1
|
Zhao J, Niu D, Liu J, Jin Z, Mchunu NP, Singh S, Wang Z. Enhancing β-Galactosidase Performance for Galactooligosaccharides Preparation via Strategic Glucose Re-Tunneling. Int J Mol Sci 2024; 25:12316. [PMID: 39596386 PMCID: PMC11594752 DOI: 10.3390/ijms252212316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
This study focuses on the characterization and re-engineering of glucose transport in β-galactosidase (BglD) to enhance its catalytic efficiency. Computational prediction methods were employed to identify key residues constituting access tunnels for lactose and glucose, revealing distinct pockets for both substrates. In silico simulated saturation mutagenesis of residues T215 and T473 led to the identification of eight mutant variants exhibiting potential enhancements in glucose transport. Site-directed mutagenesis at T215 and T473 resulted in mutants with consistently enhanced specific activities, turnover rates, and catalytic efficiencies. These mutants also demonstrated improved galactooligosaccharide (GOS) synthesis, yielding an 8.1-10.6% enhancement over wild-type BglD yield. Structural analysis revealed that the mutants exhibited transformed configurations and localizations of glucose conduits, facilitating expedited glucose release. This study's findings suggest that the re-engineered mutants offer promising avenues for enhancing BglD's catalytic efficiency and glucose translocation, thereby improving GOS synthesis. By-product (glucose) re-tunneling is a viable approach for enzyme tunnel engineering and holds significant promise for the molecular evolution of enzymes.
Collapse
Affiliation(s)
- Jihua Zhao
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Z.); (J.L.); (Z.J.); (N.P.M.)
| | - Dandan Niu
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Z.); (J.L.); (Z.J.); (N.P.M.)
| | - Jiaqi Liu
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Z.); (J.L.); (Z.J.); (N.P.M.)
| | - Zhuolin Jin
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Z.); (J.L.); (Z.J.); (N.P.M.)
| | - Nokuthula Peace Mchunu
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Z.); (J.L.); (Z.J.); (N.P.M.)
- National Research Foundation, Pretoria 0001, South Africa
- School of Life Science, University of KwaZulu Natal, Durban 4000, South Africa
| | - Suren Singh
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa;
| | - Zhengxiang Wang
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Z.); (J.L.); (Z.J.); (N.P.M.)
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
2
|
Yu X, Peng X, Liu F, Li Y, Yan J, Li L. Distinguishing α/β-linkages and linkage positions of disaccharides in galactooligosaccharides through mass fragmentation and liquid retention behaviour. Food Chem 2024; 456:139968. [PMID: 38861865 DOI: 10.1016/j.foodchem.2024.139968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/13/2024]
Abstract
Galactooligosaccharides (GOS) are important prebiotics with function closely related to their structure. However, a comprehensive overview of the structure-function relationship is still limited due to the challenge in characterizing multiple isomers in GOS. This study presents a strategy of combining both hydrophilic interaction liquid chromatography (HILIC) retention time and tandem mass spectrometry (MS/MS) fragmentation pattern to distinguish α/β-linkages and linkage positions of disaccharide isomers in GOS through HILIC-MS/MS analysis. The results indicated that the ratio of m/z 203.0524 to m/z 365.1054 could distinguish α/β-linkages, while the ratios of m/z 347.0947 to m/z 365.1054, m/z 245.0642 to m/z 365.1054 and HILIC retention time could distinguish (1 → 2), (1 → 3), (1 → 4) and (1 → 6) linkages. The above rules enabled effective characterization of disaccharides in GOS-containing food samples, including milk powder, rice flour, drink, yogurt. This method can be used in the quality control of GOS and future research on the structure-specific health effects of GOS.
