1
|
Skibska A, Perlikowska R. Natural Plant Materials as a Source of Neuroprotective Peptides. Curr Med Chem 2024; 31:5027-5045. [PMID: 37403392 DOI: 10.2174/0929867331666230703145043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023]
Abstract
In many circumstances, some crucial elements of the neuronal defense system fail, slowly leading to neurodegenerative diseases. Activating this natural process by administering exogenous agents to counteract unfavourable changes seems promising. Therefore, looking for neuroprotective therapeutics, we have to focus on compounds that inhibit the primary mechanisms leading to neuronal injuries, e.g., apoptosis, excitotoxicity, oxidative stress, and inflammation. Among many compounds considered neuroprotective agents, protein hydrolysates and peptides derived from natural materials or their synthetic analogues are good candidates. They have several advantages, such as high selectivity and biological activity, a broad range of targets, and high safety profile. This review aims to provide biological activities, the mechanism of action and the functional properties of plant-derived protein hydrolysates and peptides. We focused on their significant role in human health by affecting the nervous system and having neuroprotective and brain-boosting properties, leading to memory and cognitive improving activities. We hope our observation may guide the evaluation of novel peptides with potential neuroprotective effects. Research into neuroprotective peptides may find application in different sectors as ingredients in functional foods or pharmaceuticals to improve human health and prevent diseases.
Collapse
Affiliation(s)
- Agnieszka Skibska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University, Lodz, Poland
| | - Renata Perlikowska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University, Lodz, Poland
| |
Collapse
|
2
|
Ding J, Huang L, Yang J, Qi L, Zhu C, Lin S. Dual Action of Reduced Allergenicity and Improved Memory of Instant Soybean Powder Hydrolysates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18815-18828. [PMID: 37991338 DOI: 10.1021/acs.jafc.3c06490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Soy allergens are susceptible to inducing allergic reactions in infants and young animals, which have an impact on the effective daily utilization of proteins. In this study, we used Alcalase-hydrolyzed instant soybean powder (ISP) to clarify the sensitization changes of instant soybean powder hydrolysates (ISPH), and we explored the assisted memory-enhancing effects. BALB/c mice in the ISPH group showed significant improvement in the allergy symptoms, with their allergy symptom scores decreasing to (1.57 ± 0.53) and their specific serum IgE and IgG1 binding capacity decreasing by 28.00 and 25.73% (P < 0.05), which suppressed the mast cell degranulation rate. Meanwhile, the plasma HIS and IL-4 levels decreased by 12.59 and 25.32%, and the plasma INF-γ and IL- 10 levels increased by 30.64 and 27.79%, which obviously regulated the imbalance of Th1/Th2 cells and attenuated the tissue damage (P < 0.05). Furthermore, ISPH improved behavioral characteristics, increased cholinergic system activity, reduced neuronal cell damage or apoptosis, and increased the number of Nissl bodies to help improve memory in Kunming mice (P < 0.05). In general, alcalase-hydrolyzed ISP had the dual effects of reducing allergenicity and aiding in memory improvement.
Collapse
Affiliation(s)
- Jie Ding
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Special Dietary Food, The Education Department of Liaoning Province, Dalian 116034, P. R. China
| | - Luyue Huang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, The Education Department of Liaoning Province, Dalian 116034, P. R. China
| | - Jingqi Yang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Ganzhou Quanbiao Biological Technology Co. Ltd., Ganzhou 341100, P. R. China
| | - Libo Qi
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Chunyan Zhu
- Ganzhou Quanbiao Biological Technology Co. Ltd., Ganzhou 341100, P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Special Dietary Food, The Education Department of Liaoning Province, Dalian 116034, P. R. China
- Engineering Research Center of Food, The Education Department of Liaoning Province, Dalian 116034, P. R. China
- Ganzhou Quanbiao Biological Technology Co. Ltd., Ganzhou 341100, P. R. China
| |
Collapse
|
3
|
Zhang L, Bai YY, Hong ZS, Xie J, Tian Y. Isolation, Identification, Activity Evaluation, and Mechanism of Action of Neuroprotective Peptides from Walnuts: A Review. Nutrients 2023; 15:4085. [PMID: 37764868 PMCID: PMC10534798 DOI: 10.3390/nu15184085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
As human life expectancy increases, the incidence of neurodegenerative diseases in older adults has increased in parallel. Walnuts contain bioactive peptides with demonstrated neuroprotective effects, making them a valuable addition to the diet. We here present a comprehensive review of the various methods used to prepare, isolate, purify, and identify the neuroprotective peptides found in walnuts. We further summarise the different approaches currently used to evaluate the activity of these peptides in experimental settings, highlighting their potential to reduce oxidative stress, neuroinflammation, and promote autophagy, as well as to regulate the gut microflora and balance the cholinergic system. Finally, we offer suggestions for future research concerning bioavailability and improving or masking the bitter taste and sensory properties of final products containing the identified walnut neuroprotective peptides to ensure successful adoption of these peptides as functional food ingredients for neurohealth promotion.
