramatically over recent years. However, only the main root is popular among consumers, whereas other parts of American ginseng are rarely available in the market. In this study, the contents of 5 major ginsenosides (Re, Rc, Rg1, Rd, and Rb1) were determined through high-performance liquid chromatography. Our study showed that all these 5 major ginsenosides are found in different parts of American ginseng plants, and the total content in different parts varied significantly in the following order: fibrous root > flower > branch root > main root > leaf > stem. Interestingly, the total content in the fibrous root was approximately 2.24 times higher than that in the main root. Further research indicated that the ginsenoside content in American ginseng with abnormal characteristics (physical deformity caused by disease and discolouration) is similar to that in the normal plant. Interestingly, a positive correlation was observed between the main root diameter and total ginsenoside content, whereas a negative correlation was observed between the main root length and total ginsenoside content. Our comprehensive study revealed that all parts of American ginseng, including the main root with abnormal characteristics, possess medicinal or economic value. Therefore, our results provide feasible evidence to further explore the potential application of American ginseng.
Collapse
|
17
|
Comprehensive Investigation on Ginsenosides in Different Parts of a Garden-Cultivated Ginseng Root and Rhizome. Molecules 2021; 26:molecules26061696. [PMID: 33803599 PMCID: PMC8003075 DOI: 10.3390/molecules26061696] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 02/04/2023] Open
Abstract
Background: Ginseng is widely used as herb or food. Different parts of ginseng have diverse usages. However, the comprehensive analysis on the ginsenosides in different parts of ginseng root is scarce. Methods: An ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) combined with UNIFI informatics platform and ultra-high-performance liquid chromatography-charged aerosol detection (UHPLC-CAD) were employed to evaluate the different parts of cultivated ginseng root. Results: 105 ginsenosides including 16 new compounds were identified or tentatively characterized. 22 potential chemical markers were identified, 20, 17, and 19 for main root (MR) and fibrous root (FR), main root (MR) and branch root (BR), and main root (MR) and rhizome (RH), respectively. The relative contents of Re, Rb1, 20(R)-Rh1, Rd, and Rf were highest in FR. The relative content of Rg1 was highest in RH. The total relative content of pharmacopoeia indicators Rg1, Re, and Rb1 was highest in FR. Conclusion: The differences among these parts were the compositions and relative contents of ginsenosides. Under our research conditions, the peak area ratio of Rg1 and Re could distinguish the MR and FR samples. Fibrous roots showed rich ingredients and high ginsenosides contents which should be further utilized.
Collapse
|
18
|
Wang Q, Xu M, Zhao L, Wang F, Li Y, Shi G, Ding Z. Transcriptome dynamics and metabolite analysis revealed the candidate genes and regulatory mechanism of ganoderic acid biosynthesis during liquid superficial-static culture of Ganoderma lucidum. Microb Biotechnol 2020; 14:600-613. [PMID: 32975886 PMCID: PMC7936306 DOI: 10.1111/1751-7915.13670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/04/2020] [Accepted: 09/03/2020] [Indexed: 02/02/2023] Open
Abstract
Ganoderic acid (GA), an important secondary metabolite of Ganoderma lucidum, exhibited many significant pharmacological activities. In this study, the biosynthetic mechanism of GAs was investigated by comparing metabolites and transcriptome dynamics during liquid superficial‐static culture (LSSC) and submerged culture (SC). LSSC was a better method to produce GA because thirteen GAs were identified from mycelia by UPLC‐QTOF‐MS, and the content of all GAs was higher in LSSC than in SC. Ergosterol was accumulated during the SC process in G. lucidum. Transcriptome dynamics analysis revealed CYP5150L8 was the key gene regulating lanosterol flux into GA biosynthesis. Other sixteen CYP450 genes were significantly higher expressed during the culture time in LSSC and could be potential candidate genes associated with the biosynthesis of different GAs. In addition, six of the ten expressed genes in ergosterol biosynthetic pathway shown upregulated at some time points in SC. These results not only provide a fundamental information of the key genes in ergosterol and GA biosynthetic pathway, but also provide directions for future elucidating the regulatory mechanisms of GAs in G. lucidum and enabling us to promote the development and utilization of LSSC at the industrial level.
