1
|
Yamamoto K, Uzaki M, Takahashi K, Mimura T. Current status of MSI research in Japan to measure the localization of natural products in plants. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102651. [PMID: 39427512 DOI: 10.1016/j.pbi.2024.102651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024]
Abstract
To understand biological functions in organisms, it is important to investigate what is happening in different locations in cells and tissues. The conventional approach is to extract compounds from whole tissue, and then to measure their concentrations or other characteristics using equipment tailored to the different molecules. Recent advances in mass spectrometry have made it possible to measure trace amounts of compounds. Mass spectrometry imaging (MSI), which uses positional information and mass spectrometry data to show where and how much of each compound is present in tissues, has been in the spotlight. Improvements in MSI over the past few decades have enabled its use for visualizing the localization of small molecules including drugs, lipids, and many other compounds in a range of organisms. MSI has also been used to clarify the localization of natural products in plant tissues. This review summarizes the recent research related to MSI technology in Japan.
Collapse
Affiliation(s)
- Kotaro Yamamoto
- School of Science, Yokohama City University, Kanagawa, Japan.
| | - Mai Uzaki
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Katsutoshi Takahashi
- National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo, Japan
| | - Tetsuro Mimura
- Faculty of Bioenvironmental Sciences, Kyoto University of Advanced Science, Kyoto, Japan.
| |
Collapse
|
2
|
Zhang G, Zheng H, Wang X, Han S, Liu W, Sun C, Hu Q, Ma C. Flexible substrate-based mass spectrometry platform for in situ non-destructive molecular imaging of living plants. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39364753 DOI: 10.1111/pbi.14482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 09/23/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
Monitoring and localizing molecules on living plants is critical for understanding their growth, development and disease. However, current techniques for molecular imaging of living plants often lack spatial information or require tedious pre-labelling. Here, we proposed a novel molecular imaging platform that combines sliver nanowire-doped Ti3C2 MXene (Ag NWs@MXene) flexible film substrate with laser desorption/ionization mass spectrometry imaging (AMF-LDI-MSI) to study the spatial distribution of biomolecules on the surface of living plants. This platform overcomes the MSI challenges posed by difficult-to-slice plant tissues (e.g., tough or water-rich roots and fragile flowers) and enables precisely transfer and visualize the molecule. Comparisons of the measurement results to those from matrix-assisted LDI-MSI (MALDI-MSI) technology demonstrate the accuracy and reliability of the platform. Biocompatibility evaluations indicated that the platform without observable adverse effects on the health of living plants. The distribution of growth and disease-associated signalling molecules, such as choline, organic acids and carbohydrates, can be in situ non-destructively detected on the surfaces of living plants, which is important for tracking the health of plants and their diseased areas. AMF-LDI-MSI platform can serve as a promising tool for label-free, in situ and non-destructive monitoring of functional biomolecules and plant growth from a spatial perspective.
Collapse
Affiliation(s)
- Guanhua Zhang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Han Zheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shuxin Han
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wei Liu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chenglong Sun
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qiongzheng Hu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chunxia Ma
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Zhao M, Che Y, Gao Y, Zhang X. Application of multi-omics in the study of traditional Chinese medicine. Front Pharmacol 2024; 15:1431862. [PMID: 39309011 PMCID: PMC11412821 DOI: 10.3389/fphar.2024.1431862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Traditional Chinese medicine (TCM) is playing an increasingly important role in disease treatment due to the advantages of multi-target, multi-pathway mechanisms, low adverse reactions and cost-effectiveness. However, the complexity of TCM system poses challenges for research. In recent years, there has been a surge in the application of multi-omics integrated research to explore the active components and treatment mechanisms of TCM from various perspectives, which aids in advancing TCM's integration into clinical practice and holds immense importance in promoting modernization. In this review, we discuss the application of proteomics, metabolomics, and mass spectrometry imaging in the study of composition, quality evaluation, target identification, and mechanism of action of TCM based on existing literature. We focus on the workflows and applications of multi-omics based on mass spectrometry in the research of TCM. Additionally, potential research ideas for future exploration in TCM are outlined. Overall, we emphasize the advantages and prospects of multi-omics based on mass spectrometry in the study of the substance basis and mechanism of action of TCM. This synthesis of methodologies holds promise for enhancing our understanding of TCM and driving its further integration into contemporary medical practices.
