1
|
Wang Y, Ma CM, Yang Y, Wang B, Liu XF, Wang Y, Bian X, Zhang G, Zhang N. Effect of high hydrostatic pressure treatment on food composition and applications in food industry: A review. Food Res Int 2024; 195:114991. [PMID: 39277253 DOI: 10.1016/j.foodres.2024.114991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
Nowadays, with the diversification of nutritious and healthy foods, consumers are increasingly seeking clean-labeled products. High hydrostatic pressure (HHP) as a cold sterilization technology can effectively sterilize and inactivate enzymes, which is conducive to the production of high-quality and safe food products with extended shelf life. This technology reduces the addition of food additives and contributes to environmental protection. Moreover, HHP enhances the content and bioavailability of nutrients, reduces the anti-nutritional factors and the risk of food allergen concerns. Therefore, HHP is widely used in the processing of fruit and vegetable juice drinks, alcoholic, meat products and aquatic products, etc. A better understanding of the influence of HHP on food composition and applications can guide the development of food industry and contribute to the development of non-thermally processed and environmentally friendly foods.
Collapse
Affiliation(s)
- Yuan Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Chun-Min Ma
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xiao-Fei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yan Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
2
|
Quintieri L, Caputo L, Nicolotti O. Recent Advances in the Discovery of Novel Drugs on Natural Molecules. Biomedicines 2024; 12:1254. [PMID: 38927461 PMCID: PMC11200856 DOI: 10.3390/biomedicines12061254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Natural products (NPs) are always a promising source of novel drugs for tackling unsolved diseases [...].
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council (CNR), Via G. Amendola, 122/O, 70126 Bari, Italy;
| | - Leonardo Caputo
- Institute of Sciences of Food Production, National Research Council (CNR), Via G. Amendola, 122/O, 70126 Bari, Italy;
| | - Orazio Nicolotti
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, 70125 Bari, Italy;
| |
Collapse
|
3
|
Liu J, Song W, Gao X, Sun J, Liu C, Fang L, Wang J, Shi J, Leng Y, Liu X, Min W. A combined in vitro and in silico study of the inhibitory mechanism of angiotensin-converting enzyme with peanut peptides. Int J Biol Macromol 2024; 268:131901. [PMID: 38677685 DOI: 10.1016/j.ijbiomac.2024.131901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/06/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Food-derived peptides with low molecular weight, high bioavailability, and good absorptivity have been exploited as angiotensin-converting enzyme (ACE) inhibitors. In the present study, in-vitro inhibition kinetics of peanut peptides, in silico screening, validation of ACE inhibitory activity, molecular dynamics (MD) simulations, and HUVEC cells were performed to systematically identify the inhibitory mechanism of ACE interacting with peanut peptides. The results indicate that FPHPP, FPHY, and FPHFD peptides have good thermal, pH, and digestive stability. MD trajectories elucidate the dynamic correlation between peptides and ACE and verify the specific binding interaction. Noteworthily, FPHPP is the best inhibitor with a strongest binding affinity and significantly increases NO, SOD production, and AT2R expression, and decreases ROS, MDA, ET-1 levels, ACE, and AT1R accumulation in Ang II-injury HUVEC cells.
Collapse
Affiliation(s)
- Jiale Liu
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Wentian Song
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Xue Gao
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jiaoyan Sun
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Chunlei Liu
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Li Fang
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Ji Wang
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Junhua Shi
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yue Leng
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Xiaoting Liu
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China.