Collapse
Affiliation(s)
- Xiangying Yu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Xueying Peng
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Fengyuan Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Yuting Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Jingkun Yan
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Lin Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
3
|
Lin Y, Cai Y, Li H, Li L, Jiang Z, Ni H. Efficiency enhancement in Aspergillus niger α-L-rhamnosidase reverse hydrolysis by using a tunnel site rational design strategy. Enzyme Microb Technol 2024; 180:110484. [PMID: 39079223 DOI: 10.1016/j.enzmictec.2024.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/08/2024] [Accepted: 07/14/2024] [Indexed: 09/15/2024]
Abstract
There has been ongoing interest in improving the efficiency of glycoside hydrolase for synthesizing glycoside compounds through protein engineering, given the potential applications of glycoside compounds. In this study, a strategy of modifying the substrate access tunnel was proposed to enhance the efficiency of reverse hydrolysis catalyzed by Aspergillus niger α-L-rhamnosidase. Analysis of the tunnel dynamics identified Tyr299 as a key modifiable residue in the substrate access tunnel. The location of Tyr299 was near the enzyme surface and at the outermost end of the substrate access tunnel, suggested its role in substrate recognition and throughput. Based on the properties of side chains, six mutants were designed and expressed by Pichia pastoris. Compared to WT, the reverse hydrolysis efficiencies of mutants Y299P and Y299W were increased by 21.3 % and 11.1 %, respectively. The calculation results of binding free energy showed that the binding free energy was inversely proportional to the reverse hydrolysis efficiency. Further, when binding free energy levels were comparable, the mutants with shorter side chains displayed a higher reverse hydrolysis efficiency. These results proved that substrate access tunnel modification was an effective method to improve the reverse hydrolysis efficacy of α-L-rhamnosidase and also provided new insights for modifying other glycoside hydrolases.
Collapse
Affiliation(s)
- Yanling Lin
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yuchen Cai
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Han Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Lijun Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China; Xiamen Ocean Vocational College, Xiamen 361021, China
| |
Collapse
|
4
|
Liu P, Chen Y, Ma C, Ouyang J, Zheng Z. β-Galactosidase: a traditional enzyme given multiple roles through protein engineering. Crit Rev Food Sci Nutr 2023; 65:1306-1325. [PMID: 38108277 DOI: 10.1080/10408398.2023.2292282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
β-Galactosidases are crucial carbohydrate-active enzymes that naturally catalyze the hydrolysis of galactoside bonds in oligo- and disaccharides. These enzymes are commonly used to degrade lactose and produce low-lactose and lactose-free dairy products that are beneficial for lactose-intolerant people. β-galactosidases exhibit transgalactosylation activity, and they have been employed in the synthesis of galactose-containing compounds such as galactooligosaccharides. However, most β-galactosidases have intrinsic limitations, such as low transglycosylation efficiency, significant product inhibition effects, weak thermal stability, and a narrow substrate spectrum, which greatly hinder their applications. Enzyme engineering offers a solution for optimizing their catalytic performance. The study of the enzyme's structure paves the way toward explaining catalytic mechanisms and increasing the efficiency of enzyme engineering. In this review, the structure features of β-galactosidases from different glycosyl hydrolase families and the catalytic mechanisms are summarized in detail to offer guidance for protein engineering. The properties and applications of β-galactosidases are discussed. Additionally, the latest progress in β-galactosidase engineering and the strategies employed are highlighted. Based on the combined analysis of structure information and catalytic mechanisms, the ultimate goal of this review is to furnish a thorough direction for β-galactosidases engineering and promote their application in the food and dairy industries.
Collapse
Affiliation(s)
- Peng Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yuehua Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Zhaojuan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
5
|
Sun H, Zhao L, Mao X, Cao R, Liu Q. Identification of a Key Loop for Tuning Transglycosylation Activity in the Substrate-Binding Region of a Chitosanase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5585-5591. [PMID: 37000127 DOI: 10.1021/acs.jafc.3c00110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Csn-PD, a glycoside family 46 chitosanase from Paenibacillus dendritiformis, exhibits endotype hydrolysis of chitosan and produces (GlcN)2 as the major product. Here, we report the crystal structure of Csn-PD at 1.68 Å resolution. The structure contains 14 α-helices and two β-strands that fold into two globular domains with the substrate bound between them. To evaluate the function of a loop in the substrate-binding region (residues 112-116, NDKHP), a mutant Csn-PDL1, in which this loop was deleted, was generated. Hydrolysis of chitosan by the mutant yielded chitooligosaccharides (COSs) with higher degrees of polymerization (DP) than the wild-type enzyme. Excitingly, (GlcN)6 was produced from smaller COSs via transglycosylation activity of the mutant. Hence, the catalytic performance of a chitosanase was altered by modification of a loop in the substrate-binding regions. Our novel data on a chitosanase with transglycosylation activity offer a promising way to produce COSs with high DP.