Collapse
Affiliation(s)
| | | | | | - Xiangyang Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
4
|
Lin J, Yang S, Ji J, Xiang P, Wu L, Chen H. Natural or artificial: An example of topographic spatial distribution analysis of mescaline in cactus plants by matrix-assisted laser desorption/ionization mass spectrometry imaging. FRONTIERS IN PLANT SCIENCE 2023; 14:1066595. [PMID: 36844095 PMCID: PMC9950628 DOI: 10.3389/fpls.2023.1066595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Differentiating whether plant products are natural or artificial is of great importance in many practical fields, including forensic science, food safety, cosmetics, and fast-moving consumer goods. Information about the topographic distribution of compounds is an important criterion for answering this question. However, of equal importance is the likelihood that topographic spatial distribution information may provide important and valuable information for molecular mechanism study. METHODS In this study, we took mescaline, a substance with hallucinogenic properties in cacti of the species Trichocereus pachanoi and Lophophora williamsii, as an example to characterize the spatial distribution of mescaline in plants and flowers by liquid chromatograph-mass spectrometry-matrix-assisted laser desorption/ionization mass spectrometry imaging at the macroscopic, tissue structure, and even cellular levels. RESULTS According to our results, the distribution of mescaline in natural plant was concentrated on the active meristems, epidermal tissues, and protruding parts of Trichocereus pachanoi and Lophophora williamsii, while artificially spiked Lophophora diffusa products showed no such difference in their topographic spatial distribution. DISCUSSION This difference in distribution pattern allowed us to distinguish between flowers that could synthesize mescaline on their own and those that had been artificially spiked with mescaline. The interesting topographic spatial distribution results, such as the overlap of the mescaline distribution map and micrographs of the vascular bundles, were consistent with the synthesis and transport theory of mescaline, indicating the potential for applying matrix-assisted laser desorption/ionization mass spectrometry imaging in botanical research.
Collapse
|
5
|
Hou JJ, Zhang ZJ, Wu WY, He QQ, Zhang TQ, Liu YW, Wang ZJ, Gao L, Long HL, Lei M, Wu WY, Guo DA. Mass spectrometry imaging: new eyes on natural products for drug research and development. Acta Pharmacol Sin 2022; 43:3096-3111. [PMID: 36229602 PMCID: PMC9712638 DOI: 10.1038/s41401-022-00990-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Natural products (NPs) and their structural analogs represent a major source of novel drug development for disease prevention and treatment. The development of new drugs from NPs includes two crucial aspects. One is the discovery of NPs from medicinal plants/microorganisms, and the other is the evaluation of the NPs in vivo at various physiological and pathological states. The heterogeneous spatial distribution of NPs in medicinal plants/microorganisms or in vivo can provide valuable information for drug development. However, few molecular imaging technologies can detect thousands of compounds simultaneously on a label-free basis. Over the last two decades, mass spectrometry imaging (MSI) methods have progressively improved and diversified, thereby allowing for the development of various applications of NPs in plants/microorganisms and in vivo NP research. Because MSI allows for the spatial mapping of the production and distribution of numerous molecules in situ without labeling, it provides a visualization tool for NP research. Therefore, we have focused this mini-review on summarizing the applications of MSI technology in discovering NPs from medicinal plants and evaluating NPs in preclinical studies from the perspective of new drug research and development (R&D). Additionally, we briefly reviewed the factors that should be carefully considered to obtain the desired MSI results. Finally, the future development of MSI in new drug R&D is proposed.
Collapse
Affiliation(s)
- Jin-Jun Hou
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Jia Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Yong Wu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Qing-Qing He
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Teng-Qian Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Wen Liu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhao-Jun Wang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Gao
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua-Li Long
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Lei
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan-Ying Wu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - De-An Guo
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Huang L, Nie L, Dai Z, Dong J, Jia X, Yang X, Yao L, Ma SC. The application of mass spectrometry imaging in traditional Chinese medicine: a review. Chin Med 2022; 17:35. [PMID: 35248086 PMCID: PMC8898510 DOI: 10.1186/s13020-022-00586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/22/2022] [Indexed: 08/26/2023] Open
Abstract
AbstractMass spectrometry imaging is a frontier technique which connects classical mass spectrometry with ion imaging. Various types of chemicals could be visualized in their native tissues using mass spectrometry imaging. Up to now, the most commonly applied mass spectrometry imaging techniques are matrix assisted laser desorption ionization mass spectrometry imaging, desorption electrospray ionization mass spectrometry imaging and secondary ion mass spectrometry imaging. This review gives an introduction to the principles, development and applications of commonly applied mass spectrometry imaging techniques, and then illustrates the application of mass spectrometry imaging in the investigation of traditional Chinese medicine. Recently, mass spectrometry imaging has been adopted to explore the spatial distribution of endogenous metabolites in traditional Chinese medicine. Data collected from mass spectrometry imaging can be further utilized to search for marker components of traditional Chinese medicine, discover new compounds from traditional herbs, and differentiate between medicinal plants that are similar in botanical features. Moreover, mass spectrometry imaging also plays a role in revealing the pharmacological and toxicological mechanisms of traditional Chinese medicine.
