1
|
Bai G, Yuan H, Cao M, Jiang X, Shi B, Bin P. Glyphosate-Based Herbicide Stress During Pregnancy Impairs Intestinal Development in Newborn Piglets by Modifying DNA Methylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2483-2498. [PMID: 39804095 DOI: 10.1021/acs.jafc.4c07679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Glyphosate-based herbicide (GBH), a feed contaminant, has been proven to impair the growth and development of humans and animals. Previous research has revealed that maternal toxin exposure during pregnancy could cause permanent fetal changes by epigenetic modulation. However, there was insufficient evidence of the involvement of DNA methylation in maternal GBH exposure-induced intestinal health of offspring. Here, we established pregnant sow exposure models to investigate the effects of GBH on the intestinal DNA methylation of newborn piglets. The results showed gestational exposure to GBH compromises the intestinal function of newborn piglets as well as decreases the mRNA expression of Dnmt1 and Dnmt3b jejunum. Further RRBS DNA methylation analysis revealed genomic hypomethylation in jejunum, and the differentially methylated regions were enriched in the pathways of intestinal development and food digestion and the related GO terms. Additionally, integrative analysis of methylome and transcriptome identified 23 genes showing inverse correlations and indicated the underlying injury mechanisms upon maternal GBH. These findings provide new insights and fundamental knowledge into the possible involvement of DNA methylation in the intestinal injury of offspring induced by maternal GBH exposure during pregnancy, which drives manufacturers to develop low-toxicity herbicide to ensure food safety and human health.
Collapse
Affiliation(s)
- Guangdong Bai
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hua Yuan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Mingming Cao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xu Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Peng Bin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Wang M, Li G, Zhou L, Hao Y, Wang L, Mao X, Zhang G, Zhao C. Design, synthesis and bioactivity of a new class of antifungal amino acid-directed phthalide compounds. PEST MANAGEMENT SCIENCE 2024; 80:3182-3193. [PMID: 38358013 DOI: 10.1002/ps.8028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Peanut southern blight disease, caused by Sclerotium rolfsii, is a destructive soil-borne fungal disease. The current control measures, which mainly employ succinate dehydrogenase inhibitors, are prone to resistance and toxicity to non-target organisms. As a result, it is necessary to explore the potential of eco-friendly fungicides for this disease. RESULTS Fourteen novel phthalide compounds incorporating amino acid moieties were designed and synthesized. The in vitro activity of analog A1 [half maximal effective concentration (EC50) = 332.21 mg L-1] was slightly lower than that of polyoxin (EC50 = 284.32 mg L-1). It was observed that on the seventh day, the curative activity of A1 at a concentration of 600.00 mg L-1 was 57.75%, while the curative activity of polyoxin at a concentration of 300.00 mg L-1 was 42.55%. These results suggested that our compound exhibited in vivo activity. Peanut plants treated with A1 showed significant agronomic improvements compared to the untreated control. Several compounds in this series exhibited superior root absorption and conduction in comparison to the endothermic fungicide thifluzamide. The growth promotion and absorption-conduction experiments demonstrated the reason for the superior in vivo activity of the target compound. Cytotoxic assays have demonstrated that this series of targeted compounds exhibit low toxicity levels toward human lo2 liver cells. CONCLUSION Our results provide a new strategy for the design and synthesis of novel green compounds. Furthermore, the target compound A1 can serve as a lead for further development of green fungicides. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meizi Wang
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Guangyao Li
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Lin Zhou
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Youwu Hao
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Longfei Wang
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xuewei Mao
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Guoyan Zhang
- Plant Protection and Quarantine Station of Henan Province, Zhengzhou, China
| | - Chenxiang Zhao
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
Yang X, Guo C, Yu L, Lv Z, Li S, Zhang Z. Dendrobium officinale polysaccharide alleviates thiacloprid-induced kidney injury in quails via activating the Nrf2/HO-1 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2655-2666. [PMID: 38224485 DOI: 10.1002/tox.24137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Thiacloprid (THI) is a neonicotinoid insecticide, and its wide-ranging use has contributed to severe environmental and health problems. Dendrobium officinale polysaccharide (DOP) possesses multiple biological activities such as antioxidant and antiapoptosis effect. Although present research has shown that THI causes kidney injury, the exact molecular mechanism and treatment of THI-induced kidney injury remain unclear. The study aimed to investigate if DOP could alleviate THI-induced kidney injury and identify the potential molecular mechanism in quails. In this study, Japanese quails received DOP (200 mg/kg) daily with or without THI (4 mg/kg) exposure for 42 days. Our results showed that DOP improved hematological changes, biochemical indexes, and nephric histopathological changes induced by THI. Meanwhile, THI exposure caused oxidative stress, apoptosis, and autophagy. Furthermore, THI and DOP cotreatment significantly activated the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) pathway, restored antioxidant enzyme activity, and reduced apoptosis and autophagy in quail kidneys. In summary, our study demonstrated that DOP mitigated THI-mediated kidney injury was associated with oxidative stress, apoptosis, and autophagy via activation of the Nrf2/HO-1 signaling pathway in quails.
