1
|
Bedewy WA, Mulawka JW, Adler MJ. Classifying covalent protein binders by their targeted binding site. Bioorg Med Chem Lett 2024; 117:130067. [PMID: 39667507 DOI: 10.1016/j.bmcl.2024.130067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Covalent protein targeting represents a powerful tool for protein characterization, identification, and activity modulation. The safety of covalent therapeutics was questioned for many years due to the possibility of off-target binding and subsequent potential toxicity. Researchers have recently, however, demonstrated many covalent binders as safe, potent, and long-acting therapeutics. Moreover, they have achieved selective targeting among proteins with high structural similarities, overcome mutation-induced resistance, and obtained higher potency compared to non-covalent binders. In this review, we highlight the different classes of binding sites on a target protein that could be addressed by a covalent binder. Upon folding, proteins generate various concavities available for covalent modifications. Selective targeting to a specific site is driven by differences in the geometry and physicochemical properties of the binding pocket residues as well as the geometry and reactivity of the covalent modifier "warhead". According to the warhead reactivity and the nature of the binding region, covalent binders can alter or lock a targeted protein conformation and inhibit or enhance its activity. We survey these various modification sites using case studies of recently discovered covalent binders, bringing to the fore the versatile application of covalent protein binders with respect to drug discovery approaches.
Collapse
Affiliation(s)
- Walaa A Bedewy
- Department of Chemistry & Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Egypt.
| | - John W Mulawka
- Department of Chemistry & Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Marc J Adler
- Department of Chemistry & Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
2
|
Patel DT, Stogios PJ, Jaroszewski L, Urbanus ML, Sedova M, Semper C, Le C, Takkouche A, Ichii K, Innabi J, Patel DH, Ensminger AW, Godzik A, Savchenko A. Global atlas of predicted functional domains in Legionella pneumophila Dot/Icm translocated effectors. Mol Syst Biol 2024:10.1038/s44320-024-00076-z. [PMID: 39562741 DOI: 10.1038/s44320-024-00076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
Legionella pneumophila utilizes the Dot/Icm type IVB secretion system to deliver hundreds of effector proteins inside eukaryotic cells to ensure intracellular replication. Our understanding of the molecular functions of the largest pathogenic arsenal known to the bacterial world remains incomplete. By leveraging advancements in 3D protein structure prediction, we provide a comprehensive structural analysis of 368 L. pneumophila effectors, representing a global atlas of predicted functional domains summarized in a database ( https://pathogens3d.org/legionella-pneumophila ). Our analysis identified 157 types of diverse functional domains in 287 effectors, including 159 effectors with no prior functional annotations. Furthermore, we identified 35 cryptic domains in 30 effector models that have no similarity with experimentally structurally characterized proteins, thus, hinting at novel functionalities. Using this analysis, we demonstrate the activity of thirteen functional domains, including three cryptic domains, predicted in L. pneumophila effectors to cause growth defects in the Saccharomyces cerevisiae model system. This illustrates an emerging strategy of exploring synergies between predictions and targeted experimental approaches in elucidating novel effector activities involved in infection.
Collapse
Affiliation(s)
- Deepak T Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Peter J Stogios
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Lukasz Jaroszewski
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Malene L Urbanus
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Mayya Sedova
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Cameron Semper
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Cathy Le
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Abraham Takkouche
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Keita Ichii
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Julie Innabi
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Dhruvin H Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Alexander W Ensminger
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G 1M1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada.
| | - Adam Godzik
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA.
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada.
| |
Collapse
|
3
|
Aho N, Groenhof G, Buslaev P. What Is the Protonation State of Proteins in Crystals? Insights from Constant pH Molecular Dynamics Simulations. J Phys Chem B 2024; 128:11124-11133. [PMID: 39480441 DOI: 10.1021/acs.jpcb.4c05947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
X-ray crystallography is an important technique to determine the positions of atoms in a protein crystal. However, because the native environment in which proteins function, is not a crystal, but a solution, it is not a priori clear if the crystal structure represents the functional form of the protein. Because the protein structure and function often depend critically on the pH, the question arises whether proton affinities are affected by crystallization. X-ray diffraction usually does not reveal protons, which makes it difficult to experimentally measure pKa shifts in crystals. Here, we investigate whether this challenge can be addressed by performing in silico titration with constant pH molecular dynamics (MD) simulations. We compare the computed pKa values of proteins between solution and crystal environment and analyze these differences in the context of molecular interactions. For the proteins considered in this work, pKa shifts were mostly found for residues at the crystal interfaces, where the environment is more apolar in the crystal than in water. Although convergence was an obstacle, our simulations suggest that in principle it is possible to apply constant pH MD to protein crystals routinely and assess the effect of crystallization on protein function more systematically than with standard MD simulations. We also highlight technical challenges that need to be addressed to make MD simulations of crystals more reliable.