| | - Weihong Min
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China; College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
4
|
Quintieri L, Fanelli F, Monaci L, Fusco V. Milk and Its Derivatives as Sources of Components and Microorganisms with Health-Promoting Properties: Probiotics and Bioactive Peptides. Foods 2024; 13:601. [PMID: 38397577 PMCID: PMC10888271 DOI: 10.3390/foods13040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Milk is a source of many valuable nutrients, including minerals, vitamins and proteins, with an important role in adult health. Milk and dairy products naturally containing or with added probiotics have healthy functional food properties. Indeed, probiotic microorganisms, which beneficially affect the host by improving the intestinal microbial balance, are recognized to affect the immune response and other important biological functions. In addition to macronutrients and micronutrients, biologically active peptides (BPAs) have been identified within the amino acid sequences of native milk proteins; hydrolytic reactions, such as those catalyzed by digestive enzymes, result in their release. BPAs directly influence numerous biological pathways evoking behavioral, gastrointestinal, hormonal, immunological, neurological, and nutritional responses. The addition of BPAs to food products or application in drug development could improve consumer health and provide therapeutic strategies for the treatment or prevention of diseases. Herein, we review the scientific literature on probiotics, BPAs in milk and dairy products, with special attention to milk from minor species (buffalo, sheep, camel, yak, donkey, etc.); safety assessment will be also taken into consideration. Finally, recent advances in foodomics to unveil the probiotic role in human health and discover novel active peptide sequences will also be provided.
Collapse
Affiliation(s)
| | - Francesca Fanelli
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (L.Q.); (L.M.); (V.F.)
| | | | | |
Collapse
|
5
|
Tacias-Pascacio VG, Castañeda-Valbuena D, Tavano O, Murcia ÁB, Torrestina-Sánchez B, Fernandez-Lafuente R. Peptides with biological and technofunctional properties produced by bromelain hydrolysis of proteins from different sources: A review. Int J Biol Macromol 2023; 253:127244. [PMID: 37806416 DOI: 10.1016/j.ijbiomac.2023.127244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Bromelains are cysteine peptidases with endopeptidase action (a subfamily of papains), obtained from different parts of vegetable belonging to the Bromeliaceae family. They have some intrinsic medical activity, but this review is focused on their application (individually or mixed with other proteases) to produce bioactive peptides. When compared to other proteases, perhaps due to the fact that they are commercialized as an extract containing several proteases, the hydrolysates produced by this enzyme tends to have higher bioactivities than other common proteases. The peptides and the intensity of their final properties depend on the substrate protein and reaction conditions, being the degree of hydrolysis a determining parameter (but not always positive or negative). The produced peptides may have diverse activities such as antioxidant, antitumoral, antihypertensive or antimicrobial ones, among others or they may be utilized to improve the organoleptic properties of foods and feeds. Evolution of the use of this enzyme in this application is proposed to be based on a more intense direct application of Bromeliaceae extract, without the cost associated to enzyme purification, and the use of immobilized biocatalysts of the enzyme by simplifying the enzyme recovery and reuse, and also making the sequential hydrolysis using diverse proteases possible.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Daniel Castañeda-Valbuena
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | | | | |
Collapse
|
6
|
Olvera-Rosales LB, Pérez-Escalante E, Castañeda-Ovando A, Contreras-López E, Cruz-Guerrero AE, Regal-López P, Cardelle-Cobas A, González-Olivares LG. ACE-Inhibitory Activity of Whey Proteins Fractions Derived of Fermentation by Lacticaseibacillus rhamnosus GG and Streptococcus thermophilus SY-102. Foods 2023; 12:2416. [PMID: 37372627 DOI: 10.3390/foods12122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Many studies have reported the benefits of probiotic microorganisms and the production of angiotensin-converting enzyme (ACE) inhibitors. Determining the proteolytic and ACE inhibition capacities during whey fermentation was the goal of the study. Lacticaseibacillus rhamnosus GG, Streptococcus thermophilus SY-102, and both bacteria together were initially inoculated into whey, reaching an initial concentration of 108 CFU per milliliter in each fermentation system. Through the use of TNBS, SDS-PAGE, and SEC-HPLC methods, the proteolytic profile was examined. An in vitro investigation was performed to test the ACE inhibition capacity. With S. thermophilus, the logarithmic phase of microbial development was shorter than with L. rhamnosus (6 and 12 h, respectively). The logarithmic phase in the co-culture fermentation, however, was extended to 24 h. There were no significant differences in pH between the fermentations. However, the co-culture had a greater concentration of protein hydrolysis (453 ± 0.06 μg/mL), as indicated by the amount of free amino groups. Similarly, this fermentation produced more low molecular weight peptides. The higher inhibition activity, which increased at the conclusion of the fermentation with the co-culture and reached 53.42%, was influenced by the higher peptide synthesis. These findings highlighted the significance of creating useful co-culture products.