Collapse
Affiliation(s)
- Xu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Changming Guo
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lu Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
4
|
Wu M, Bian J, Han S, Zhang C, Xu W, Tao L, Li Z, Zhang Y. Characterization of hepatotoxic effects induced by pyraclostrobin in human HepG2 cells and zebrafish larvae. CHEMOSPHERE 2023; 340:139732. [PMID: 37549743 DOI: 10.1016/j.chemosphere.2023.139732] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/16/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Pyraclostrobin is a highly effective and broad-spectrum strobilurin fungicide. With the widespread use of pyraclostrobin to prevent and control crop diseases, its environmental pressure and potential safety risks to humans have attracted much attention. Herein, the toxicological risks of pyraclostrobin toward HepG2 cells and the mechanisms of intoxication in vitro were investigated. The liver toxicity of pyraclostrobin in zebrafish larvae was also evaluated. It was found that pyraclostrobin induced DNA damage and reactive oxygen species generation in HepG2 cells, indicating the potential genotoxicity of pyraclostrobin. The results of fluorescent staining experiments and the expression of cytochrome c, Bcl-2 and Bax demonstrated that pyraclostrobin induced mitochondrial dysfunction, resulting in cell apoptosis. Monodansylcadaverine staining and autophagy marker-related proteins LC3, p62, Beclin-1 protein expression showed that pyraclostrobin promoted cell autophagy. Furthermore, immunoblotting analysis suggested that pyraclostrobin induced autophagy accompanied with activation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/mTOR signaling pathway. Visualization of zebrafish liver and oil red staining indicated that pyraclostrobin could induce liver degeneration and liver steatosis in zebrafish. Collectively, these results help to better understand the hepatotoxicity of pyraclostrobin and provide a scientific basis for its safe applications and risk control.
Collapse
Affiliation(s)
- Mengqi Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Jinhao Bian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Shuang Han
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, United States.
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
5
|
Wang X, Wang J, Zhang P, Zhang C, Wang W, Wu M, Xu W, Tao L, Li Z, Zhang Y. Cytotoxicity and Autophagy Induced by Ivermectin via AMPK/mTOR Signaling Pathway in RAW264.7 Cells. Molecules 2023; 28:molecules28052201. [PMID: 36903447 PMCID: PMC10005495 DOI: 10.3390/molecules28052201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023] Open
Abstract
The widespread and excessive use of ivermectin (IVM) will not only cause serious environmental pollution, but will also affect metabolism of humans and other mammals that are exposed. IVM has the characteristics of being widely distributed and slowly metabolized, which will cause potential toxicity to the body. We focused on the metabolic pathway and mechanism of toxicity of IVM on RAW264.7 cells. Colony formation and LDH detection assay showed that IVM significantly inhibited the proliferation of and induced cytotoxicity in RAW264.7 cells. Intracellular biochemical analysis using Western blotting assay showed that LC3-B and Beclin-1 were upregulated and p62 was down-regulated. The combination of confocal fluorescence, calcein-AM/CoCl2, and fluorescence probe results showed that IVM could induce the opening of the mitochondrial membrane permeability transition pore, reduce mitochondrial content, and increase lysosome content. In addition, we focused on induction of IVM in the autophagy signal pathway. The Western blotting results showed that IVM increased expression of p-AMPK and decreased p-mTOR and p-S6K expression in protein levels, indicating that IVM activated the AMPK/mTOR signaling pathway. Therefore, IVM may inhibit cell proliferation by inducing cell cycle arrest and autophagy.