Collapse
Affiliation(s)
- Noora Aho
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, 40014 Jyväskylä, Finland
- Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Gerrit Groenhof
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Pavel Buslaev
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, 40014 Jyväskylä, Finland
| |
Collapse
|
4
|
Froney MM, Cook CR, Cadiz AM, Flinter KA, Ledeboer ST, Chan B, Burris LE, Hardy BP, Pearce KH, Wardell AC, Golitz BT, Jarstfer MB, Pattenden SG. A First-in-Class High-Throughput Screen to Discover Modulators of the Alternative Lengthening of Telomeres (ALT) Pathway. ACS Pharmacol Transl Sci 2024; 7:2799-2819. [PMID: 39296266 PMCID: PMC11406699 DOI: 10.1021/acsptsci.4c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024]
Abstract
Telomeres are a protective cap that prevents chromosome ends from being recognized as double-stranded breaks. In somatic cells, telomeres shorten with each cell division due to the end replication problem, which eventually leads to senescence, a checkpoint proposed to prevent uncontrolled cell growth. Tumor cells avoid telomere shortening by activating one of two telomere maintenance mechanisms (TMMs): telomerase reactivation or alternative lengthening of telomeres (ALT). TMMs are a viable target for cancer treatment as they are not active in normal, differentiated cells. Whereas there is a telomerase inhibitor currently undergoing clinical trials, there are no known ALT inhibitors in development, partially because the complex ALT pathway is still poorly understood. For cancers such as neuroblastoma and osteosarcoma, the ALT-positive status is associated with an aggressive phenotype and few therapeutic options. Thus, methods that characterize the key biological pathways driving ALT will provide important mechanistic insight. We have developed a first-in-class phenotypic high-throughput screen to identify small-molecule inhibitors of ALT. Our screen measures relative C-circle level, an ALT-specific biomarker, to detect changes in ALT activity induced by compound treatment. To investigate epigenetic mechanisms that contribute to ALT, we screened osteosarcoma and neuroblastoma cells against an epigenetic-targeted compound library. Hits included compounds that target chromatin-regulating proteins and DNA damage repair pathways. Overall, the high-throughput C-circle assay will help expand the repertoire of potential ALT-specific therapeutic targets and increase our understanding of ALT biology.
Collapse
Affiliation(s)
- Merrill M Froney
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christian R Cook
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alyssa M Cadiz
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Katherine A Flinter
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sara T Ledeboer
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bianca Chan
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lauren E Burris
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brian P Hardy
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Medicinal Chemistry, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kenneth H Pearce
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Medicinal Chemistry, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexis C Wardell
- UNC Lineberger Comprehensive Cancer Center, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brian T Golitz
- UNC Lineberger Comprehensive Cancer Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Michael B Jarstfer
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Samantha G Pattenden
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Zhang R, Yang L, Xiao X, Liu H. Dissipative Particle Dynamics Simulation of Protein Folding in Explicit and Implicit Solvents: Coarse-Grained Model for Atomic Resolution. J Chem Theory Comput 2024. [PMID: 39053012 DOI: 10.1021/acs.jctc.4c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Advancements have been made to dissipative particle dynamics (DPD), a robust coarse-grained (CG) simulation method, to study the folded structures of four miniproteins (1L2Y, 1WN8, 1YRF, and 2I9M) in explicit and implicit solvents. In this endeavor, we aim to establish model parametrization and enhance computational efficiency. Unlike traditional CG models that use empirical force parameters, ex-force parameters (r0(ex), a ~ , δd, δp) of DPD particles constructed for specific research purposes can be obtained from atomistic molecular dynamics simulations. On the other hand, im-force parameters (r0(im), c, σ) can be derived from ex-DPD simulations, according to the underlying thermodynamic theory. Based on a mapping scheme proposed for the modeling of amino acids, all-atom proteins can be converted into a CG model. Both ex-/im-DPDs are then carried out to investigate the folding pathways of the four mini-proteins. Structural analysis of the RMSDs shows that the im-simulated proteins have greater structural similarity to native proteins than the ex-simulated ones. The constructed CG models achieve a resolution of Angstrom (Å), a level normally associated with atomic models. Additionally, speed tests reveal that im-DPD accelerates the simulation process and significantly improves simulation efficiency.