Collapse
Affiliation(s)
- Laura Berenice Olvera-Rosales
- Área Académica de Química, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo 420390, Mexico
| | - Emmanuel Pérez-Escalante
- Área Académica de Química, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo 420390, Mexico
| | - Araceli Castañeda-Ovando
- Área Académica de Química, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo 420390, Mexico
| | - Elizabeth Contreras-López
- Área Académica de Química, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo 420390, Mexico
| | - Alma Elizabeth Cruz-Guerrero
- Departamento de Biotecnología, División de Ciencias Biológicas y de la Salud, Unidad Iztapalapa, Universidad Autónoma Metropolitana, Ciudad de México 09340, Mexico
| | - Patricia Regal-López
- Laboratorio de Higiene, Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade da Santiago de Compostela, 27002 Lugo, Spain
| | - Alejandra Cardelle-Cobas
- Laboratorio de Higiene, Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade da Santiago de Compostela, 27002 Lugo, Spain
| | - Luis Guillermo González-Olivares
- Área Académica de Química, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo 420390, Mexico
| |
Collapse
|
7
|
Quintieri L, Nitride C, De Angelis E, Lamonaca A, Pilolli R, Russo F, Monaci L. Alternative Protein Sources and Novel Foods: Benefits, Food Applications and Safety Issues. Nutrients 2023; 15:nu15061509. [PMID: 36986239 PMCID: PMC10054669 DOI: 10.3390/nu15061509] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The increasing size of the human population and the shortage of highly valuable proteinaceous ingredients has prompted the international community to scout for new, sustainable, and natural protein resources from invertebrates (e.g., insects) and underutilized legume crops, unexploited terrestrial and aquatic weeds, and fungi. Insect proteins are known for their nutritional value, being rich in proteins with a good balance of essential amino acids and being a valuable source of essential fatty acids and trace elements. Unconventional legume crops were found rich in nutritional, phytochemical, and therapeutic properties, showing excellent abilities to survive extreme environmental conditions. This review evaluates the recent state of underutilized legume crops, aquatic weeds, fungi, and insects intended as alternative protein sources, from ingredient production to their incorporation in food products, including their food formulations and the functional characteristics of alternative plant-based proteins and edible insect proteins as novel foods. Emphasis is also placed on safety issues due to the presence of anti-nutritional factors and allergenic proteins in insects and/or underutilized legumes. The functional and biological activities of protein hydrolysates from different protein sources are reviewed, along with bioactive peptides displaying antihypertensive, antioxidant, antidiabetic, and/or antimicrobial activity. Due to the healthy properties of these foods for the high abundance of bioactive peptides and phytochemicals, more consumers are expected to turn to vegetarianism or veganism in the future, and the increasing demand for such products will be a challenge for the future.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Chiara Nitride
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Antonella Lamonaca
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Rosa Pilolli
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Linda Monaci
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
8
|
Aderinola TA, Duodu KG. Production, health-promoting properties and characterization of bioactive peptides from cereal and legume grains. Biofactors 2022; 48:972-992. [PMID: 36161374 PMCID: PMC9828255 DOI: 10.1002/biof.1889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/07/2022] [Indexed: 01/12/2023]
Abstract
The search for bioactive components for the development of functional foods and nutraceuticals has received tremendous attention. This is due to the increasing awareness of their therapeutic potentials, such as antioxidant, anti-inflammatory, antihypertensive, anti-cancer properties, etc. Food proteins, well known for their nutritional importance and their roles in growth and development, are also sources of peptide sequences with bioactive properties and physiological implications. Cereal and legume grains are important staples that are processed and consumed in various forms worldwide. However, they have received little attention compared to other foods. This review therefore is geared towards surveying the literature for an appraisal of research conducted on bioactive peptides in cereal and legume grains in order to identify what the knowledge gaps are. Studies on bioactive peptides from cereal and legume grains are still quite limited when compared to other food items and most of the research already carried out have been done without identifying the sequence of the bioactive peptides. However, the reports on the antioxidative, anticancer/inflammatory, antihypertensive, antidiabetic properties show there is much prospect of obtaining potent bioactive peptides from cereal and legume grains which could be utilized in the development of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Taiwo Ayodele Aderinola