Collapse
Affiliation(s)
- Xiang Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Wang
- Department of Imaging, Weifang Hospital of Traditional Chinese Medicine, Shandong 261041, China
| | - Ping Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Weiguo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mengqi Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Correspondence:
| |
Collapse
|
6
|
Bai G, Zhou R, Jiang X, Zou Y, Shi B. Glyphosate-based herbicides induces autophagy in IPEC-J2 cells and the intervention of N-acetylcysteine. ENVIRONMENTAL TOXICOLOGY 2022; 37:1878-1890. [PMID: 35388968 DOI: 10.1002/tox.23534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the most widely used pesticide in the world, and its extensive use has increased pressures on environmental safety and potential human and livestock health risks. This study investigated the effects of GBHs on antioxidant capacity, inflammatory cytokines, and autophagy of porcine intestinal epithelial cells (IPEC-J2) and its molecular mechanism. Also, the protective effects of N-acetylcysteine (NAC) against the toxicity of GBHs were evaluated. Our results showed that the activities of antioxidant enzymes (SOD, GSH-Px) were decreased by GBHs. GBHs increased inflammatory factors (IL-1β, IL-6, TNF-α) and the mRNA expression of iNOS and COX-2. GBHs induced the up-regulation of Nrf2/HO-1 pathway and the phosphorylation of IκB-α and NFκB p65, up-regulation of LC3-II/LC3-I, and down-regulation of P62, and NFκB inhibitor decreased the mRNA expression of inflammatory cytokines (IL-1β, IL-6, IL-8). Moreover, NAC reduced the cytotoxicity by suppressing ROS levels, and changed the autophagy-related proteins such as the suppression of LC3-II conversion and up-regulation of P62. Our findings unveil a novel mechanism of GBHs effects on IPEC-J2 cells and NAC can reverse cytotoxicity to some extent.
Collapse
Affiliation(s)
- Guangdong Bai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Ruiying Zhou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xu Jiang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yingbin Zou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
7
|
Bhardwaj JK, Mittal M, Saraf P, Sharma S. Ameliorative potential of vitamin C and E against Roundup-glyphosate induced genotoxicity triggering apoptosis in caprine granulosa cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:246-254. [PMID: 35770910 DOI: 10.1002/em.22497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The present study was aimed to investigate the genotoxic and apoptotic effects of glyphosate (GLP) in Roundup formulation along with mitigation of two potent antioxidants that is, vitamin C and E in caprine granulosa cells in vitro. The entire work was done in a dose and time dependent manner where different concentrations of GLP (0.1, 2.0, and 4.0 mg/ml) in Roundup and antioxidants (0.5 and 1.0 mM) were employed to culture of granulosa cells for exposure durations of 24, 48, and 72 h. Analysis of GLP-induced geno-toxicity was accomplished by using single cell gel electrophoresis (comet assay) assay. Results have shown increased incidences of DNA fragmentation, evidenced by presence of different types of comets (Type 1-Type 4) in Roundup-GLP- exposed groups in contrast to the control group (Type 0 comet). However, mitigation by both vitamin C and E was significant (p < .05) in combating the GLP-induced genotoxicity in granulosa cells in a concentration- and time-dependent manner. The results of our study provide a clear indication of the ameliorative actions of vitamin C and E against Roundup-GLP-induced genotoxicity that instigate apoptosis in ovarian granulosa cells of caprine.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Meenu Mittal
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Priyanka Saraf
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Sanjeev Sharma
- Department of Library and Information Science, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
8
|
Wang X, Lu Q, Guo J, Ares I, Martínez M, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Oxidative Stress and Metabolism: A Mechanistic Insight for Glyphosate Toxicology. Annu Rev Pharmacol Toxicol 2022; 62:617-639. [PMID: 34990202 DOI: 10.1146/annurev-pharmtox-020821-111552] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glyphosate (GLYP) is a widely used pesticide; it is considered to be a safe herbicide for animals and humans because it targets 5-enolpyruvylshikimate-3-phosphate synthase. However, there has been increasing evidence that GLYP causes varying degrees of toxicity. Moreover, oxidative stress and metabolism are highly correlated with toxicity. This review provides a comprehensive introduction to the toxicity of GLYP and, for the first time, systematically summarizes the toxicity mechanism of GLYP from the perspective of oxidative stress, including GLYP-mediated oxidative damage, changes in antioxidant status, altered signaling pathways, and the regulation of oxidative stress by exogenous substances. In addition, the metabolism of GLYP is discussed, including metabolites,metabolic pathways, metabolic enzymes, and the toxicity of metabolites. This review provides new ideas for the toxicity mechanism of GLYP and proposes effective strategies for reducing its toxicity.