Collapse
Affiliation(s)
- Ruzhuang Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou City, Hainan Province 570228, PR China
| | - Li Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Xingqing Xiao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou City, Hainan Province 570228, PR China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
6
|
Adokoh CK, Boadu A, Asiamah I, Agoni C. Synthesis and characterization of gold(I) thiolate derivatives and bimetallic complexes for HIV inhibition. Front Chem 2024; 12:1424019. [PMID: 39119520 PMCID: PMC11306053 DOI: 10.3389/fchem.2024.1424019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction: The human immunodeficiency virus (HIV) remains a significant global health concern, with a reported high infection rate of 38.4 million cases globally; an estimated 2 million new infections and approximately 700,000 HIV/AIDS-related deaths were reported in 2021. Despite the advent of anti-retroviral therapy (ART), HIV/AIDS persists as a chronic disease. To combat this, several studies focus on developing inhibitors targeting various stages of the HIV infection cycle, including HIV-1 protease. This study aims to synthesize and characterize novel glyco diphenylphosphino metal complexes with potential HIV inhibitory properties. Method: A series of new gold(I) thiolate derivatives and three bimetallic complexes, incorporating amino phosphines and thiocarbohydrate as auxiliary ligands, were synthesized using procedures described by Jiang, et al. (2009) and Coetzee et al. (2007). Structural elucidation and purity assessment of the synthesized compounds (1-11) were conducted using micro-analysis, NMR, and infrared spectrometry. Results and Discussion: Using molecular modeling techniques, three of the metal complexes were identified as potential HIV protease inhibitors, exhibiting strong binding affinity interactions with binding pocket residues. These inhibitors demonstrated an ability to inhibit the flexibility of the flap regions of the HIV protease, similar to the known HIV protease inhibitor, darunavir. This study sheds light on the promising avenues for the development of novel therapeutic agents against HIV/AIDS.
Collapse
Affiliation(s)
- Christian K. Adokoh
- Department of Forensic Sciences, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Akwasi Boadu
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Wesbury College of Science, KwaZuluNatal, South Africa
| | - Isaac Asiamah
- Department of Chemistry, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Clement Agoni
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
7
|
Wilson CJ, de Groot BL, Gapsys V. Resolving coupled pH titrations using alchemical free energy calculations. J Comput Chem 2024; 45:1444-1455. [PMID: 38471815 DOI: 10.1002/jcc.27318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 03/14/2024]
Abstract
In a protein, nearby titratable sites can be coupled: the (de)protonation of one may affect the other. The degree of this interaction depends on several factors and can influence the measured p K a . Here, we derive a formalism based on double free energy differences ( Δ Δ G ) for quantifying the individual site p K a values of coupled residues. As Δ Δ G values can be obtained by means of alchemical free energy calculations, the presented approach allows for a convenient estimation of coupled residue p K a s in practice. We demonstrate that our approach and a previously proposed microscopic p K a formalism, can be combined with alchemical free energy calculations to resolve pH-dependent protein p K a values. Toy models and both, regular and constant-pH molecular dynamics simulations, alongside experimental data, are used to validate this approach. Our results highlight the insights gleaned when coupling and microstate probabilities are analyzed and suggest extensions to more complex enzymatic contexts. Furthermore, we find that naïvely computed p K a values that ignore coupling, can be significantly improved when coupling is accounted for, in some cases reducing the error by half. In short, alchemical free energy methods can resolve the p K a values of both uncoupled and coupled residues.