Collapse
Affiliation(s)
- Qiong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Mengmeng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Youran Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
19
|
Shen Y, Cong W, Zhang AH, Meng X. Complexity of active medicinal ingredients in radix scutellariae with sodium hydrosulfite exposure. PLoS One 2020; 15:e0238927. [PMID: 32956425 PMCID: PMC7505437 DOI: 10.1371/journal.pone.0238927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Both plants and animals are living things made up of similar cells as well as organelles, and their essence of life is the same. However, plants face more environmental stress than animals and generate excessive reactive oxygen species (ROS), a group of small molecules that can harm proteins, necessitating distinctive metabolic processes. Secondary metabolites in plants are a group of chemical components that can eliminate ROS and can also exhibit medicinal properties; therefore, herbal medicines are often closely linked to the ecological significance of secondary metabolites. Why plants contain so many, not few, active medicinal ingredients is unknown. The root of Scutellaria baicalensis, a popular herbal medicine, is rich in various flavonoids with diverse structural features. Sodium hydrosulfite (Na2S2O4) can produce O˙-2 radicals and induce physical conditions under environmental stress. Using UHPLC-ESI-Q-TOF-MS/MS analysis, a total of 25 different compounds were identified in the roots of S. baicalensis between the Na2S2O4 groups and suitable conditions. Based on the results of the t-test (P<0.05) performed for the groups and ions with values of VIP ≥ 2, the most significantly different chemical markers with Na2S2O4 treatment were shikimic acid, citric acid, baicalin, wogonoside, baicalein, wogonin, 3,5,7,2',6'-pentahydroxyflavanone, 5,2',6'-trihydroxy-7,8-dimethoxy flavone, chrysin, eriodictyol, 5,8-dihydroxy-6,7 -dimethoxy flavone, skullcapflavone Ⅱ, and 5,7-dihydroxy-6,8,2',3'-tetrame thoxyflavone, and most of them were free flavonoids with many phenolic hydroxyl or methoxyl groups and characteristically high antioxidant activities. S. baicalensis roots modified their ability to eliminate ROS and maintained the equilibrium of ROS through the multitudinous biosynthesis and conversion of flavonoids, which is similar to the equilibrium established by an intricate buffer solution and perfectly explains the diversity and complexity of medicinal plant ingredients.
Collapse
Affiliation(s)
- Ying Shen
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Cong
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, China
- GAP Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ai-hua Zhang
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiangcai Meng
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, China
- * E-mail:
| |
Collapse
|
20
|
Yue J, Zuo Z, Huang H, Wang Y. Application of Identification and Evaluation Techniques for Ethnobotanical Medicinal Plant of Genus Panax: A Review. Crit Rev Anal Chem 2020; 51:373-398. [PMID: 32166968 DOI: 10.1080/10408347.2020.1736506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genus Panax, as worldwide medicinal plants, has a medical history for thousands of years. Most of the entire genus are traditional ethnobotanical medicine in China, Myanmar, Thailand, Vietnam and Laos, which have given rise to international attention and use. This paper reviewed more than 210 articles and related books on the research of Panax medicinal plants and their Chinese patent medicines published in the last 30 years. The purpose was to review and summarize the species classification, geographical distribution, and ethnic minorities medicinal records of the genus Panax, and further to review the analytical tools and data analysis methods for the authentication and quality assessment of Panax medicinal materials and Chinese patent medicines. Five main technologies applied in the identification and evaluation of Panax have been introduced and summarized. Chromatography was the most widely used one. Further research and development of molecular identification technology had the potential to become a mainstream identification technology. In addition, some novel, controversial, and worthy methods including electronic noses, electronic eyes, and DNA barcoding were also introduced. At the same time, more than 80% of the researches were carried out by a combination of chemometric pattern-recognition technologies and multi-analysis technologies. All the technologies and methods applied can provide strong support and guarantee for the identification and evaluation of genus Panax, and also conduce to excellent reference value for the development and in-depth research of new technologies in Panax.
Collapse
Affiliation(s)
- Jiaqi Yue
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.,College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhitian Zuo
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Hengyu Huang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
21
|
Zhao FJ, Zhang ZB, Ma N, Teng X, Cai ZC, Liu MX. Untargeted metabolomics using liquid chromatography coupled with mass spectrometry for rapid discovery of metabolite biomarkers to reveal therapeutic effects of Psoralea corylifolia seeds against osteoporosis. RSC Adv 2019; 9:35429-35442. [PMID: 35528068 PMCID: PMC9074708 DOI: 10.1039/c9ra07382e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/23/2019] [Indexed: 11/24/2022] Open
Abstract
