1
|
Li W, He J, Chen Q, Bao F, Huo Y, Deng J, Lin Q, Luo F. Enhancement of Oryzanol application by constructing modified β-CD inclusion complex and polycaprolactone-chitosan electrospun fiber membranes: Perspectives on wound dressings and grape preservation. Food Chem 2025; 473:143025. [PMID: 39855072 DOI: 10.1016/j.foodchem.2025.143025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Oryzanol has a variety of physiological activities and is widely used in food and medicine. However, its utilization form and bioavailability are limited by poor solubility and photothermal stability. In this paper, an inclusion complex (IC) was prepared by modifying β-cyclodextrin as a molecular carrier to encapsulate Oryzanol. Polycaprolactone-chitosan (PCL-CS) and IC were prepared into a fiber membrane (PCL-CS-IC) using an electrostatic spinning technique and applied to wound healing and grape preservation. The results showed that the prepared ICs had a drug loading rate of 43.18 % with good antimicrobial, wettability, and air permeability properties. The PCL-CS-IC effectively reduced the inflammation of mouse wounds, with obvious re-epithelialization and inflammatory factors reduction in skin tissues. Meanwhile, the PCL-CS-IC delayed the decay process of grapes and extended shelf life. In conclusion, this study effectively improved the utilization of oryzanol and provided potential ideas for wound dressing preparation and food packaging materials development.
Collapse
Affiliation(s)
- Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Jintao He
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Qijue Chen
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Feng Bao
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Yinqiang Huo
- College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang, 441053, China.
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, JiangSu, China
| | - Feijun Luo
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| |
Collapse
|
2
|
He X, Deng G, Zhang Z, Mao H, Cai L. Enhanced coloration and functionality of wool fabric by Hydroxypropyl-β-cyclodextrin coated magnetic nanoparticles. ARAB J CHEM 2024; 17:105923. [DOI: 10.1016/j.arabjc.2024.105923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
3
|
Ruchika, Bhardwaj N, Saneja A. Orally fast dissolving α-lipoic acid electrospun nanofibers mitigates lipopolysaccharide induced inflammation in RAW 264.7 macrophages. Int J Biol Macromol 2024; 264:130623. [PMID: 38447832 DOI: 10.1016/j.ijbiomac.2024.130623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/02/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
α-Lipoic acid (LA), a dietary supplement known for its strong antioxidant and anti-inflammatory potential, faces challenges due to its poor aqueous solubility and thermal instability. To address these issues, herein methyl-beta-cyclodextrin (M-β-CD) was utilized to create inclusion complex (IC) of LA in 1:1 M stoichiometric ratio of M-β-CD to LA. The LA-M-β-CD-IC was further combined with pullulan (PUL), a non-toxic and water-soluble biopolymer, for the development of electrospun nanofibers (NF) by green and sustainable approach. The resulting PUL/LA/M-β-CD NF formed as a self-standing and flexible material with an average diameter of 569 ± 129 nm and encapsulation efficiency of ∼86.90 %. The developed NF demonstrated an accelerated release, quick dissolution, and disintegration when exposed to artificial saliva replicating the conditions of oral cavity. PUL/LA/M-β-CD NF attenuated the production of ROS and NO by downregulating pro-inflammatory enzymes (iNOS and COX-2) in lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Moreover, PUL/LA/M-β-CD NF also significantly downregulated the expression of pro-inflammatory cytokines including TNF-α, IL-6, and IL-1β along with suppression of NF-ĸB nuclear translocation in comparison to LA (at 250 μM). In nutshell, PUL/LA/M-β-CD NF demonstrated great potential as a rapid disintegrating delivery system for oral anti-inflammatory treatment due to the enhanced physicochemical characteristics of LA.
Collapse
Affiliation(s)
- Ruchika
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neha Bhardwaj
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankit Saneja
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Hassan MAE, Khalil WA, Abdelnour SA, Aman RM. Supplementation of Alpha-lipoic acid-loaded nanoliposomes in semen extender improves freezability of buffalo spermatozoa. Sci Rep 2022; 12:22464. [PMID: 36577772 PMCID: PMC9797474 DOI: 10.1038/s41598-022-26960-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
This research was designed to explore the protective effect of alpha-lipoic acid-loaded nanoliposomes (ALAN) during cryopreservation of buffalo sperm. Buffalo semen was cryopreserved in a tris-citrate egg yolk extender without any supplement (ALAN0, control group) or with ALAN at levels of 25, 50, 75 or 150 µg (ALAN25, ALAN50, ALAN75 and ALAN150, respectively). The ALAN had a size of 171.80 nm and a negative zeta potential (- 43.40 mV). The progressive motility, vitality and membrane integrity significantly improved in all ALAN groups (except ALAN25 for membrane integrity). ALAN150 group exhibited the best values of progressive sperm motility, vitality and membrane integrity after thawing at 37 °C for 30 s or incubated for 2 h at 37 °C and 5% CO2 compared with those in other groups. Both ALAN75 and ALAN150 groups significantly improved the TAC, GR and catalase, while lipid peroxidation and early apoptotic spermatozoa significantly decreased in ALAN150 group followed by ALAN75 group. Collectively, the adding ALAN to buffalo semen freezing extender plays a substantial shielding function against cryodamage by preserving the sperm functional parameters.