Collapse
Affiliation(s)
- Carter J Wilson
- Department of Mathematics, The University of Western Ontario, London, Ontario, Canada
- Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario, Canada
- Computational Biomolecular Dynamics Group, Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Vytautas Gapsys
- Computational Biomolecular Dynamics Group, Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Computational Chemistry, Janssen Research & Development, Beerse, Belgium
| |
Collapse
|
8
|
Homma M, Wakabayashi T, Moriwaki Y, Shiotani N, Shigeta T, Isobe K, Okazawa A, Ohta D, Terada T, Shimizu K, Mizutani M, Takikawa H, Sugimoto Y. Insights into stereoselective ring formation in canonical strigolactone: Identification of a dirigent domain-containing enzyme catalyzing orobanchol synthesis. Proc Natl Acad Sci U S A 2024; 121:e2313683121. [PMID: 38905237 PMCID: PMC11214005 DOI: 10.1073/pnas.2313683121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/30/2024] [Indexed: 06/23/2024] Open
Abstract
Strigolactones (SLs) are plant apocarotenoids with diverse roles and structures. Canonical SLs, widespread and characterized by structural variations in their tricyclic lactone (ABC-ring), are classified into two types based on C-ring configurations. The steric C-ring configuration emerges during the BC-ring closure, downstream of the biosynthetic intermediate, carlactonoic acid (CLA). Most plants produce either type of canonical SLs stereoselectively, e.g., tomato (Solanum lycopersicum) yields orobanchol with an α-oriented C-ring. The mechanisms driving SL structural diversification are partially understood, with limited insight into functional implications. Furthermore, the exact molecular mechanism for the stereoselective BC-ring closure reaction is yet to be known. We identified an enzyme, the stereoselective BC-ring-forming factor (SRF), from the dirigent protein (DIR) family, specifically the DIR-f subfamily, whose biochemical function had not been characterized, making it a key enzyme in stereoselective canonical SL biosynthesis with the α-oriented C-ring. We first confirm the precise catalytic function of the tomato cytochrome P450 SlCYP722C, previously shown to be involved in orobanchol biosynthesis [T. Wakabayashi et al., Sci. Adv. 5, eaax9067 (2019)], to convert CLA to 18-oxocarlactonoic acid. We then show that SRF catalyzes the stereoselective BC-ring closure reaction of 18-oxocarlactonoic acid, forming orobanchol. Our methodology combines experimental and computational techniques, including SRF structure prediction and conducting molecular dynamics simulations, suggesting a catalytic mechanism based on the conrotatory 4π-electrocyclic reaction for the stereoselective BC-ring formation in orobanchol. This study sheds light on the molecular basis of how plants produce SLs with specific stereochemistry in a controlled manner.
Collapse
Affiliation(s)
- Masato Homma
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe657-8501, Japan
| | - Takatoshi Wakabayashi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe657-8501, Japan
| | - Yoshitaka Moriwaki
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo113-8657, Japan
| | - Nanami Shiotani
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo113-8657, Japan
| | - Takumi Shigeta
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo113-8657, Japan
| | - Kazuki Isobe
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai599-8531, Japan
| | - Atsushi Okazawa
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai599-8531, Japan
- Department of Agricultural Biology, Graduate School of Agriculture, Osaka Metropolitan University, Sakai599-8531, Japan
| | - Daisaku Ohta
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai599-8531, Japan
- Department of Agricultural Biology, Graduate School of Agriculture, Osaka Metropolitan University, Sakai599-8531, Japan
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo113-8657, Japan
| | - Kentaro Shimizu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo113-8657, Japan
| | - Masaharu Mizutani
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe657-8501, Japan
| | - Hirosato Takikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo113-8657, Japan
| | - Yukihiro Sugimoto
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe657-8501, Japan
| |
Collapse
|
9
|
Charlier C, Gavalda S, Grga J, Perrot L, Gabrielli V, Löhr F, Schörghuber J, Lichtenecker R, Arnal G, Marty A, Tournier V, Lippens G. Exploring the pH dependence of an improved PETase. Biophys J 2024; 123:1542-1552. [PMID: 38664965 PMCID: PMC11213969 DOI: 10.1016/j.bpj.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/20/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Enzymatic recycling of plastic and especially of polyethylene terephthalate (PET) has shown great potential to reduce its negative impact on our society. PET hydrolases (PETases) have been optimized using rational design and machine learning, but the mechanistic details of the PET depolymerization process remain unclear. Belonging to the carboxylic-ester hydrolase family with a canonical Ser-His-Asp catalytic triad, their observed alkaline pH optimum is generally thought to be related to the protonation state of the catalytic His. Here, we explore this aspect in the context of LCCICCG, an optimized PETase, derived from the leaf-branch compost cutinase enzyme. We use NMR to identify the dominant tautomeric structure of the six histidines. Five show surprisingly low pKa values below 4.0, whereas the catalytic H242 in the active enzyme displays a pKa value that varies from 4.9 to 4.7 when temperatures increase from 30°C to 50°C. Whereas the hydrolytic activity of the enzyme toward a soluble substrate can be modeled by the corresponding protonation/deprotonation curve, an important discrepancy is found when the substrate is the solid plastic. This opens the way to further mechanistic understanding of the PETase activity and underscores the importance of studying the enzyme at the liquid-solid interface.