Collapse
Affiliation(s)
- Li Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.Z.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yu-Ying Bai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.Z.)
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Zi-Shan Hong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.Z.)
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.Z.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
- School of Tea and Coffee, Puer University, Puer 665000, China
| |
Collapse
|
4
|
Fu J, Song W, Song X, Fang L, Wang X, Leng Y, Wang J, Liu C, Min W. Synergistic Effect of Combined Walnut Peptide and Ginseng Extracts on Memory Improvement in C57BL/6 Mice and Potential Mechanism Exploration. Foods 2023; 12:2329. [PMID: 37372540 PMCID: PMC10297067 DOI: 10.3390/foods12122329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
This work aimed to investigate whether there are synergistic effects between walnut peptide (WNP) and ginseng extracts (GSE) treatments to ameliorate the memory impairment caused by scopolamine (SCOP). The Morris water maze trial, hippocampal neuron morphology, neurotransmitters, and synaptic ultrastructure were examined, along with brain-derived neurotrophic factor (BDNF)-related signaling pathway proteins. The results of the Morris water maze trial demonstrated that the combined administration of WNP and GSE effectively alleviated memory impairment in C57BL/6 rats caused by SCOP. Improvement in the morphology of hippocampal neurons, dendritic spines, and synaptic plasticity and upregulation of neurotransmitters AChE, ACh, ChAT, Glu, DA, and 5-HT supported the memory improvement effects of WNP + GSE. In addition, compared with the model group, WNP + GSE significantly enhanced the protein levels of VAChT, Trx-1, and the CREB/BDNF/TrkB pathway in hippocampal and PC12 cells induced by SCOP (p < 0.05). Notably, WNP + GSE boosted memory via multiple pathways, not only the BDNF/TrkB/CREB target.
Collapse
Affiliation(s)
- Junxi Fu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (J.F.); (W.S.); (L.F.); (X.W.); (Y.L.); (J.W.)
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Wentian Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (J.F.); (W.S.); (L.F.); (X.W.); (Y.L.); (J.W.)
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Xiaobing Song
- Zhongke Special Food Institute, Changchun 130022, China;
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (J.F.); (W.S.); (L.F.); (X.W.); (Y.L.); (J.W.)
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (J.F.); (W.S.); (L.F.); (X.W.); (Y.L.); (J.W.)
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Yue Leng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (J.F.); (W.S.); (L.F.); (X.W.); (Y.L.); (J.W.)
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (J.F.); (W.S.); (L.F.); (X.W.); (Y.L.); (J.W.)
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (J.F.); (W.S.); (L.F.); (X.W.); (Y.L.); (J.W.)
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (J.F.); (W.S.); (L.F.); (X.W.); (Y.L.); (J.W.)
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, China
| |
Collapse
|
5
|
Bidô RDCDA, Pereira DE, Alves MDC, Dutra LMG, Costa ACDS, Viera VB, Araújo WJD, Leite EL, Oliveira CJBD, Alves AF, Freitas JCR, Martins ACS, Cirino JA, Soares JKB. Mix of almond baru (Dipteryx alata Vog.) and goat whey modulated intestinal microbiota, improved memory and induced anxiolytic like behavior in aged rats. J Psychiatr Res 2023; 164:98-117. [PMID: 37331263 DOI: 10.1016/j.jpsychires.2023.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023]
Abstract
The objective was to evaluate the effects of the consumption of a mix of baru almond and goat whey on memory performance and anxiety parameters related to the intestinal health of rats treated during aging. The animals were divided into three groups and treated by gavage for 10 weeks (n = 10/each group): Control (CT) - distilled water; Baru almond (BA) - 2000 mg of baru/kg of body weight; and Baru + Whey (BW) - 2000 mg of baru + 2000 mg of goat milk whey/kg of body weight. Anxiety behavior, memory, brain fatty acid profile and fecal microbiota were measured. BA and BW realized less grooming, spent more time in the central area of the open field and the open arms, and realized more head dipping in the elevated plus maze. A higher rate of exploration of the new object in the short and long-term memory was observed in BA and BW. There was an increase in the deposition of MUFAs and PUFAs and oleic acid in the brain of BA and BW. Regarding spatial memory, BA and BW performed better, with an emphasis on BW. There was a beneficial modulation of the fecal microbiota with a reduction of the pathogenic genus Clostridia_UFC-014 in BA and BW and an increase in the abundance of metabolic pathways of interest in the brain-gut axis. Thus, consumption of the mix is efficient in beneficially altering the intestinal microbiota, improving memory and anxiolytic-like behavior in rats during aging.