Liquid chromatography coupled with mass spectrometry has been used as metabolomics profiling tool to discover and identify the metabolites in metabolic diseases. Osteoporosis (OP) syndrome is a chronic metabolic disease characterized by bone mass reduction and changes in bone microstructure. Psoralea corylifolia Linn. seeds (PCS) have a therapeutic effect on osteoporosis, but their action mechanism and therapeutic target are still unclear. This study aims to explore the metabolic changes of the urine profile in glucocorticoid-induced OP model rats and the therapeutic effect of PCS. High-throughput metabolomics based on the liquid chromatography coupled with mass spectrometry quadrupole time-of-flight mass spectrometry and multivariate data analysis were used to analyze the urine metabolites. The results showed that has an obvious separation between model and control groups. OPLS-DA was used to further analyze and discover substances that contributed to the separation. 42 potential biomarkers and 12 related metabolic pathways were identified in combination with network databases. After the intervention of PCS, 24 biomarkers were significantly regulated, mainly with glycone, serine and threonine metabolism, glutathione metabolism and purine metabolism and other metabolic pathways are related and discovered. This study has proved that PCS has therapeutic effect against OP by regulating that metabolic pathways disturbed in the OP. It provided a basis for the research and future development of new drugs for OP treatment. Liquid chromatography coupled with mass spectrometry has been used as metabolomics profiling tool to discover and identify the metabolites in metabolic diseases.![]()
Collapse
Affiliation(s)
- Fu-Jiang Zhao
- Department of Orthopaedics, Taizhou Central Hospital, Taizhou University Hospital Taizhou 318000 China +86-18767620975 +86-18767620975
| | - Zhao-Bo Zhang
- Department of Orthopaedics, Taizhou Central Hospital, Taizhou University Hospital Taizhou 318000 China +86-18767620975 +86-18767620975
| | - Ning Ma
- Department of Orthopaedics, Taizhou Central Hospital, Taizhou University Hospital Taizhou 318000 China +86-18767620975 +86-18767620975
| | - Xiao Teng
- Department of Orthopaedics, Taizhou Central Hospital, Taizhou University Hospital Taizhou 318000 China +86-18767620975 +86-18767620975
| | - Zhen-Cheng Cai
- Department of Orthopaedics, Taizhou Central Hospital, Taizhou University Hospital Taizhou 318000 China +86-18767620975 +86-18767620975
| | - Ming-Xi Liu
- Department of Orthopaedics, Taizhou Central Hospital, Taizhou University Hospital Taizhou 318000 China +86-18767620975 +86-18767620975
| |
Collapse
|
22
|
Wang M, Wang Q, Yang Q, Yan X, Feng S, Wang Z. Cavernous transformation of the portal vein. Molecules 1988; 25:molecules25010160. [PMID: 31906109 PMCID: PMC6983063 DOI: 10.3390/molecules25010160] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 12/28/2022] Open
Abstract
Roots of Morinda officinalis and Morinda citrifolia have been interchangeably used in traditional Chinese medicine. However, there is no experimental evidence to support this. In this study, a ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS)-based approach and a multivariate statistical analysis (MSA) were adopted to compare the difference in the chemical compounds present in the root extract of M. officinalis and M. citrifolia. There were 26 anthraquinones, 15 triterpenes, and 8 iridoid glycosides identified in the root extracts of M. officinalis, 30 anthraquinones, 1 triterpene, and 8 iridoid glycosides in the root extracts of M. citrifolia. Among these, 25 compounds presented in both plants. In addition, a principal component analysis (PCA) showed that these two herbs could be separated clearly. Furthermore, an orthogonal partial least squares-discriminant analysis (OPLS-DA) found 9 components that could be used as chemical markers to discrimination the root extracts of M. officinalis and M. citrifolia. In addition, the results of a Cell Counting Kit 8 (CCK-8) assay and cell colony formation assay indicated that methanol root extracts of M. officinalis and M. citrifolia showed no cell cytotoxicity to normal cells, even promoted the proliferation of normal liver cells. To our knowledge, this is the first time that the differences between the root extracts of M. officinalis and M. citrifolia (Hainan province) have been observed systematically at the chemistry level.
Collapse
Affiliation(s)
- Maoyuan Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Haikou 571101, China; (M.W.); (Q.W.); (Q.Y.); (X.Y.)
- Tropical Wild Plant Gene Resource, Ministry of Agriculture, Danzhou 571737, China
| | - Qinglong Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Haikou 571101, China; (M.W.); (Q.W.); (Q.Y.); (X.Y.)
- Tropical Wild Plant Gene Resource, Ministry of Agriculture, Danzhou 571737, China
| | - Qing Yang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Haikou 571101, China; (M.W.); (Q.W.); (Q.Y.); (X.Y.)
- Tropical Wild Plant Gene Resource, Ministry of Agriculture, Danzhou 571737, China
| | - Xiaoxia Yan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Haikou 571101, China; (M.W.); (Q.W.); (Q.Y.); (X.Y.)
- Tropical Wild Plant Gene Resource, Ministry of Agriculture, Danzhou 571737, China
| | - Shixiu Feng
- Key Laboratory of South Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China
- Correspondence: (S.F.); (Z.W.); Fax: +86-755-25702889 (S.F.); +86-898-233006150 (Z.W.)
| | - Zhunian Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Haikou 571101, China; (M.W.); (Q.W.); (Q.Y.); (X.Y.)
- Tropical Wild Plant Gene Resource, Ministry of Agriculture, Danzhou 571737, China
- Correspondence: (S.F.); (Z.W.); Fax: +86-755-25702889 (S.F.); +86-898-233006150 (Z.W.)
| |
Collapse
|