Collapse
Affiliation(s)
- Mahmoud A. E. Hassan
- grid.418376.f0000 0004 1800 7673Animal Production Research Institute, Agriculture Research Centre, Ministry of Agriculture, Dokki, Giza, 12619 Egypt
| | - Wael A. Khalil
- grid.10251.370000000103426662Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura, 35516 Egypt
| | - Sameh A. Abdelnour
- grid.31451.320000 0001 2158 2757Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511 Egypt
| | - Reham Mokhtar Aman
- grid.10251.370000000103426662Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, 35516 Egypt
| |
Collapse
|
5
|
Tran HN, Kim IG, Kim JH, Chung EJ, Noh I. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization. Biomater Res 2022; 26:75. [PMID: 36494708 PMCID: PMC9733183 DOI: 10.1186/s40824-022-00318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Control of 3D printing of highly tough hydrogel inks with adequate printability, scaffold fidelity and mechanical properties are highly desirable for biomedical and tissue engineering applications. However, developing a biocompatible tough ink with high-resolution printability, biodegradability, self-healing, adhesion, and integration with surrounding tissues is a big challenge in 3D printing. The aim of this study was to develop extrusion-based 3D printing of viscous hydrogel composing of maleic acid and propylene diepoxide by controlling continuous mechanisms of condensation and radical polymerization. METHODS The molecular weight of highly adhesive propagating poly(malate-co-propylene oxide) copolymer was controlled by capping its growing chain with mono-functional lipoic acid with different compositions during condensation reaction to form lipoic acid capped gel (LP-capped gel). Poly(ethylene oxide)-diacrylate, PEGDA, is graft-polymerized to the LP-capped backbone polymer (MPLE gel) by UV irradiation during 3D printing process to control the properties of gel printability, mechanical properties, and cell adhesiveness and post-printing fidelity of the printed scaffolds with high resolution and mechanical properties (MPLE scaffold). The scaffolds in complex geometries have been printed out in diverse forms with addition of model drugs with different molecular weights and chemical structures. Both the highly adhesive LP-capped gel and printing-controlled MPLE gel/scaffolds are diversely characterized and compared with for their applications to the extrusion-based printability, including biocompatibility, self-healing, drug releasing, adhesiveness, multi-layered high-resolution printing. Further in vitro/in vivo tests were done to observe cytotoxicity, immune response and tissue formation by using different cells in mice model. RESULTS LP-capped hydrogel from maleic acid and propylene diepoxide gel showed control of gel properties with lipoic acid with one function group of thiol during condensation reaction, and the ratio at 1:0.3 (w/v) between LP-capped gel and PEGDA was chosen for the optimal results during radical polymerization process for 3D printing at high resolution (90-140 μm in strut thickness) with various complex geometries (lattice, rhombus, and honeycomb). The hydrogel showed excellent properties of self-healing, mechanical strength, biocompatibility, etc. In addition, the long-term release profiles of bioactive molecules were well-controlled by incorporating drugs of high molecular bovine serum albumin (BSA, 21 days, 98.4 ± 0.69%), or small molecule ornidazole (ORN, 14 days, 97.1 ± 1.98%) into the MPLE gel scaffolds for the tests of potential therapeutic applications. More importantly, the MPLE gels represents excellent in vitro cyto-compatibility against osteoblast-like cells (MC3T3) with viability value at 96.43% ± 7.48% over 7 culturing days. For in-vivo studies, the flexible MPLE scaffolds showed significant improvement on angiogenesis with minor inflammatory response after 4-week implantation in mice. CONCLUSION The MPLE gel inks was well-controlled for the fabrication of flexible complex tissue engineering scaffold with high resolutions, shear-thinning, 3D printability and post-printing fidelity, by modulating the composition of the highly adhesive LP-capped gel and inert PEGDA as well as end capping of lipoic acid to the propagating poly(malate-co-propylene oxide) copolymer. The gel ink demonstrated its excellent printability, in vitro/in vivo biocompatibility and mechanical properties as well as sustained drug release from the gel.