Collapse
Affiliation(s)
- Huihui Sun
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Ling Zhao
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Rong Cao
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qi Liu
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
6
|
Zhao JC, Mu YL, Gu XY, Xu XN, Guo TT, Kong J. Site-directed mutation of β-galactosidase from Streptococcus thermophilus for galactooligosaccharide-enriched yogurt making. J Dairy Sci 2021; 105:940-949. [PMID: 34955252 DOI: 10.3168/jds.2021-20905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022]
Abstract
β-Galactosidase is one of the most important enzymes used in dairy processing. It converts lactose into glucose and galactose, and also catalyzes galactose to form galactooligosaccharides (GOS), so-called prebiotics. However, most of the β-galactosidases from the starter cultures have low transgalactosylation activities, the process that results in galactose accumulation in yogurt. Here, a site-directed mutation strategy was attempted, to genetically modify β-galactosidase from Streptococcus thermophilus. Out of 28 Strep. thermophilus strains, a β-galactosidase gene named bgaQ, encoded for high β-galactosidase hydrolysis activity (BgaQ), was cloned from the strain Strep. thermophilus SDMCC050237. It was 3,081 bp in size, with 1,027 deduced amino acid residuals, which belonged to the GH2 family. After replacing the Tyr801 and Pro802 around the active sites of BgaQ with His801 and Gly802, the GOS synthesis of the generated mutant protein BgaQ-8012 increased from 20.5% to 26.7% at 5% lactose, and no hydrolysis activity altered obviously. Subsequently, the purified BgaQ or BgaQ-8012 was added to sterilized milk inoculated with 2 starters from Strep. thermophilus SDMCC050237 and Lactobacillus delbrueckii ssp. bulgaricus ATCC11842. The GOS yields with added BgaQ or BgaQ-8012 rose to 5.8 and 8.3 g/L, respectively, compared with a yield of 3.7 g/L without enzymes added. Meanwhile, the addition of the BgaQ or BgaQ-8012 reduced the lactose content by 49.3% and 54.4% in the fermented yogurt and shortened the curd time. Therefore, this study provided a site-directed mutation strategy for improvement of the transgalactosylation activity of β-galactosidase from Strep. thermophilus for GOS-enriched yogurt making.
Collapse
Affiliation(s)
- J C Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Y L Mu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - X Y Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - X N Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - T T Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - J Kong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China.
| |
Collapse
|
7
|
Ishikawa E, Ikeda M, Sotoya H, Anbe M, Matsumoto H, Kiwaki M, Hatano H. Molecular characterization and secreted production of basidiomycetous cell-bound β-glycosidases applicable to production of galactooligosaccharides. J Ind Microbiol Biotechnol 2021; 49:6456355. [PMID: 34878143 PMCID: PMC9142197 DOI: 10.1093/jimb/kuab087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022]
Abstract
Cell-bound β-glycosidases of basidiomycetous yeasts show promise as biocatalysts in galactooligosaccharide (GOS) production. Using degenerated primers designed from Hamamotoa singularis (Hs) bglA gene, we newly identified three genes that encode cell-bound β-glycosidase from Sirobasidium magnum (Sm), Rhodotorula minuta (Rm), and Sterigmatomyces elviae (Se). These three genes, also named bglA, encoded family 1 glycosyl hydrolases with molecular masses of 67‒77 kDa. The BglA enzymes were approximately 44% identical to the Hs-BglA enzyme and possessed a unique domain at the N-terminus comprising 110 or 210 amino acids. The Sm-, Rm-, and Se-BglA enzymes as well as the Hs-BglA enzyme were successfully produced by recombinant Aspergillus oryzae, and all enzymes were entirely secreted to the supernatants. Furthermore, addition of some nonionic detergents (e.g. 0.4% [v/v] Triton-X) increased the production, especially of the Hs- or Se-BglA enzyme. Out of the BglA enzymes, the Se-BglA enzyme showed remarkable thermostability (∼70°C). Additionally, the Sm- and Se-BglA enzymes had better GOS yields, so there was less residual lactose than in others. Accordingly, the basidiomycetous BglA enzymes produced by recombinant A. oryzae would be applicable to GOS production, and the Se-BglA enzyme appeared to be the most promising enzyme for industrial uses.