- Department of Food Science and Technology, School of Agriculture and Agricultural TechnologyThe Federal University of TechnologyAkureNigeria
- Department of Consumer and Food Sciences, Faculty of Natural and Agricultural SciencesUniversity of PretoriaHatfieldSouth Africa
| | - Kwaku Gyebi Duodu
- Department of Consumer and Food Sciences, Faculty of Natural and Agricultural SciencesUniversity of PretoriaHatfieldSouth Africa
| |
Collapse
|
9
|
Olvera-Rosales LB, Cruz-Guerrero AE, García-Garibay JM, Gómez-Ruíz LC, Contreras-López E, Guzmán-Rodríguez F, González-Olivares LG. Bioactive peptides of whey: obtaining, activity, mechanism of action, and further applications. Crit Rev Food Sci Nutr 2022; 63:10351-10381. [PMID: 35612490 DOI: 10.1080/10408398.2022.2079113] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive peptides derived from diverse food proteins have been part of diverse investigations. Whey is a rich source of proteins and components related to biological activity. It is known that proteins have effects that promote health benefits. Peptides derived from whey proteins are currently widely studied. These bioactive peptides are amino acid sequences that are encrypted within the first structure of proteins, which required hydrolysis for their release. The hydrolysis could be through in vitro or in vivo enzymatic digestion and using microorganisms in fermented systems. The biological activities associated with bio-peptides include immunomodulatory properties, antibacterial, antihypertensive, antioxidant and opioid, etc. These functions are related to general conditions of health or reduced risk of certain chronic illnesses. To determine the suitability of these peptides/ingredients for applications in food technology, clinical studies are required to evaluate their bioavailability, health claims, and safety of them. This review aimed to describe the biological importance of whey proteins according to the incidence in human health, their role as bioactive peptides source, describing methods, and obtaining technics. In addition, the paper exposes biochemical mechanisms during the activity exerted by biopeptides of whey, and their application trends.
Collapse
Affiliation(s)
- L B Olvera-Rosales
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| | - A E Cruz-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - J M García-Garibay
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
- Departamento de Ciencias de la Alimentación Lerma de Villada, Universidad Autónoma Metropolitana-Lerma, Edo. de México, México
| | - L C Gómez-Ruíz
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - E Contreras-López
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| | - F Guzmán-Rodríguez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - L G González-Olivares
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| |
Collapse
|
10
|
Rational Discovery of Antiviral Whey Protein-Derived Small Peptides Targeting the SARS-CoV-2 Main Protease. Biomedicines 2022; 10:biomedicines10051067. [PMID: 35625804 PMCID: PMC9139167 DOI: 10.3390/biomedicines10051067] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/30/2022] [Accepted: 04/30/2022] [Indexed: 11/17/2022] Open
Abstract
In the present work, and for the first time, three whey protein-derived peptides (IAEK, IPAVF, MHI), endowed with ACE inhibitory activity, were examined for their antiviral activity against the SARS-CoV-2 3C-like protease (3CLpro) and Human Rhinovirus 3C protease (3Cpro) by employing molecular docking. Computational studies showed reliable binding poses within 3CLpro for the three investigated small peptides, considering docking scores as well as the binding free energy values. Validation by in vitro experiments confirmed these results. In particular, IPAVF exhibited the highest inhibitory activity by returning an IC50 equal to 1.21 μM; it was followed by IAEK, which registered an IC50 of 154.40 μM, whereas MHI was less active with an IC50 equal to 2700.62 μM. On the other hand, none of the assayed peptides registered inhibitory activity against 3Cpro. Based on these results, the herein presented small peptides are introduced as promising molecules to be exploited in the development of “target-specific antiviral” agents against SARS-CoV-2.