Collapse
Affiliation(s)
- Xiaojing Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China;
| | - Qirong Lu
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China;
| | - Jingchao Guo
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China;
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, and Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain;
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, and Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain;
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, and Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain;
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China;
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, and Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain;
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei 430023, China
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, and Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain;
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, and Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain;
| |
Collapse
|
9
|
Yang B, Liu Y, Li Y, Zhu S, Li Y, Yi J, Ouyang Z, Liu B, Mehmood K, Hussain R, Pan J, Hu L, Tang Z, Wang G, Li Y, Zhang H. Exposure to the herbicide butachlor activates hepatic stress signals and disturbs lipid metabolism in mice. CHEMOSPHERE 2021; 283:131226. [PMID: 34146870 DOI: 10.1016/j.chemosphere.2021.131226] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Butachlor is a systemic herbicide widely applied on wheat, rice, beans, and different other crops, and is frequently detected in groundwater, surface water, and soil. Therefore, it is necessary to investigate the potential adverse health risks and the underlying mechanisms of hepatotoxicity caused by exposure to butachlor in invertebrates, other nontarget animals, and public health. For this reason, a total of 20 mice were obtained and randomly divided into two groups. The experimental mice in one group were exposed to butachlor (8 mg/kg) and the mice in control group received normal saline. The liver tissues were obtained from each mice at day 21 of the trial. Results indicated that exposure to butachlor induced hepatotoxicity in terms of swelling of hepatocyte, disorders in the arrangement of hepatic cells, increased concentrations of different serum enzymes such as alkaline phosphate (ALP) and aspartate aminotransferase (AST). The results on the mechanisms of liver toxicity indicated that butachlor induced overexpression of Apaf-1, Bax, Caspase-3, Caspase-9, Cyt-c, p53, Beclin-1, ATG-5, and LC3, whereas decreases the expression of Bcl-2 and p62 suggesting abnormal processes of apoptosis and autophagy. Results on different metabolites (61 differential metabolites) revealed upregulation of PE and LysoPC, whereas downregulation of SM caused by butachlor exposure in mice led to the disruption of glycerophospholipids and lipid metabolism in the liver. The results of our experimental research indicated that butachlor induces hepatotoxic effects through disruption of lipid metabolism, abnormal mechanisms of autophagy, and apoptosis that provides new insights into the elucidation of the mechanisms of hepatotoxicity in mice induced by butachlor.
Collapse
Affiliation(s)
- Bijing Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yingwei Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yangwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shanshan Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jiangnan Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhuanxu Ouyang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Bingxian Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Khalid Mehmood
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Guanhua Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Li M, Zhang P, Xu W, Yuan J, Li Q, Tao L, Li Z, Zhang Y. Avermectin induces toxic effects in insect nontarget cells involves DNA damage and its associated programmed cell death. Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109130. [PMID: 34246796 DOI: 10.1016/j.cbpc.2021.109130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 12/21/2022]
Abstract
Avermectin (AVM), is widely applied in the fields of agriculture, possess activities against mites and insects. AVM is generally thought to keep the GABA-related chloride channels open in insect cells. However, AVM induces cytotoxicity in non-neural cells still ambiguous. Here we evaluate the cytotoxicity and other mode of action of AVM in Spodoptera frugiperda (Sf9) cells. Our results showed that AVM suppressed the activity of Sf9 cells and induced programmed cell death. DNA damage of Sf9 cells was detected by alkaline comet assay and PARP. The cleavage of poly ADP-ribose polymerase (PARP) and DNA double-strand breaks demonstrated AVM induced DNA damage in Sf9 cells. In addition, a series of established cytotoxicity tests were conducted to explore the mechanism of AVM toxicity in Sf9 cells. Typical apoptosis changes were occurred including increasing the expression of Bax/Bcl-2 and the activation of caspase-9/-3. Subsequently, Western blotting was used to detected autophagy related proteins including LC3, Beclin1 and p62. We found that AVM upregulated LC3, Beclin1 expression and downregulated p62 expressions. Moreover, we found that AVM induced autophagy may through AMPK/mTOR-mediated autophagy pathway. These results showed that AVM-induced DNA damage and programmed cell death in Sf9 cells.