Collapse
Affiliation(s)
- Cyril Charlier
- Toulouse Biotechnology Institute (TBI), University of Toulouse, CNRS, INRAE, INSA Toulouse, Toulouse Cedex, France
| | - Sabine Gavalda
- Carbios, Parc Cataroux - Bâtiment B80, Clermont-Ferrand, France
| | - Jelena Grga
- Toulouse Biotechnology Institute (TBI), University of Toulouse, CNRS, INRAE, INSA Toulouse, Toulouse Cedex, France
| | - Laura Perrot
- Toulouse Biotechnology Institute (TBI), University of Toulouse, CNRS, INRAE, INSA Toulouse, Toulouse Cedex, France
| | - Valeria Gabrielli
- Toulouse Biotechnology Institute (TBI), University of Toulouse, CNRS, INRAE, INSA Toulouse, Toulouse Cedex, France
| | - Frank Löhr
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe, University Frankfurt, Frankfurt am Main, Germany
| | - Julia Schörghuber
- Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, Vienna, Austria
| | - Roman Lichtenecker
- Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, Vienna, Austria; MAG-LAB, Vienna, Austria
| | - Grégory Arnal
- Carbios, Parc Cataroux - Bâtiment B80, Clermont-Ferrand, France
| | - Alain Marty
- Carbios, Parc Cataroux - Bâtiment B80, Clermont-Ferrand, France
| | | | - Guy Lippens
- Toulouse Biotechnology Institute (TBI), University of Toulouse, CNRS, INRAE, INSA Toulouse, Toulouse Cedex, France.
| |
Collapse
|
10
|
Amer S, Miles U, Firer M, Grynszpan F. Turn-on Coumarin Precursor: From Hydrazine Sensor to Covalent Inhibition and Fluorescence Detection of Rabbit Muscle Aldolase. Molecules 2024; 29:2175. [PMID: 38792037 PMCID: PMC11123778 DOI: 10.3390/molecules29102175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Hydrazine, a highly toxic compound, demands sensitive and selective detection methods. Building upon our previous studies with pre-coumarin OFF-ON sensors for fluoride anions, we extended our strategy to hydrazine sensing by adapting phenol protecting groups (propionate, levulinate, and γ-bromobutanoate) to our pre-coumarin scaffold. These probes reacted with hydrazine, yielding a fluorescent signal with low micromolar limits of detection. Mechanistic studies revealed that hydrazine deprotection may be outperformed by a retro-Knoevenagel reaction, where hydrazine acts as a nucleophile and a base yielding a fluorescent diimide compound (6,6'-((1E,1'E)-hydrazine-1,2diylidenebis(methaneylylidene))bis(3(diethylamino)phenol, 7). Additionally, our pre-coumarins unexpectedly reacted with primary amines, generating a fluorescent signal corresponding to phenol deprotection followed by cyclization and coumarin formation. The potential of compound 3 as a theranostic Turn-On coumarin precursor was also explored. We propose that its reaction with ALDOA produced a γ-lactam, blocking the catalytic nucleophilic amine in the enzyme's binding site. The cleavage of the ester group in compound 3 induced the formation of fluorescent coumarin 4. This fluorescent signal was proportional to ALDOA concentration, demonstrating the potential of compound 3 for future theranostic studies in vivo.