Collapse
Affiliation(s)
- Eiji Ishikawa
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo, 186-8650, Japan
| | - Masakazu Ikeda
- Yakult Pharmaceutical Industry Co., Ltd., 5-11 Izumi, Kunitachi-shi, Tokyo, 156-8502, Japan
| | - Hidetsugu Sotoya
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo, 186-8650, Japan
| | - Minako Anbe
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo, 186-8650, Japan
| | | | - Mayumi Kiwaki
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo, 186-8650, Japan
| | - Hiroshi Hatano
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo, 186-8650, Japan
| |
Collapse
|
8
|
Mészáros Z, Nekvasilová P, Bojarová P, Křen V, Slámová K. Reprint of: Advanced glycosidases as ingenious biosynthetic instruments. Biotechnol Adv 2021; 51:107820. [PMID: 34462167 DOI: 10.1016/j.biotechadv.2021.107820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 11/27/2022]
Abstract
Until recently, glycosidases, naturally hydrolyzing carbohydrate-active enzymes, have found few synthetic applications in industry, being primarily used for cleaving unwanted carbohydrates. With the establishment of glycosynthase and transglycosidase technology by genetic engineering, the view of glycosidases as industrial biotechnology tools has started to change. Their easy production, affordability, robustness, and substrate versatility, added to the possibility of controlling undesired side hydrolysis by enzyme engineering, have made glycosidases competitive synthetic tools. Current promising applications of engineered glycosidases include the production of well-defined chitooligomers, precious galactooligosaccharides or specialty chemicals such as glycosylated flavonoids. Other synthetic pathways leading to human milk oligosaccharides or remodeled antibodies are on the horizon. This work provides an overview of the synthetic achievements to date for glycosidases, emphasizing the latest trends and outlining possible developments in the field.
Collapse
Affiliation(s)
- Zuzana Mészáros
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 1903/3, CZ-16628 Praha 6, Czech Republic
| | - Pavlína Nekvasilová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, CZ-12843, Praha 2, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Kristýna Slámová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| |
Collapse
|
9
|
Yan Y, Guan W, Li X, Gao K, Xu X, Liu B, Zhang W, Zhang Y. β-galactosidase GALA from Bacillus circulans with high transgalactosylation activity. Bioengineered 2021; 12:8908-8919. [PMID: 34606421 PMCID: PMC8806947 DOI: 10.1080/21655979.2021.1988370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
β-galactosidase catalyzes lactose hydrolysis and transfers reactions to produce prebiotics such as galacto-oligosaccharides (GOS) with potential applications in the food industry and pharmaceuticals. However, there is still a need for improved transgalactosylation activity of β-galactosidases and reaction conditions of GOS production in order to maximize GOS output and reduce production costs. In this study, a β-galactosidase gene, galA, from Bacillus circulans was expressed in Pichia pastoris, which not only hydrolyzed lactose but also had strong transgalactosylation activity to produce GOS. Response surface methodology was adopted to investigate the effects of temperature, enzyme concentration, pH, initial lactose concentration, and reaction time on the production of GOS and optimize the reaction conditions for GOS. The optimal pH for the enzyme was 6.0 and remained stable under neutral and basic conditions. Meanwhile, GALA showed most activity at 50°C and retained considerable activity at a lower temperature 30–40°C, indicating this enzyme could work under mild conditions. The enzyme concentration and temperature were found to be the critical parameters affecting the transgalactosylation activity. Response surface methodology showed that the optimal enzyme concentration, initial lactose concentration, temperature, pH, and reaction time were 3.03 U/mL, 500 g/L, 30°C, 5.08, and 4 h, respectively. Under such conditions, the maximum yield of GOS was 252.8 g/L, accounting for approximately 50.56% of the total sugar. This yield can be considered relatively high compared to those obtained from other sources of β-galactosidases, implying a great potential for GALA in the industrial production and application of GOS.