Collapse
Affiliation(s)
- Meng Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ping Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jianzhong Yuan
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qingfeng Li
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
11
|
Diao L, Tang N, Zhang C, Cheng J, Zhang Z, Wang S, Wu C, Zhang L, Tao L, Li Z, Zhang Y. Avermectin induced DNA damage to the apoptosis and autophagy in human lung epithelial A549 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112129. [PMID: 33740486 DOI: 10.1016/j.ecoenv.2021.112129] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Avermectin (AVM), as a biological insecticide, is widely used in agriculture and forestry production globally. However, inhalation of AVM may pose a risk, and the lung is the direct target, but the cytotoxicity of AVM on human lung cells is still unclear. Here, we attempted to elucidate the cytotoxic effect and molecular mechanism of AVM on human lung A549 cells. The results indicated that AVM inhibits cell proliferation, and enhances programmed cell death (apoptosis and autophagy). In addition, we found the AVM-treated cells showed an obvious drop in mitochondrial membrane potential and LC3-I/II, increased ROS production, DNA double-strand breaks, caspase-3/9 activated, PARP cleaved, cytochrome c and Bax/Bcl-2 content rise. The results showed that AVM induced mitochondria-related apoptosis and autophagy in lung A549 cells. These results indicate that AVM can pose a potential threat to human health by inducing DNA damage and programmed cell death.
Collapse
Affiliation(s)
- Lin Diao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ning Tang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Zhang
- Department of Pathology, UT southwestern Medical Center, Dallas, TX 75390, United States
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenhai Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Siyu Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Can Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lutong Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
12
|
Ke Y, Zhan L, Lu T, Zhou C, Chen X, Dong Y, Lv G, Chen S. Polysaccharides of Dendrobium officinale Kimura & Migo Leaves Protect Against Ethanol-Induced Gastric Mucosal Injury via the AMPK/mTOR Signaling Pathway in Vitro and vivo. Front Pharmacol 2020; 11:526349. [PMID: 33262700 PMCID: PMC7686799 DOI: 10.3389/fphar.2020.526349] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Ethanol-induced gastric mucosal injury is a common gastrointestinal disorder. Polysaccharides separated from herbs have been shown to be effective for ethanol-induced gastric mucosal injury, but whether the polysaccharides from Dendrobium officinale Kimura & Migo leaves (LDOP-1) protected mucosa from ethanol-induced injury remains unknown. Thus, the present study carried out gastric mucosal protection and the mechanism of LDOP-1 in vivo and vitro. The chemical composition of LDOP-1 was a heteropolysaccharide comprising mannose, galacturonic acid, glucose, galactose, and arabinose at a molar ratio of 2.0:1.1:0.7:0.5:0.4. Pharmacological results showed that LDOP-1 significantly reduced gastric mucosal injury score and pathological injury, improved antioxidant capacity, reduced the level of reactive oxygen species, and reversed the apoptosis of GES-1 in vivo and vitro. Research showed that LDOP-1 pretreatment upregulated the expression level of p-AMPK, LC3β, HO-1, and Beclin-1; downregulated the expression level of p-mTOR and p62; and reversed the expression level of caspase3, Bax, and Bcl-2. This study was the first to demonstrate that LDOP-1 could protect against ethanol-induced gastric mucosal injury via the AMPK/mTOR signaling pathway in vitro and vivo.