Collapse
Affiliation(s)
- Hao Nguyen Tran
- grid.412485.e0000 0000 9760 4919Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - In Gul Kim
- grid.412484.f0000 0001 0302 820XDepartment of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Seoul National University Hospital, Seoul, 03080 Republic of Korea
| | - Jong Heon Kim
- grid.412485.e0000 0000 9760 4919Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Eun-Jae Chung
- grid.412484.f0000 0001 0302 820XDepartment of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Seoul National University Hospital, Seoul, 03080 Republic of Korea
| | - Insup Noh
- grid.412485.e0000 0000 9760 4919Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea ,grid.412485.e0000 0000 9760 4919Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| |
Collapse
|
6
|
Gong F, Lv R, Ma J, Wang X, Qu Y, Zhang C, Xu J, Wang T. Synthesis and Characterization of Water Soluble Diethylenetriamine‐β‐Cyclodextrin/Ethinylestradiol Inclusion Complex. ChemistrySelect 2022. [DOI: 10.1002/slct.202201790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fengrong Gong
- College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| | - Rongyao Lv
- College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| | - Jiayue Ma
- College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| | - Xuehan Wang
- College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| | - Yanmei Qu
- College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| | - Cong Zhang
- College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| | - Juan Xu
- National Research Institute for Family Planning Beijing 100081 P. R. China
| | - Ting Wang
- College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| |
Collapse
|
7
|
Liu Q, Li W, Huang S, Zhao L, Zhang J, Ji C, Ma Q. R- Is Superior to S-Form of α-Lipoic Acid in Anti-Inflammatory and Antioxidant Effects in Laying Hens. Antioxidants (Basel) 2022; 11:antiox11081530. [PMID: 36009249 PMCID: PMC9405457 DOI: 10.3390/antiox11081530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022] Open
Abstract
The development of single enantiomers with high efficiency and low toxic activity has become a hot spot for the development and application of drugs and active additives. The aim of the present study was to investigate the effectiveness of the application of α-lipoic acid with a different optical rotation to alleviate the inflammation response and oxidative stress induced by oxidized fish oil in laying hens. Sixty-four 124-week-old Peking Red laying hens were randomly allocated to four groups with eight replicates of two birds each. The normal group was fed basal diets supplemented with 1% fresh fish oil (FO), and the oxidative stress model group was constructed with diets supplemented with 1% oxidized fish oil (OFO). The two treatment groups were the S-form of the α-lipoic acid model with 1% oxidized fish oil (OFO + S-LA) and the R-form of the α-lipoic acid model with 1% oxidized fish oil (OFO + R-LA) added at 100 mg/kg, respectively. Herein, these results were evaluated by the breeding performance, immunoglobulin, immune response, estrogen secretion, antioxidant factors of the serum and oviduct, and pathological observation of the uterus part of the oviduct. From the results, diets supplemented with oxidized fish oil can be relatively successful in constructing a model of inflammation and oxidative stress. The OFO group significantly increased the levels of the serum inflammatory factor (TNF-α, IL-1β, IL-6, and IFN-γ) and the oxidative factor MDA and decreased the activity of the antioxidant enzyme (T-AOC, T-SOD, GSH-Px, GSH, and CAT) in the oviduct. The addition of both S-LA and R-LA significantly reduced the levels of serum inflammatory factors (TNF-α, IL-1β, IL-6, and IFN-γ), increased the activity of antioxidant indexes (T-AOC, T-SOD, GSH-Px, GSH, and CAT), and decreased the MDA contents in the serum and oviduct. Meanwhile, the supplementation of S-LA and R-LA also mitigated the negative effects of the OFO on the immunoglobulins (IgA and IgM) and serum hormone levels (P and E2). In addition, it was worth noting that the R-LA was significantly more effective than the S-LA in some inflammatory (IL-1β) and antioxidant indices (T-SOD, GSH, and CAT). Above all, both S-LA and R-LA can alleviate the inflammation and oxidative damage caused by oxidative stress in aged laying hens, and R-LA is more effective than S-LA. Thus, these findings will provide basic data for the potential development of α-lipoic acid as a chiral dietary additive for laying hens.