Collapse
Affiliation(s)
- Yaru Yan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weishi Guan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyi Li
- College of Letters and Science, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Kaier Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinxin Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Yu XQ, Yang JW, Ding XJ, Liu LH, Hu XQ, Zhang HB. Analysis of the Effect of N555 Mutations on the Product Specificity of Dextransucrase Using Caffeic Acid Phenethyl Ester as an Acceptor Substrate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5774-5782. [PMID: 33978404 DOI: 10.1021/acs.jafc.1c00822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bioglycosylation is an efficient strategy to improve biological activities and physicochemical properties of natural compounds to develop structural modifications of drugs. In this study, an N555 residue was identified as a candidate for site-directed mutagenesis through sequence alignment with GTF180ΔN. Caffeic acid phenethyl ester (CAPE) was used as an acceptor substrate. Two generated mutants, N555Q and N555E, demonstrated significant specificity of distribution of products. Under identical conditions, the conversion rates of diglycoside products (CAPE-2G) generated by the N555E (80.8%) and N555Q (84.5%) mutants were 3.30- and 3.46-fold higher than those generated by the original enzyme (24.4%). The structural simulation results demonstrated that a new hydrogen bond was formed between the N555 residue and CAPE, and the N555 residue was closely related to substrate elongation. These results provide a reference for subsequent studies. Suitable mutants for transfer of diglycosides have important application potential in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xiao-Qin Yu
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, 193# Tunxi Road, Hefei 230009, Anhui Province, P. R. China
| | - Jing-Wen Yang
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, 193# Tunxi Road, Hefei 230009, Anhui Province, P. R. China
| | - Xiao-Jie Ding
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, 193# Tunxi Road, Hefei 230009, Anhui Province, P. R. China
| | - Lan-Hua Liu
- Instrumental Analysis Center, Hefei University of Technology, 193# Tunxi Road, Hefei 230009, Anhui Province, P. R. China
| | - Xue-Qin Hu
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, 193# Tunxi Road, Hefei 230009, Anhui Province, P. R. China
| | - Hong-Bin Zhang
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, 193# Tunxi Road, Hefei 230009, Anhui Province, P. R. China
| |
Collapse
|
11
|
Wang J, Gao C, Chen X, Liu L. Engineering the Cad pathway in Escherichia coli to produce glutarate from L-lysine. Appl Microbiol Biotechnol 2021; 105:3587-3599. [PMID: 33907891 DOI: 10.1007/s00253-021-11275-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
For the efficient industrial production of glutarate, an important C5 platform chemical that is widely used in the chemical and pharmaceutical industries, a five-enzyme cascade pathway was designed and reconstructed in vitro to synthesize glutarate from L-lysine. Then, the imbalanced enzyme expression levels of L-lysine decarboxylase from Escherichia coli (EcCA), putrescine aminotransferase (KpcPA) and γ-aminovaleraldehyde dehydrogenase (KpcPD) from Klebsiella pneumoniae, and the poor catalytic efficiency of KpcPA were identified as the rate-limiting bottlenecks. To this end, ribosome binding site regulation was employed to coordinate the enzyme molar ratio of EcCA:KpcPA:KpcPD at approximately 4:8:7 (the optimum ratio obtained in vitro), and volume scanning and hydrophobicity scanning were applied to increase KpcPA activity toward cadaverine from 15.89 ± 0.52 to 75.87 ± 1.51 U·mg-1. Furthermore, the extracellular accumulation of 5-aminovalerate (5AVA) was considerably reduced by overexpressing gabP encoding the 5AVA importer. Combining these strategies into the engineered strain Glu-02, 77.62 g/L glutarate, the highest titer by E. coli to date, was produced from 100 g/L L-lysine in 42 h, with a yield and productivity of 0.78 g/g L-lysine and 1.85 g/L/h, respectively, at a 5-L scale. The results presented here provide a novel and potential enzymatic process at industrial-scale to produce glutarate from cheaper amino acids. KEY POINTS: • The bioconversion of l-lysine to glutarate using the Cad pathway was first achieved. • Enhancing the conversion efficiency of the Cad route maximizes glutarate in E. coli. • Achieving the highest titer of glutarate by E. coli to date.