Collapse
Affiliation(s)
- Yang Ke
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Lianghui Zhan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Tingting Lu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Cong Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Xue Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Yingjie Dong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Guiyuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
13
|
Zuo A, Li J, Zhao X, Li T, Lei S, Chen J, Xu D, Song C, Li N, Ruan S, Lyu L, Guo Y. Globular CTRP9 protects cardiomyocytes from palmitic acid-induced oxidative stress by enhancing autophagic flux. Chem Biol Interact 2020; 329:109094. [PMID: 32278738 DOI: 10.1016/j.cbi.2020.109094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/17/2020] [Accepted: 04/05/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Oxidative stress in cardiac myocytes is an important pathogenesis of cardiac lipotoxicity. Autophagy is a cellular self-digestion process that can selectively remove damaged organelles under oxidative stress, and thus presents a potential therapeutic target against cardiac lipotoxicity. Globular CTRP9 (gCTRP9) is a newly identified adiponectin paralog with established metabolic regulatory properties. The aim of this work is to investigate whether autophagy participates the protection effects of gCTRP9 in neonatal rat cardiac myocytes (NRCMs) under oxidative stress and the underlying mechanism. RESULTS NRCMs were treated with PA of various concentrations for indicated time period. Our results showed that PA enhanced intracellular ROS accumulation, decreased mitochondrial membrane potential (Δψm) and increased activation of caspases 3. These changes suggested lipotoxicity due to excessive PA. In addition, PA was observed to impair autophagic flux in NRCMs and impaired autophagosome clearance induced by PA contributes to cardiomyocyte death. Besides, we found that gCTRP9 increased the ratio of LC3II/I and the expression of ATG5 which was vital to the formation of autophagosomes and decreased the level of P62, suggesting enhanced autophagic flux in the absence or presence of PA. The result was further confirmed by the methods of infection with LC3-mRFP-GFP lentivirus and blockage of autophagosome-lysosome fusion by BafA1. Moreover, gCTRP9 reestablished the loss of mitochondrial membrane potential, suppressed ROS generation, and reduced PA -induced myocyte death. However, the protective effect of gCTRP9 on the cardiac lipotoxicity was partly abolished by blockade of autophagy by autophagy-related 5 (ATG5) siRNA, indicating that the effect of gCTRP9 on cell survival is critically mediated through regulation of autophagy. CONCLUSION Autophagy induction by gCTRP9 could be utilized as a potential therapeutic strategy against oxidative stress-mediated damage in cardiomyocytes.
Collapse
Affiliation(s)
- Anju Zuo
- Department of General Medicine, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China
| | - Jun Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China; Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China
| | - Xiaoyu Zhao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China; Department of Clinical Trial Research Center, Jinan Central Hospital Affiliated to Shandong University, Ji'nan, People's Republic of China
| | - Tingting Li
- Department of General Medicine, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China; Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China
| | - Shengyun Lei
- Department of General Medicine, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China
| | - Jiying Chen
- Department of General Medicine, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China; Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China
| | - Dan Xu
- Department of General Medicine, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China; Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China
| | - Chengxiang Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China; Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China
| | - Na Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China; Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China
| | - Shiyan Ruan
- Department of General Medicine, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China
| | - Linmao Lyu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China; Department of Emergency, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China
| | - Yuan Guo
- Department of General Medicine, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China; Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan, People's Republic of China.
| |
Collapse
|
14
|
Agostini LP, Dettogni RS, Dos Reis RS, Stur E, Dos Santos EVW, Ventorim DP, Garcia FM, Cardoso RC, Graceli JB, Louro ID. Effects of glyphosate exposure on human health: Insights from epidemiological and in vitro studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135808. [PMID: 31972943 DOI: 10.1016/j.scitotenv.2019.135808] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 05/27/2023]
Abstract
Glyphosate (GLY) is a broad-spectrum, post-emergent, non-selective and synthetic universal herbicide, whose commercial formulations are referred to as glyphosate-based-herbicides (GBHs). These chemicals and their metabolites can be found in soil, air, water, as well as groundwater and food products. This review summarizes to summarize current in vitro and epidemiological studies investigating the effects of GLY exposure on human health. Recent human cell studies have reported several GLY and GBH toxicological effects and have contributed to a better understanding of the deleterious consequences associated with their exposure. However, these detrimental effects are dependent on the cell type, chemical composition, as well as magnitude and time of exposure, among other factors. Moreover, the deleterious effects of GLY exposure on human health were observed in epidemiological studies; however, most of these studies have not determined the GLY dosage to confirm a direct effect. While GLY toxicity is clear in human cells, epidemiological studies investigating individuals exposed to different levels of GLY have reported contradictory data. Therefore, based on currently available in vitro and epidemiological data, it is not possible to confirm the complete safety of GLY use, which will require additional comprehensive studies in animal models and humans.