Collapse
|
8
|
Chen Y, Su J, Dong W, Xu D, Cheng L, Mao L, Gao Y, Yuan F. Cyclodextrin-based metal-organic framework nanoparticles as superior carriers for curcumin: Study of encapsulation mechanism, solubility, release kinetics, and antioxidative stability. Food Chem 2022; 383:132605. [PMID: 35413760 DOI: 10.1016/j.foodchem.2022.132605] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/12/2022] [Accepted: 02/28/2022] [Indexed: 11/19/2022]
Abstract
In this paper, we propose a facile program of preparing nanoscale γ-cyclodextrin-based metal-organic frameworks (Nano-CD-MOFs) for the encapsulation of curcumin. Such Nano-CD-MOFs not only possess excellent mono-dispersity and crystalline structure, but also perform superior loading capacity. The results of N2 adsorption-desorption, XRD, DSC, and microtopography are utilized to confirm the presence status of encapsulated curcumin and further reveal the encapsulation mechanism of Nano-CD-MOFs. Curcumin-loaded Nano-CD-MOFs (Cur-Nano-CD-MOFs) dramatically increase curcumin solubility and a top-down uniform dispersion in the dissolution process. The perfect fitting of First-order and Korsmeyer-Peppas models suggests that the release performance of Nano-CD-MOFs is controlled by the loaded quantity of curcumin and related to Fickian diffusion. Moreover, the antioxidative stability of Cur-Nano-CD-MOFs is considerably enhanced even after 120 min of persistent ultraviolet irradiation. Therefore, we suggest that such Nano-CD-MOFs can be promoted as an advanced carrier for the delivery of curcumin or other nutraceuticals.
Collapse
Affiliation(s)
- Yulu Chen
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiaqi Su
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Wenxia Dong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Duoxia Xu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, PR China
| | - Lei Cheng
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, PR China
| | - Like Mao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yanxiang Gao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Fang Yuan
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
9
|
Gao S, Feng W, Sun H, Zong L, Li X, Zhao L, Ye F, Fu Y. Fabrication and Characterization of Antifungal Hydroxypropyl-β-Cyclodextrin/Pyrimethanil Inclusion Compound Nanofibers Based on Electrospinning. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7911-7920. [PMID: 35748509 DOI: 10.1021/acs.jafc.2c01866] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pyrimethanil (PMT) is an anilinopyrimidine bactericide with poor water solubility, which limits its applications. To improve the physical and chemical properties of PMT, hydroxypropyl-β-cyclodextrin/pyrimethanil inclusion compound nanofibers (HPβCD/PMT-IC-NFs) were fabricated via electrospinning. A variety of analytical techniques were used to confirm the formation of the inclusion compound. Scanning electron microscopy image displayed that HPβCD/PMT-IC-NF was homogeneous without particles. Thermogravimetric analysis indicated that the formation of the inclusion compound improved the thermostability of PMT. In addition, the phase solubility test illustrated that the inclusion compound formed by PMT and HPβCD had a stronger water solubility. The antifungal effect test exhibited that HPβCD/PMT-IC-NF had better antifungal properties. The release experiment confirmed that HPβCD/PMT-IC-NF had a sustained-release effect, and the release curve conformed to the first-order kinetic model equation. In short, the fabrication HPβCD/PMT-IC-NF inhibited improved solubility and thermostability of PMT, thus promoting the development of pesticide dosage form to water-based and low-pollution direction.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Weiwei Feng
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Han Sun
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Lei Zong
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoming Li
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Lixia Zhao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
10
|
Nanonutraceuticals — Challenges and Novel Nano-based Carriers for Effective Delivery and Enhanced Bioavailability. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02807-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Fast-dissolving antioxidant nanofibers based on Spirulina protein concentrate and gelatin developed using needleless electrospinning. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Thermal Degradation of Antioxidant Compounds: Effects of Parameters, Thermal Degradation Kinetics, and Formulation Strategies. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02797-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Huang H, Song Y, Zhang Y, Li Y, Li J, Lu X, Wang C. Electrospun Nanofibers: Current Progress and Applications in Food Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1391-1409. [PMID: 35089013 DOI: 10.1021/acs.jafc.1c05352] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrospinning has the advantages of simple manufacturing equipment, a low spinning cost, wide range of spinnable materials, and a controllable mild process, which can continuously fabricate submicron or nanoscale ultrafine polymer fibers without high temperature or high pressure. The obtained nanofibrous films may have a large specific surface area, unique pore structure, and easy-to-modify surface characteristics. This review briefly introduces the types and fiber structures of electrospinning and summarizes the applications of electrospinning for food production (e.g., delivery systems for functional food, filtration of beverages), food packaging (e.g., intelligent packaging, antibacterial packaging, antioxidant packaging), and food analysis (e.g., pathogen detection, antibiotic detection, pesticide residue detection, food compositions analysis), focusing on the advantages of electrospinning applications in food systems. Furthermore, the limitations and future research directions of the technique are discussed.