Collapse
Affiliation(s)
- Jiaping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China. .,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
12
|
Mészáros Z, Nekvasilová P, Bojarová P, Křen V, Slámová K. Advanced glycosidases as ingenious biosynthetic instruments. Biotechnol Adv 2021; 49:107733. [PMID: 33781890 DOI: 10.1016/j.biotechadv.2021.107733] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022]
Abstract
Until recently, glycosidases, naturally hydrolyzing carbohydrate-active enzymes, have found few synthetic applications in industry, being primarily used for cleaving unwanted carbohydrates. With the establishment of glycosynthase and transglycosidase technology by genetic engineering, the view of glycosidases as industrial biotechnology tools has started to change. Their easy production, affordability, robustness, and substrate versatility, added to the possibility of controlling undesired side hydrolysis by enzyme engineering, have made glycosidases competitive synthetic tools. Current promising applications of engineered glycosidases include the production of well-defined chitooligomers, precious galactooligosaccharides or specialty chemicals such as glycosylated flavonoids. Other synthetic pathways leading to human milk oligosaccharides or remodeled antibodies are on the horizon. This work provides an overview of the synthetic achievements to date for glycosidases, emphasizing the latest trends and outlining possible developments in the field.
Collapse
Affiliation(s)
- Zuzana Mészáros
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 1903/3, CZ-16628 Praha 6, Czech Republic
| | - Pavlína Nekvasilová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, CZ-12843, Praha 2, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Kristýna Slámová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| |
Collapse
|
13
|
|
14
|
The role of fibril structure and surface hydrophobicity in secondary nucleation of amyloid fibrils. Proc Natl Acad Sci U S A 2020; 117:25272-25283. [PMID: 33004626 PMCID: PMC7568274 DOI: 10.1073/pnas.2002956117] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease affects a rapidly growing number of individuals worldwide. Key unresolved questions relate to the onset and propagation of the disease, linked to the self-assembly of amyloid β peptide into fibrillar and smaller aggregates. This study investigates the propagation of aggregates of amyloid β peptide and asks whether hydrophobic molecular features observed on the fibril surface correlate with its ability to catalyze the formation of new aggregates. This question is motivated by the associated formation of intermediate forms that are toxic to neuronal cells. The results imply that surface catalysis is independent of surface details but requires that the monomers that form the new aggregate can adopt the structure of the parent aggregate without steric clashes. Crystals, nanoparticles, and fibrils catalyze the generation of new aggregates on their surface from the same type of monomeric building blocks as the parent assemblies. This secondary nucleation process can be many orders of magnitude faster than primary nucleation. In the case of amyloid fibrils associated with Alzheimer’s disease, this process leads to the multiplication and propagation of aggregates, whereby short-lived oligomeric intermediates cause neurotoxicity. Understanding the catalytic activity is a fundamental goal in elucidating the molecular mechanisms of Alzheimer’s and associated diseases. Here we explore the role of fibril structure and hydrophobicity by asking whether the V18, A21, V40, and A42 side chains which are exposed on the Aβ42 fibril surface as continuous hydrophobic patches play a role in secondary nucleation. Single, double, and quadruple serine substitutions were made. Kinetic analyses of aggregation data at multiple monomer concentrations reveal that all seven mutants retain the dominance of secondary nucleation as the main mechanism of fibril proliferation. This finding highlights the generality of secondary nucleation and its independence of the detailed molecular structure. Cryo-electron micrographs reveal that the V18S substitution causes fibrils to adopt a distinct morphology with longer twist distance than variants lacking this substitution. Self- and cross-seeding data show that surface catalysis is only efficient between peptides of identical morphology, indicating a templating role of secondary nucleation with structural conversion at the fibril surface. Our findings thus provide clear evidence that the propagation of amyloid fibril strains is possible even in systems dominated by secondary nucleation rather than fragmentation.