Collapse
Affiliation(s)
- Rita de Cássia de Araújo Bidô
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil.
| | - Diego Elias Pereira
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil
| | - Maciel da Costa Alves
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Larissa Maria Gomes Dutra
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil
| | - Ana Carolina Dos Santos Costa
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil; Department of Rural Technology, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Vanessa Bordin Viera
- Laboratory of Bromatology, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil
| | - Wydemberg José de Araújo
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba, Areia, PB, Brazil
| | - Elma Lima Leite
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba, Areia, PB, Brazil
| | - Celso José Bruno de Oliveira
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba, Areia, PB, Brazil
| | - Adriano Francisco Alves
- Laboratory of General Pathology, Department of Physiology and Pathology, Center for Health Sciences, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Juliano Carlo Rufino Freitas
- Education and Health Center, Academic Unit of Biology and Chemistry, Federal University of Campina Grande, Cuité, PB, Brazil
| | | | - Janaína André Cirino
- National Institute of Technology in Bonding and Coating Materials, University City, Recife, PE, Brazil
| | - Juliana Késsia Barbosa Soares
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil
| |
Collapse
|
6
|
Wang S, Sun-Waterhouse D, Neil Waterhouse GI, Zheng L, Su G, Zhao M. Effects of food-derived bioactive peptides on cognitive deficits and memory decline in neurodegenerative diseases: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Katayama S, Corpuz HM, Nakamura S. Potential of plant-derived peptides for the improvement of memory and cognitive function. Peptides 2021; 142:170571. [PMID: 33965441 DOI: 10.1016/j.peptides.2021.170571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/10/2021] [Accepted: 04/25/2021] [Indexed: 12/15/2022]
Abstract
Recently, there has been an increased demand for functional foods, to reduce the risk of age-related cognitive impairment, dementia, and Alzheimer's disease. Among them, plant-derived bioactive compounds, such as phytochemicals and peptides, have notable potential in improving memory and cognitive functions. Many studies have provided potential data concerning the characteristics and structure-activity relationships of memory-enhancing peptides. When considering the proof of efficacy of these plant-based peptides in humans as neurological treatment options, it is necessary to accumulate evidence concerning their bioavailability and permeability through blood-brain barrier (BBB). This review focuses on the memory-enhancing effects of peptides derived from plant proteins and presents a current perspective on their structure-activity relationships and BBB permeability.
Collapse
Affiliation(s)
- Shigeru Katayama
- Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan.
| | - Henry M Corpuz
- Rice Chemistry and Food Science Division, Philippine Rice Research Institute, Maligaya, Science City of Muñoz, Nueva Ecija, 3119, Philippines
| | - Soichiro Nakamura
- Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan
| |
Collapse
|
8
|
Tian W, Wu B, Sun L, Zhuang Y. Protective effect against d-gal-induced aging mice and components of polypeptides and polyphenols in defatted walnut kernel during simulated gastrointestinal digestion. J Food Sci 2021; 86:2736-2752. [PMID: 33963555 DOI: 10.1111/1750-3841.15744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 01/26/2023]
Abstract
Defatted walnut kernel with pellicle (WKP) is an industrial byproduct during walnut oil extraction, which is rich in protein and polyphenols. WKP was hydrolyzed by simulated gastrointestinal digestion to obtain WKP hydrolysates (WKPHs). Results showed the protein recovery and hydrolysis degree of WKPH were 82.15 and 10.36%. The total phenol contents in WKP and WKPH were 4.90 and 40.70 mg gallic acid equivalent/g, respectively. The antiaging activity of WKPH was evaluated using a d-gal-induced aging mouse model. Results showed that WKPHs could recover the activities of SOD and T-AOC and the content of MDA in tissues and serum of the aging mice. The histological morphology of liver and kidney sections and the immunohistochemistry of TNF-α, IL-1β, and IL-6 in liver were observed. WKPH could effectively protect the tissue structure of the liver and kidney and reduce the inflammatory expression of liver in aging mice. The polypeptides and polyphenols in WKPH were further analyzed. Fifty polypeptides were identified and 12 of these peptides had Leu-Arg at the C-terminal. Forty-two polyphenols were detected, and most phenolic compounds belonged to ellagitannins. This study provided a theoretical basis for the improved processing and high-value utilization of walnut byproducts. PRACTICAL APPLICATION: Defatted walnut kernel with pellicle was hydrolyzed by simulated gastrointestinal digestion to obtain its hydrolysates. The hydrolysates have good antiaging activity in vivo. Fifty polypeptides were identified and 12 of these peptides had Leu-Arg at the C-terminal. Forty-two polyphenols were detected, and most phenolic compounds belonged to ellagitannins. This study could provide a theoretical basis for high-value utilization of walnut byproducts.