Collapse
Affiliation(s)
- Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Yudong Song
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Yaqiong Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongxin Li
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Jiali Li
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
14
|
Shalima T, Mishra KA, Kaabel S, Ustrnul L, Bartkova S, Tõnsuaadu K, Heinmaa I, Aav R. Cyclohexanohemicucurbit[8]uril Inclusion Complexes With Heterocycles and Selective Extraction of Sulfur Compounds From Water. Front Chem 2021; 9:786746. [PMID: 34926407 PMCID: PMC8678634 DOI: 10.3389/fchem.2021.786746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Solid-phase extraction that utilizes selective macrocyclic receptors can serve as a useful tool for removal of chemical wastes. Hemicucurbiturils are known to form inclusion complexes with suitably sized anions; however, their use in selective binding of non-charged species is still very limited. In this study, we found that cyclohexanohemicucurbit[8]uril encapsulates five- and six-membered sulfur- and oxygen-containing unsubstituted heterocycles, which is investigated by single-crystal X-ray diffraction, NMR spectroscopy, isothermal titration calorimetry, and thermogravimetry. The macrocycle acts as a promising selective sorption material for the extraction of sulfur heterocycles, such as 1,3-dithiolane and α-lipoic acid, from water.
Collapse
Affiliation(s)
- Tatsiana Shalima
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Kamini A Mishra
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Sandra Kaabel
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Lukas Ustrnul
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Simona Bartkova
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Kaia Tõnsuaadu
- Laboratory of Inorganic Materials, School of Engineering, Institute of Materials and Environmental Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Ivo Heinmaa
- Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Riina Aav
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
15
|
Liu Y, Chen X, Yu DG, Liu H, Liu Y, Liu P. Electrospun PVP-Core/PHBV-Shell Fibers to Eliminate Tailing Off for an Improved Sustained Release of Curcumin. Mol Pharm 2021; 18:4170-4178. [PMID: 34582196 DOI: 10.1021/acs.molpharmaceut.1c00559] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tailing off release in the sustained release of water-insoluble curcumin (Cur) is a significant challenge in the drug delivery system. As a novel solution, core-shell nanodrug containers have aroused many interests due to their potential improvement in drug-sustained release. In this work, a biodegradable polymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and hydrophilic polyvinylpyrrolidone (PVP) were exploited as drug delivery carriers by coaxial electrospinning, and the core-shell drug-loaded fibers exhibited improved sustained release of Cur. A cylindrical morphology and a clear core-shell structure were observed by scanning and transmission electron microscopies. The X-ray diffraction pattern and infrared spectroscopy revealed that Cur existed in amorphous form due to its good compatibility with PHBV and PVP. The in vitro drug release curves confirmed that the core-shell container manipulated Cur in a faster drug release process than that in the traditional PHBV monolithic container. The combination of the material and structure forms a novel nanodrug container with a better sustained release of water-insoluble Cur. This strategy is beneficial for exploiting more functional biomedical materials to improve the drug release behavior.
Collapse
Affiliation(s)
- Yubo Liu
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Xiaohong Chen
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China.,Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China.,Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - Hang Liu
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Yuyang Liu
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Ping Liu
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China.,Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
16
|
Sharma D, Saha S, Satapathy BK. Recent advances in polymer scaffolds for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:342-408. [PMID: 34606739 DOI: 10.1080/09205063.2021.1989569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The review provides insights into current advancements in electrospinning-assisted manufacturing for optimally designing biomedical devices for their prospective applications in tissue engineering, wound healing, drug delivery, sensing, and enzyme immobilization, and others. Further, the evolution of electrospinning-based hybrid biomedical devices using a combined approach of 3 D printing and/or film casting/molding, to design dimensionally stable membranes/micro-nanofibrous assemblies/patches/porous surfaces, etc. is reported. The influence of various electrospinning parameters, polymeric material, testing environment, and other allied factors on the morphological and physico-mechanical properties of electrospun (nano-/micro-fibrous) mats (EMs) and fibrous assemblies have been compiled and critically discussed. The spectrum of operational research and statistical approaches that are now being adopted for efficient optimization of electrospinning process parameters so as to obtain the desired response (physical and structural attributes) has prospectively been looked into. Further, the present review summarizes some current limitations and future perspectives for modeling architecturally novel hybrid 3 D/selectively textured structural assemblies, such as biocompatible, non-toxic, and bioresorbable mats/scaffolds/membranes/patches with apt mechanical stability, as biological substrates for various regenerative and non-regenerative therapeutic devices.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
17
|