Collapse
|
15
|
Uehara R, Iwamoto R, Aoki S, Yoshizawa T, Takano K, Matsumura H, Tanaka S. Crystal structure of a GH1 β-glucosidase from Hamamotoa singularis. Protein Sci 2020; 29:2000-2008. [PMID: 32713015 PMCID: PMC7454551 DOI: 10.1002/pro.3916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022]
Abstract
A GH1 β-glucosidase from the fungus Hamamotoa singularis (HsBglA) has high transgalactosylation activity and efficiently converts lactose to galactooligosaccharides. Consequently, HsBglA is among the most widely used enzymes for industrial galactooligosaccharide production. Here, we present the first crystal structures of HsBglA with and without 4'-galactosyllactose, a tri-galactooligosaccharide, at 3.0 and 2.1 Å resolutions, respectively. These structures reveal details of the structural elements that define the catalytic activity and substrate binding of HsBglA, and provide a possible interpretation for its high catalytic potency for transgalactosylation reaction.
Collapse
Affiliation(s)
- Ryo Uehara
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityShigaJapan
| | - Riki Iwamoto
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
| | - Sayaka Aoki
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
| | - Takuya Yoshizawa
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
| | - Kazufumi Takano
- Department of Biomolecular ChemistryKyoto Prefectural UniversityKyotoJapan
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityShigaJapan
| | - Shun‐ichi Tanaka
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityShigaJapan
- Department of Biomolecular ChemistryKyoto Prefectural UniversityKyotoJapan
| |
Collapse
|
16
|
Niu K, Liu Z, Feng Y, Gao T, Wang Z, Zhang P, Du Z, Gao D, Fang X. A novel strategy for efficient disaccharides synthesis from glucose by β-glucosidase. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00334-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AbstractOligosaccharides have important therapeutic applications. A useful route for oligosaccharides synthesis is reverse hydrolysis by β-glucosidase. However, the low conversion efficiency of disaccharides from monosaccharides limits its large-scale production because the equilibrium is biased in the direction of hydrolysis. Based on the analysis of the docking results, we hypothesized that the hydropathy index of key amino acid residues in the catalytic site is closely related with disaccharide synthesis and more hydrophilic residues located in the catalytic site would enhance reverse hydrolysis activity. In this study, positive variants TrCel1bI177S, TrCel1bI177S/I174S, and TrCel1bI177S/I174S/W173H, and one negative variant TrCel1bN240I were designed according to the Hydropathy Index For Enzyme Activity (HIFEA) strategy. The reverse hydrolysis with TrCel1bI177S/I174S/W173H was accelerated and then the maximum total production (195.8 mg/mL/mg enzyme) of the synthesized disaccharides was increased by 3.5-fold compared to that of wild type. On the contrary, TrCel1bN240I lost reverse hydrolysis activity. The results demonstrate that the average hydropathy index of the key amino acid residues in the catalytic site of TrCel1b is an important factor for the synthesis of laminaribiose, sophorose, and cellobiose. The HIFEA strategy provides a new perspective for the rational design of β-glucosidases used for the synthesis of oligosaccharides.
Collapse
|