Collapse
Affiliation(s)
- Wenhui Tian
- Institute of Agriculture and Food, Kunming University of Science and Technology, Kunming, Yunnan, P. R. China
| | - Beiyi Wu
- Institute of Agriculture and Food, Kunming University of Science and Technology, Kunming, Yunnan, P. R. China
| | - Liping Sun
- Institute of Agriculture and Food, Kunming University of Science and Technology, Kunming, Yunnan, P. R. China
| | - Yongliang Zhuang
- Institute of Agriculture and Food, Kunming University of Science and Technology, Kunming, Yunnan, P. R. China
| |
Collapse
|
9
|
Wang S, Su G, Zhang X, Song G, Zhang L, Zheng L, Zhao M. Characterization and Exploration of Potential Neuroprotective Peptides in Walnut ( Juglans regia) Protein Hydrolysate against Cholinergic System Damage and Oxidative Stress in Scopolamine-Induced Cognitive and Memory Impairment Mice and Zebrafish. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2773-2783. [PMID: 33645974 DOI: 10.1021/acs.jafc.0c07798] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to determine the neuroprotective effect and mechanism of walnut protein hydrolysates (WPH) against memory deficits induced by scopolamine in mice and further to validate the potent neuroprotective peptides identified by integrated approaches of in silico analysis and peptidomics in scopolamine-induced zebrafish. Results showed that a remarkable amelioration on behavioral performance was observed for oral administration of WPH, and disorders of cholinergic system and oxidative stress were normalized in the brains of mice also. Unfortunately, no obvious inflammatory response and anti-inflammatory effect were observed. Additionally, WPH significantly upregulated the expressions of antioxidant defense-related protein (Nrf2) and neurotrophic-related protein (BDNF and CREB). Furthermore, 20 peptides with relatively higher abundance and PeptideRanker scores were predicted by docking to AchE and Keap1. Among them, FY and SGFDAE with the highest binding affinities, -9.8 and -8.0 kcal/mol, were considered as the promising AchE and Keap1 inhibitors, respectively. They were further validated to have neuroprotective capacity in scopolamine-induced zebrafish, indicating that peptidomics and in silico prediction might be the effective approaches to screen neuroprotective peptides.
Collapse
Affiliation(s)
- Shuguang Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Guowan Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
- Guangdong Huapeptides Biotechnology Co., Ltd, Zhaoqing 526000, China
| | - Xun Zhang
- Institute of Agricultural Products Processing, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou 450002, China
| | - Guohui Song
- Institute of Agricultural Products Processing, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou 450002, China
| | - Lixia Zhang
- Institute of Agricultural Products Processing, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou 450002, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| |
Collapse
|
10
|
Zhao F, Liu C, Fang L, Lu H, Wang J, Gao Y, Gabbianelli R, Min W. Walnut-Derived Peptide Activates PINK1 via the NRF2/KEAP1/HO-1 Pathway, Promotes Mitophagy, and Alleviates Learning and Memory Impairments in a Mice Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2758-2772. [PMID: 33591165 DOI: 10.1021/acs.jafc.0c07546] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mitophagy has a pivotal protective function in the pathogenesis of neurological disorders. However, the mechanism of its modulation remains elusive, especially in PINK1-mediated mitophagy. Here, we investigated the neuroprotective effects of a walnut-derived peptide, YVLLPSPK, against scopolamine-induced cognitive deficits in mice and explored the underlying PINK1-mediated mitophagy mechanisms in H2O2-treated HT-22 cells. Using the Morris water maze, we showed that YVLLPSPK relieved the cognitive deficiency by alleviating oxidative stress. Mitochondrial morphology was observed in mice hippocampal tissues using transmission electron microscopy (TEM). Both Western blot and immunofluorescence analysis illustrated YVLLPSPK promoted the expression of mitophagy-related proteins and activated the NRF2/KEAP1/HO-1 pathway. Subsequently, an NRF2 inhibitor (ML385) was used to verify the contribution of the YVLLPSPK-regulated NRF2/KEAP1/HO-1 pathway in PINK1-mediated mitophagy in H2O2-treated HT-22 cells. These data suggested that YVLLPSPK improved learning and memory in scopolamine-induced cognitive-impaired mice through a mechanism associated with PINK1-mediated mitophagy via the NRF2/KEAP1/HO-1 pathway.