Thuekeaw S, Angkanaporn K, Chirachanchai S, Nuengjamnong C. Dual pH responsive via double - layered microencapsulation for controlled release of active ingredients in simulated gastrointestinal tract: A model case of chitosan-alginate microcapsules containing basil oil (Ocimum basilicum Linn.). Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Yang CY, Huang PH, Tseng CH, Yen FL. Topical Artocarpus communis Nanoparticles Improved the Water Solubility and Skin Permeation of Raw A. communis Extract, Improving Its Photoprotective Effect. Pharmaceutics 2021; 13:pharmaceutics13091372. [PMID: 34575454 PMCID: PMC8469634 DOI: 10.3390/pharmaceutics13091372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 11/16/2022] Open
Abstract
Antioxidants from plant extracts are often used as additives in skincare products to prevent skin problems induced by environmental pollutants. Artocarpus communis methanol extract (ACM) has many biological effects, such as antioxidant, anti-inflammatory, wound healing, and photoprotective effects; however, the poor water solubility of raw ACM has limited its applications in medicine and cosmetics. Topical antioxidant nanoparticles are one of the drug-delivery systems for overcoming the poor water solubility of antioxidants for increasing their skin penetration. The present study demonstrated that ACM-loaded hydroxypropyl-β-cyclodextrin and polyvinylpyrrolidone K30 nanoparticles (AHP) were successfully prepared and could effectively increase the skin penetration of ACM through changing the physicochemical characteristics of raw ACM, including reducing the particle size, increasing the surface area, and inducing amorphous transformation. Our results also revealed that AHP had significantly better antioxidant activity than raw ACM for preventing photocytotoxicity because the AHP formulation increased the cellular uptake of the ACM in UVB-irradiated HaCaT keratinocytes. In conclusion, our results suggest that AHP may be used as a good topical antioxidant nanoparticle for delivering ACM into deep layers of the skin for preventing UVB-induced skin problems.
Collapse
Affiliation(s)
- Chun-Yin Yang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (C.-Y.Y.); (P.-H.H.)
| | - Pao-Hsien Huang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (C.-Y.Y.); (P.-H.H.)
| | - Chih-Hua Tseng
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (C.-Y.Y.); (P.-H.H.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
- Department of Pharmacy, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City 801, Taiwan
- Correspondence: (C.-H.T.); (F.-L.Y.); Tel.: +886-7-312-1101 (ext. 2163) (C.-H.T.); +886-7-312-1101 (ext. 2028) (F.-L.Y.)
| | - Feng-Lin Yen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (C.-Y.Y.); (P.-H.H.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
- Correspondence: (C.-H.T.); (F.-L.Y.); Tel.: +886-7-312-1101 (ext. 2163) (C.-H.T.); +886-7-312-1101 (ext. 2028) (F.-L.Y.)
| |
Collapse
|
19
|
Zare M, Dziemidowicz K, Williams GR, Ramakrishna S. Encapsulation of Pharmaceutical and Nutraceutical Active Ingredients Using Electrospinning Processes. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1968. [PMID: 34443799 PMCID: PMC8399548 DOI: 10.3390/nano11081968] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Electrospinning is an inexpensive and powerful method that employs a polymer solution and strong electric field to produce nanofibers. These can be applied in diverse biological and medical applications. Due to their large surface area, controllable surface functionalization and properties, and typically high biocompatibility electrospun nanofibers are recognized as promising materials for the manufacturing of drug delivery systems. Electrospinning offers the potential to formulate poorly soluble drugs as amorphous solid dispersions to improve solubility, bioavailability and targeting of drug release. It is also a successful strategy for the encapsulation of nutraceuticals. This review aims to briefly discuss the concept of electrospinning and recent progress in manufacturing electrospun drug delivery systems. It will further consider in detail the encapsulation of nutraceuticals, particularly probiotics.
Collapse
Affiliation(s)
- Mina Zare
- Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 117581, Singapore
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Karolina Dziemidowicz
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 117581, Singapore
| |
Collapse
|
20
|
Dodero A, Schlatter G, Hébraud A, Vicini S, Castellano M. Polymer-free cyclodextrin and natural polymer-cyclodextrin electrospun nanofibers: A comprehensive review on current applications and future perspectives. Carbohydr Polym 2021; 264:118042. [PMID: 33910745 DOI: 10.1016/j.carbpol.2021.118042] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
The present review discusses the use of cyclodextrins and their derivatives to prepare electrospun nanofibers with specific features. Cyclodextrins, owing to their unique capability to form inclusion complexes with hydrophobic and volatile molecules, can indeed facilitate the encapsulation of bioactive compounds in electrospun nanofibers allowing fast-dissolving products for food, biomedical, and pharmaceutical purposes, filtering materials for wastewater and air purification, as well as a variety of other technological applications. Additionally, cyclodextrins can improve the processability of naturally occurring biopolymers helping the fabrication of "green" materials with a strong industrial relevance. Hence, this review provides a comprehensive state-of-the-art of different cyclodextrins-based nanofibers including those made of pure cyclodextrins, of polycyclodextrins, and those made of natural biopolymer functionalized with cyclodextrins. To this end, the advantages and disadvantages of such approaches and their possible applications are investigated along with the current limitations in the exploitation of electrospinning at the industrial level.