Collapse
|
11
|
López EC, Eberhardt A, Marino F, Mammarella EJ, Sihufe GA, Manzo RM. Physicochemical characterisation of ACE‐inhibitory and antioxidant peptides from Alcalase
®
whey protein hydrolysates using fractionation strategies. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Emilse C López
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad Nacional del Litoral (UNL) Güemes 3450 Santa Fe S3000GLN Argentina
| | - Agustina Eberhardt
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad Nacional del Litoral (UNL) Güemes 3450 Santa Fe S3000GLN Argentina
| | - Fernanda Marino
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad Nacional del Litoral (UNL) Güemes 3450 Santa Fe S3000GLN Argentina
| | - Enrique J Mammarella
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad Nacional del Litoral (UNL) Güemes 3450 Santa Fe S3000GLN Argentina
| | - Guillermo A Sihufe
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad Nacional del Litoral (UNL) Güemes 3450 Santa Fe S3000GLN Argentina
| | - Ricardo M Manzo
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad Nacional del Litoral (UNL) Güemes 3450 Santa Fe S3000GLN Argentina
| |
Collapse
|
12
|
High voltage electrical treatments can eco-efficiently promote the production of high added value peptides during chymotryptic hydrolysis of β-lactoglobulin. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
He Z, Liu G, Qiao Z, Cao Y, Song M. Novel Angiotensin-I Converting Enzyme Inhibitory Peptides Isolated From Rice Wine Lees: Purification, Characterization, and Structure-Activity Relationship. Front Nutr 2021; 8:746113. [PMID: 34568409 PMCID: PMC8460919 DOI: 10.3389/fnut.2021.746113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/17/2021] [Indexed: 11/24/2022] Open
Abstract
The bioactive peptides that can inhibit angiotensin-I converting enzyme (ACE, EC. 3. 4.15.1) are considered as possible cures of hypertension. Food-derived angiotensin-I converting enzyme inhibitory (ACEi) peptides have gained more attention because of their reduced side effects. In this study, we reported the method for purifying ACEi peptides from the lees of traditional Chinese rice wine and evaluated the product's biochemical properties. After three steps of reversed-phase high-performance liquid chromatography (RP-HPLC), for the first time, we isolated, purified, and identified two novel peptides: LIIPQH and LIIPEH, both of which showed strong ACEi activity (IC50-values of 120.10 ± 9.31 and 60.49±5.78 μg/ml, respectively). They were further categorized as mixed-type ACE inhibitors and were stable against both ACE and gastrointestinal enzymes during in vitro digestion. Together, these results suggest that the rice wine lees that produced as a by-product during rice wine production can be utilized in various fields related to functional foods and antihypertensive medicine.
Collapse
Affiliation(s)
- Zeqi He
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Zijiao Qiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Xiang L, Qiu Z, Zhao R, Zheng Z, Qiao X. Advancement and prospects of production, transport, functional activity and structure-activity relationship of food-derived angiotensin converting enzyme (ACE) inhibitory peptides. Crit Rev Food Sci Nutr 2021; 63:1437-1463. [PMID: 34521280 DOI: 10.1080/10408398.2021.1964433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Food-derived antihypertensive peptides have attracted increasing attention in functional foods for health promotion, due to their high biological activity, low toxicity and easy metabolism in the human body. Angiotensin converting enzyme (ACE) is a key enzyme that causes the increase in blood pressure in mammals. However, few reviews have summarized the current understanding of ACE inhibitory peptides and their knowledge gaps. This paper focuses on the food origins and production methods of ACE inhibitory peptides. Compared with conventional methods, the advanced technologies and emerging bioinformatics approaches have recently been applied for efficient and targeted release of ACE inhibitory peptides from food proteins. Furthermore, the transport and underlying mechanisms of ACE inhibitory peptides are emphatically described. Molecular modeling and the Michaelis-Menten equation can provide information on how ACE inhibitors function. Finally, we discuss the structure-activity relationships and other bio-functional properties of ACE inhibitory peptides. Molecular weight, hydrophobic amino acid residues, charge, amino acid composition and sequence (especially at the C-terminal and N-terminal) have a significant influence on ACE inhibitory activity. Some studies are required to increase productivity, improve bioavailability of peptides, evaluate their bio-accessibility and efficiency on reducing blood pressure to provide a reference for the development and application of health products and auxiliary treatment drugs.