Collapse
Affiliation(s)
- Fanrui Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
- School of Advanced Studies, University of Camerino, Camerino, Macerata 62032, Italy
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| | - Hongyan Lu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| | - Yawen Gao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, Macerata 62032, Italy
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| |
Collapse
|
11
|
Wu D, Xu X, Sun N, Li D, Zhu B, Lin S. AGLPM and QMDDQ peptides exert a synergistic action on memory improvement against scopolamine-induced amnesiac mice. Food Funct 2020; 11:10925-10935. [PMID: 33242042 DOI: 10.1039/d0fo02570d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study aimed to explore the synergistic action of pentapeptides Gln-Met-Asp-Asp-Gln (QMDDQ) and Ala-Gly-Leu-Pro-Met (AGLPM) on memory improvement against scopolamine-induced impairment in mice compared to those of either peptide alone. In behavioral tests, the codelivery of QMDDQ and AGLPM was superior to the individual supplements of either peptide alone not only in enhancing the memory ability at training trials but also in recovering the memory impairment in scopolamine-induced amnesiac mice in test trials. Furthermore, combination treatment with QMDDQ and AGLPM could significantly reduce the acetylcholinesterase (AChE) level and increase the acetylcholine (ACh) level in the hippocampus, and noticeably improve the pathological morphology of the neuron cells in hippocampal regions CA1 and CA2 and dentate gyrus (DG). The findings indicated that the combination treatment with QMDDQ and AGLPM could improve the memory function by regulating the cholinergic system.
Collapse
Affiliation(s)
- Dan Wu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | | | | | | | | | | |
Collapse
|
12
|
Yessenkyzy A, Saliev T, Zhanaliyeva M, Masoud AR, Umbayev B, Sergazy S, Krivykh E, Gulyayev A, Nurgozhin T. Polyphenols as Caloric-Restriction Mimetics and Autophagy Inducers in Aging Research. Nutrients 2020; 12:E1344. [PMID: 32397145 PMCID: PMC7285205 DOI: 10.3390/nu12051344] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
It has been thought that caloric restriction favors longevity and healthy aging where autophagy plays a vital role. However, autophagy decreases during aging and that can lead to the development of aging-associated diseases such as cancer, diabetes, neurodegeneration, etc. It was shown that autophagy can be induced by mechanical or chemical stress. In this regard, various pharmacological compounds were proposed, including natural polyphenols. Apart from the ability to induce autophagy, polyphenols, such as resveratrol, are capable of modulating the expression of pro- and anti-apoptotic factors, neutralizing free radical species, affecting mitochondrial functions, chelating redox-active transition metal ions, and preventing protein aggregation. Moreover, polyphenols have advantages compared to chemical inducers of autophagy due to their intrinsic natural bio-compatibility and safety. In this context, polyphenols can be considered as a potential therapeutic tool for healthy aging either as a part of a diet or as separate compounds (supplements). This review discusses the epigenetic aspect and the underlying molecular mechanism of polyphenols as an anti-aging remedy. In addition, the recent advances of studies on NAD-dependent deacetylase sirtuin-1 (SIRT1) regulation of autophagy, the role of senescence-associated secretory phenotype (SASP) in cells senescence and their regulation by polyphenols have been highlighted as well. Apart from that, the review also revised the latest information on how polyphenols can help to improve mitochondrial function and modulate apoptosis (programmed cell death).
Collapse
Affiliation(s)
- Assylzhan Yessenkyzy
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| | - Timur Saliev
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| | - Marina Zhanaliyeva
- Department of Human Anatomy, NSC “Medical University of Astana”, Nur-Sultan 010000, Kazakhstan;
| | - Abdul-Razak Masoud
- Department of Biological Sciences, Louisiana Tech University, Ruston, LA 71270, USA;
| | - Bauyrzhan Umbayev
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Shynggys Sergazy
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Elena Krivykh
- Khanty-Mansiysk State Medical Academy, Tyumen Region, Khanty-Mansiysk Autonomous Okrug—Ugra, Khanty-Mansiysk 125438, Russia;
| | - Alexander Gulyayev
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Talgat Nurgozhin
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| |
Collapse
|