Collapse
|
7
|
History of hair analysis by mass spectrometry imaging. J Biosci Bioeng 2021; 133:89-97. [PMID: 34840067 DOI: 10.1016/j.jbiosc.2021.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 11/22/2022]
Abstract
In conventional forensic science, blood and urine have been used for drug testing. However, hair has recently attracted attention as a new source of biological information in this milieu. Drugs and biomolecules taken up by the hair from the capillaries of the scalp are retained in the hair without being degraded by enzymes, migrating toward the tip of the hair as the hair grows at a constant rate. As a result, drug residues are stored in the hair in chronological order. In recent years, mass spectrometry imaging (MSI) has been developed to visualize the history of drug use in hair samples, making use of this unique property. Advances in this drug testing technique are expected to create a powerful deterrent for drug abuse and doping. In this paper, we introduce the history of hair research using MSI and the evolution of instruments, matrices, and methods.
Collapse
|
8
|
Nie LX, Dong J, Huang LY, Qian XY, Lian CJ, Kang S, Dai Z, Ma SC. Microscopic Mass Spectrometry Imaging Reveals the Distribution of Phytochemicals in the Dried Root of Isatis tinctoria. Front Pharmacol 2021; 12:685575. [PMID: 34267659 PMCID: PMC8276017 DOI: 10.3389/fphar.2021.685575] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/25/2021] [Indexed: 01/05/2023] Open
Abstract
The dried root of Isatis tinctoria L. (Brassicaceae) is one of the most popular traditional Chinese medicines with well-recognized prevention and treatment effects against viral infections. Above 300 components have been isolated from this herb, but their spatial distribution in the root tissue remains unknown. In recent years, mass spectrometry imaging (MSI) has become a booming technology for capturing the spatial accumulation and localization of molecules in fresh plants, animal, or human tissues. However, few studies were conducted on the dried herbal materials due to the obstacles in cryosectioning. In this study, distribution of phytochemicals in the dried root of Isatis tinctoria was revealed by microscopic mass spectrometry imaging, with application of atmospheric pressure-matrix-assisted laser desorption/ionization (AP-MALDI) and ion trap-time-of-flight mass spectrometry (IT-TOF/MS). After optimization of the slice preparation and matrix application, 118 ions were identified without extraction and isolation, and the locations of some metabolites in the dried root of Isatis tinctoria were comprehensively visualized for the first time. Combining with partial least square (PLS) regression, samples collected from four habitats were differentiated unambiguously based on their mass spectrometry imaging.
Collapse
Affiliation(s)
- Li-Xing Nie
- Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,National Institutes for Food and Drug Control, National Medical Products Administration, Beijing, China
| | - Jing Dong
- Shimadzu China Innovation Center, Beijing, China
| | - Lie-Yan Huang
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing, China
| | - Xiu-Yu Qian
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing, China
| | - Chao-Jie Lian
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing, China
| | - Shuai Kang
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing, China.,College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhong Dai
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing, China
| | - Shuang-Cheng Ma
- Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,National Institutes for Food and Drug Control, National Medical Products Administration, Beijing, China
| |
Collapse
|
9
|
Liu B, Meng X, Li K, Guo J, Cai Z. Visualization of lipids in cottonseeds by matrix-assisted laser desorption/ionization mass spectrometry imaging. Talanta 2021; 221:121614. [DOI: 10.1016/j.talanta.2020.121614] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/31/2022]
|
10
|
Putri Wisman A, Tamada Y, Hirohata S, Fukusaki E, Shimma S. Metabolic Visualization Reveals the Distinct Distribution of Sugars and Amino Acids in Rice Koji. Mass Spectrom (Tokyo) 2020; 9:A0089. [PMID: 32944490 PMCID: PMC7471875 DOI: 10.5702/massspectrometry.a0089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/13/2020] [Indexed: 11/23/2022] Open
Abstract
The compounds inside rice koji have been thoroughly investigated as an essential material in making many food-related products, including sake. However, these studies focused only on quantitative aspects, leaving features that can still be uncovered if seen from a new perspective. Visualization of the metabolites inside rice koji may as well be the new angle needed to retrieve more information regarding rice koji making. Here we utilized mass spectrometry imaging (MSI) to visualize the distribution of sugars, sugar alcohols, and amino acids inside rice koji. Imaging results revealed that several sugars alcohols and amino acids were shown to have characteristic distribution near the edges or surface of rice koji. Furthermore, the distribution appears to be correlated with the different structure of rice koji. This study is the first report of using MSI to visualize sugars, sugar alcohols, and amino acids in rice koji.
Collapse
Affiliation(s)
- Adinda Putri Wisman
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | | | | | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University.,Osaka University Shimadzu Analytical Innovation Laboratory, Osaka University
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University.,Osaka University Shimadzu Analytical Innovation Laboratory, Osaka University
| |
Collapse
|