Collapse
Affiliation(s)
- Andrea Dodero
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy
| | - Guy Schlatter
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), CNRS UMR 7515, ECPM - University of Strasbourg, 25 Rue Becquerel, Strasbourg, 67087, France.
| | - Anne Hébraud
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), CNRS UMR 7515, ECPM - University of Strasbourg, 25 Rue Becquerel, Strasbourg, 67087, France
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy.
| |
Collapse
|
21
|
Gallic Acid/2-Hydroxypropyl-β-cyclodextrin Inclusion Complexes Electrospun Nanofibrous Webs: Fast Dissolution, Improved Aqueous Solubility and Antioxidant Property of Gallic Acid. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0014-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Cyclodextrin–phytochemical inclusion complexes: Promising food materials with targeted nutrition and functionality. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Evaluation of Dissolution Profiles of a Newly Developed Solid Oral Immediate-Release Formula Containing Alpha-Lipoic Acid. Processes (Basel) 2021. [DOI: 10.3390/pr9010176] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alpha-lipoic acid (ALA, thioctic acid), a naturally-occurring essential dithiol compound, has become a common ingredient in many pharmaceutical and food supplement products (FSP), used in oxidative stress-dependent pathologies; oral bioavailability of ALA is limited by pharmacokinetic particularities that reduce its therapeutic efficacy-reduced solubility, lack of gastric stability and hepatic degradation, doubled by formulation hinders. The objectives were to develop a solid oral 600 mg ALA FSP to obtain an optimal pharmaceutical profile compared to a reference listed drug (RLD) with a similarity factor f2 50. A comparative dissolution study was performed; an HPLC method was used for ALA quantification. After planning combinatory simulations (formulation stage), two prototype formulas (#1 and #2) were manufactured and further optimized by adjusting ALA physical characteristics and the excipients quantities (#3 and #4) in order to achieve the Quality Target Product Profile. A misshapen of ALA’s in vitro release was observed for #3 Formula (f2 = 31.6); the optimal profile was obtained for Formula #4 (f2 = 58.5). A simple quantitative formula is not enough to assure good ALA bioavailability; the formulation needs multiple compounding modulations under physicochemical compatibility algorithms, with multiple dissolution profiles testing back-ups. It is essential to ensure a formulation with an in vitro dissolution comparable with the RLD, allowing the compound to reach its target level to assure the optimum claimed antioxidant activity of ALA at the cellular level, even for food supplement formulations.
Collapse
|
24
|
Gao S, Liu Y, Jiang J, Li X, Zhao L, Fu Y, Ye F. Encapsulation of thiabendazole in hydroxypropyl-β-cyclodextrin nanofibers via polymer-free electrospinning and its characterization. PEST MANAGEMENT SCIENCE 2020; 76:3264-3272. [PMID: 32378331 DOI: 10.1002/ps.5885] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Thiabendazole (TBZ) is a poorly water-soluble benzimidazole fungicide. However, the water solubility of TBZ can be significantly enhanced by inclusion complexation with cyclodextrins. In this study, a thiabendazole/hydroxypropyl-β-cyclodextrin (TBZ/HPβCD) complex was synthesized and electrospinning was performed to produce a TBZ/HPβCD nanofibrous (TBZ/HPβCD-NF) complex that improved water solubility and antifungal activity. RESULTS The formation of TBZ/HPβCD-NF was characterized by Fourier transform infrared spectroscopy, X-ray diffraction and nuclear magnetic resonance. The morphology of TBZ/HPβCD-NF was studied by scanning electron microscopy. A phase solubility experiment showed that HPβCD exerted a great solubilization effect on TBZ, and TBZ/HPβCD-NF had better antifungal activity compared to that of TBZ alone. CONCLUSIONS In summary, the solid fungicidal nanodispersion prepared in the present study is a new type of formulation that can enhance the water solubility of TBZ. This formulation, which demonstrated potential as a new fast dissolving formulation type with increased efficacy, is expected to be conducive to the sustainable development of agriculture. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, China
| | - Yanyan Liu
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, China
| | - Jingyu Jiang
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, China
| | - Xiaoming Li
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, China
| | - Lixia Zhao
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, China
| | - Ying Fu
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, China
| | - Fei Ye
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, China
| |
Collapse
|
25
|