Collapse
Affiliation(s)
- Lidiane P Agostini
- Human and Molecular Genetics Center, Department of Biological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Raquel S Dettogni
- Endocrinology and Cell Toxicology Laboratory, Department of Morphology, Federal University of Espirito Santo, Vitoria, Brazil.
| | - Raquel S Dos Reis
- Human and Molecular Genetics Center, Department of Biological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Elaine Stur
- Human and Molecular Genetics Center, Department of Biological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Eldamária V W Dos Santos
- Human and Molecular Genetics Center, Department of Biological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Diego P Ventorim
- Human and Molecular Genetics Center, Department of Biological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Fernanda M Garcia
- Human and Molecular Genetics Center, Department of Biological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Rodolfo C Cardoso
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Science, Texas A&M University, United States of America
| | - Jones B Graceli
- Endocrinology and Cell Toxicology Laboratory, Department of Morphology, Federal University of Espirito Santo, Vitoria, Brazil
| | - Iúri D Louro
- Human and Molecular Genetics Center, Department of Biological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| |
Collapse
|
15
|
Neto da Silva K, Garbin Cappellaro L, Ueda CN, Rodrigues L, Pertile Remor A, Martins RDP, Latini A, Glaser V. Glyphosate-based herbicide impairs energy metabolism and increases autophagy in C6 astroglioma cell line. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:153-167. [PMID: 32085696 DOI: 10.1080/15287394.2020.1731897] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Several investigators demonstrated that glyphosate formulations produce neurotoxicity associated with oxidative stress, alterations in glutamatergic system, inhibition of acetylcholinesterase activity and mitochondrial dysfunction. However, the underlying molecular mechanisms following exposure to this herbicide on astrocytes are unclear. Thus, the aim of the present study was to determine the activity of enzymes related to energy metabolism, in addition to oxidative stress parameters, mitochondrial mass, nuclear area, and autophagy in astrocytes treated with a glyphosate-based herbicide. Our results showed that 24 h exposure to a glyphosate-based herbicide decreased (1) cell viability, (2) activities of mitochondrial respiratory chain enzymes and creatine kinase (CK), (3) mitochondrial mass, and (4) nuclear area in rat astroglioma cell line (C6 cells). However, non-protein thiol (NPSH) levels were increased but catalase activity was not changed in cells exposed to the herbicide at non-cytotoxic concentrations. Low glyphosate concentrations elevated content of cells positive to autophagy-related proteins. Nuclear factor erythroid 2-related factor (Nrf2), NAD(P)H dehydrogenase [quinone] 1 (NQO1) and PTEN-induced kinase 1 (PINK1) labeling were not markedly altered in cells exposed to glyphosate at the same concentrations that an increase in NPSH levels and positive cells to autophagy were found. It is conceivable that mitochondria and CK may be glyphosate-based herbicides targets. Further, autophagy induction and NPSH increase may be mechanisms initiated to avoid oxidative stress and cell death. However, more studies are needed to clarify the role of autophagy in astrocytes exposed to the herbicide and which components of the formulation might be triggering the effects observed here.
Collapse
Affiliation(s)
- Katriane Neto da Silva
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| | - Laura Garbin Cappellaro
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| | - Caroline Naomi Ueda
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| | - Luana Rodrigues
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| | - Aline Pertile Remor
- Programa De Pós-graduação Em Biociências E Saúde, Universidade Do Oeste De Santa Catarina - Campus Joaçaba, Joaçaba, Brazil
| | - Roberta de Paula Martins
- Departamento De Ciências Da Saúde, Universidade Federal De Santa Catarina - Campus De Araranguá, Araranguá, Brazil
| | - Alexandra Latini
- Laboratório De Bioenergética E Estresse Oxidativo, Departamento De Bioquímica, Universidade Federal De Santa Catarina - Campus De Florianópolis, Florianópolis, Brazil
| | - Viviane Glaser
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| |
Collapse
|