Collapse
Affiliation(s)
- Lu Xiang
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhichang Qiu
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Renjie Zhao
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhenjia Zheng
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xuguang Qiao
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
15
|
Cui W, Aouidate A, Wang S, Yu Q, Li Y, Yuan S. Discovering Anti-Cancer Drugs via Computational Methods. Front Pharmacol 2020; 11:733. [PMID: 32508653 PMCID: PMC7251168 DOI: 10.3389/fphar.2020.00733] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/01/2020] [Indexed: 12/24/2022] Open
Abstract
New drug discovery has been acknowledged as a complicated, expensive, time-consuming, and challenging project. It has been estimated that around 12 years and 2.7 billion USD, on average, are demanded for a new drug discovery via traditional drug development pipeline. How to reduce the research cost and speed up the development process of new drug discovery has become a challenging, urgent question for the pharmaceutical industry. Computer-aided drug discovery (CADD) has emerged as a powerful, and promising technology for faster, cheaper, and more effective drug design. Recently, the rapid growth of computational tools for drug discovery, including anticancer therapies, has exhibited a significant and outstanding impact on anticancer drug design, and has also provided fruitful insights into the area of cancer therapy. In this work, we discussed the different subareas of the computer-aided drug discovery process with a focus on anticancer drugs.
Collapse
Affiliation(s)
- Wenqiang Cui
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Adnane Aouidate
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shouguo Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qiuliyang Yu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shuguang Yuan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
16
|
Zheng Y, Zhang Y, San S. Efficacy of a Novel ACE-Inhibitory Peptide from Sargassum Maclurei in Hypertension and Reduction of Intracellular Endothelin-1. Nutrients 2020; 12:E653. [PMID: 32121212 PMCID: PMC7146574 DOI: 10.3390/nu12030653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Sargassum maclurei is a potential protein resource because of its high protein content and relatively balanced amino acid composition. To promote its usage in food, medical, or other industries, S. maclurei protein was hydrolyzed by pepsin and papain to obtain bioactive peptides. The S. maclurei protein hydrolysates (SMPHs) were purified using gel chromatography and reversed-phase high performance liquid chromatography (RP-HPLC), and 12 major fractions were obtained. The fraction D11 with the highest angiotensin I-converting enzyme (ACE) inhibition (61.59%, at 1 mg/ mL) was subjected to liquid chromatography-mass spectrometry (LC-MS/MS) analysis, and about 17 peptides were identified, of which the RWDISQPY (1063.5 Da) was chosen to be synthesized based on in silico analysis. The RWDISQPY demonstrated high ACE inhibition ability (IC50: 72.24 μM) with competitive inhibition mode, and could effectively (p < 0.05) lower the systolic blood pressure and diastolic pressure of spontaneously hypertensive rats at the concentration of 150 mg/kg body weight. The results of the molecular docking simulation demonstrated that RWDISQPY could bind with the active sites S1 and S2 of ACE via short hydrogen bonds. Moreover, RWDISQPY showed acceptable endothelin-1 suppressing capacity (26.21% at 1.5 mg/mL). These results indicate that S. maclurei could be developed into functional foods such as antihypertensive products.
Collapse
Affiliation(s)
- Yajun Zheng
- Food Science Institute of Shanxi Normal University, Linfen 041004, China
| | - Yufeng Zhang
- Coconut Research Institute of Chinese Tropical Agriculture Academic, Haikou 570100, China;
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650093, China;
| | - Sang San
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650093, China;
| |
Collapse
|