Balusamy B, Celebioglu A, Senthamizhan A, Uyar T. Progress in the design and development of "fast-dissolving" electrospun nanofibers based drug delivery systems - A systematic review. J Control Release 2020; 326:482-509. [PMID: 32721525 DOI: 10.1016/j.jconrel.2020.07.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Electrospinning has emerged as most viable approach for the fabrication of nanofibers with several beneficial features that are essential to various applications ranging from environment to biomedicine. The electrospun nanofiber based drug delivery systems have shown tremendous advancements over the controlled and sustained release complemented from their high surface area, tunable porosity, mechanical endurance, offer compatible environment for drug encapsulation, biocompatibility, high drug loading and tailorable release characteristics. The dosage formulation of poorly water-soluble drugs often faces several challenges including complete dissolution with maximum therapeutic efficiency over a short period of time especially through oral administration. In this context, challenges associated with the dosage formulation of poorly-water soluble drugs can be addressed through combining the beneficial features of electrospun nanofibers. This review describes major developments progressed in the preparation of electrospun nanofibers based "fast dissolving" drug delivery systems by employing variety of polymers, drug molecules and encapsulation approaches with primary focus on oral delivery. Furthermore, the review also highlights current scientific challenges and provide an outlook with regard to future prospectus.
Collapse
Affiliation(s)
- Brabu Balusamy
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA.
| | - Asli Celebioglu
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| | - Anitha Senthamizhan
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| | - Tamer Uyar
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
26
|
Celebioglu A, Uyar T. Development of ferulic acid/cyclodextrin inclusion complex nanofibers for fast-dissolving drug delivery system. Int J Pharm 2020; 584:119395. [PMID: 32407941 DOI: 10.1016/j.ijpharm.2020.119395] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
Abstract
Production of electrospun nanofibrous mats of cyclodextrin inclusion complexes with the incorporation of drug molecules would enable promising designing of fast dissolving delivery systems (FDDS) for oral treatments. Here, the single-step electrospinning technique has been applied to prepare cyclodextrin inclusion complex nanofibrous mats (CD-IC NM) of ferulic acid from complete aqueous systems without using any polymeric matrix. The free-standing ferulic acid/CD-IC NM have been electrospun from two different modified cyclodextrin derivatives of hydroxypropyl-beta-cyclodextrin (HP-β-CD) and hydroxypropyl-gamma-cyclodextrin (HP-γ-CD). The initial content of ferulic acid (1/1 ferulic acid/CD (molar ratio) and ~11% (w/w)) has been protected in case of both ferulic acid/CD-IC NM and so the electrospun nanofibrous mats have been fabricated by the ~100% loading efficiency. It has been detected from the in vitro release and disintegration tests that, the amorphous state of ferulic acid based on inclusion complex formation, and the highly porous feature and high surface area of nanofibrous mats have ensured the fast dissolution/release of ferulic acid and disintegration of nanofibrous mats into the liquid medium and artificial saliva. Herein, HP-γ-CD has formed inclusion complexes with ferulic acid more favorably than HP-β-CD and this has leaded to the existence of some un-complexed ferulic acid crystals in ferulic acid/HP-β-CD-IC NM while, ferulic acid has been completely complexed and is in amorphous state in ferulic acid/HP-γ-CD-IC NM. Furthermore, the thermal stability of ferulic acid has been enhanced as an inclusion complexation aid observed by the shift of thermal degradation temperature of ferulic acid from the range of ~120-200 °C to ~140-280 °C.
Collapse
Affiliation(s)
- Asli Celebioglu
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, United States.
| | - Tamer Uyar
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
27
|
Celebioglu A, Uyar T. Design of polymer-free Vitamin-A acetate/cyclodextrin nanofibrous webs: antioxidant and fast-dissolving properties. Food Funct 2020; 11:7626-7637. [DOI: 10.1039/d0fo01776k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polymer-free inclusion complex nanofibers of Vitamin-A acetate/cyclodextrin were prepared having fast-dissolving and enhanced antioxidant properties for the purpose of new-generation food/dietary supplement systems.
Collapse
Affiliation(s)
- Asli Celebioglu
- Department of Fiber Science & Apparel Design
- College of Human Ecology
- Cornell University
- Ithaca
- USA
| | - Tamer Uyar
- Department of Fiber Science & Apparel Design
- College of Human Ecology
- Cornell University
- Ithaca
- USA
| |
Collapse
|