Collapse
Affiliation(s)
- Sara Amer
- Department of Chemical Sciences, Ariel University, 65 Ramat HaGolan Street, Ariel 4077625, Israel
| | - Uri Miles
- Department of Chemical Sciences, Ariel University, 65 Ramat HaGolan Street, Ariel 4077625, Israel
| | - Michael Firer
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 4077625, Israel;
- Adelson School of Medicine, Ariel University, Ariel 4077625, Israel
| | - Flavio Grynszpan
- Department of Chemical Sciences, Ariel University, 65 Ramat HaGolan Street, Ariel 4077625, Israel
| |
Collapse
|
11
|
Matseketsa P, Mafukidze D, Pothupitiya L, Otuonye UP, Çimen Mutlu Y, Averkiev BB, Gadzikwa T. Unexpected reversal of reactivity in organic functionalities when immobilized together in a metal-organic framework (MOF). MOLECULAR SYSTEMS DESIGN & ENGINEERING 2024; 9:445-448. [PMID: 39108406 PMCID: PMC11299867 DOI: 10.1039/d3me00185g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A mixed-ligand metal-organic framework (MOF) material composed of both amine- and hydroxyl-bearing linkers, KSU-1, was reacted with a variety of isocyanates. The hydroxyl groups reacted to a greater extent than the amines, in conflict with the previously observed relative nucleophilicities of these functionalities in the same MOF. When immobilized individually in monofunctional MOFs, the amine-functionalized linker was more reactive than the hydroxyl linker, indicating that the reactivity reversal observed in KSU-1 is due to the groups' mutual confinement within the MOF.
Collapse
Affiliation(s)
- Pricilla Matseketsa
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Donovan Mafukidze
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Lahiru Pothupitiya
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Udo P Otuonye
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Yasemin Çimen Mutlu
- Department of Chemistry, Faculty of Science, Eskisehir Technical University, 26470 Eskişehir, Turkey
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Boris B Averkiev
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Tendai Gadzikwa
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
12
|
Ouyang Y, Nauwynck HJ. Molecular basis for the different PCV2 susceptibility of T-lymphoblasts in Landrace and Piétrain pigs. Vet Res 2024; 55:22. [PMID: 38374131 PMCID: PMC10875804 DOI: 10.1186/s13567-024-01275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Clinically, Landrace pigs are more susceptible to porcine circovirus-associated diseases (PCVADs) than Piétrain pigs. We previously found that porcine circovirus type 2 (PCV2) can infect T-lymphoblasts. The present study examined the replication kinetics of six PCV2 strains in the lymphoblasts of Landrace and Piétrain pigs. The results showed that T-lymphoblasts from Landrace pigs are much more susceptible to PCV2 infection than those from Piétrain pigs. In addition, PCV2 replication was strain-dependent. PCV2 binding to T-lymphoblasts was partially mediated by chondroitin sulfate (CS) and dermatan sulfate (DS). Phosphacan, an effective internalization mediator in monocytes that contains several CS chains, was also demonstrated to be involved in PCV2 internalization. Viral binding and internalization were not different between the two breeds, however, the subsequent step, the disassembly was. Although inhibition of serine proteases blocked PCV2 replication in both Landrace and Piétrain pigs, this only occurred at a neutral pH in Piétrain pigs, whereas this occurred also at a low pH in Landrace. This suggested that more proteases can cleave PCV2 in Landrace lymphoblasts than in Piétrain lymphoblasts, explaining the better replication. Through co-localization studies of viral particles with endo-lysosomal markers, and quantitative analysis of organelle sizes during viral internalization, it was observed that PCV2 may exhibit a higher propensity for viral escape from late endosomes in Landrace pigs (smaller) compared to Piétrain pigs. These results provide new understandings of the different PCV2 susceptibility in Landrace and Piétrain pigs.
Collapse
Affiliation(s)
- Yueling Ouyang
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Hoerschinger V, Waibl F, Pomarici ND, Loeffler JR, Deane CM, Georges G, Kettenberger H, Fernández-Quintero ML, Liedl KR. PEP-Patch: Electrostatics in Protein-Protein Recognition, Specificity, and Antibody Developability. J Chem Inf Model 2023; 63:6964-6971. [PMID: 37934909 PMCID: PMC10685443 DOI: 10.1021/acs.jcim.3c01490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
The electrostatic properties of proteins arise from the number and distribution of polar and charged residues. Electrostatic interactions in proteins play a critical role in numerous processes such as molecular recognition, protein solubility, viscosity, and antibody developability. Thus, characterizing and quantifying electrostatic properties of a protein are prerequisites for understanding these processes. Here, we present PEP-Patch, a tool to visualize and quantify the electrostatic potential on the protein surface in terms of surface patches, denoting separated areas of the surface with a common physical property. We highlight its applicability to elucidate protease substrate specificity and antibody-antigen recognition and predict heparin column retention times of antibodies as an indicator of pharmacokinetics.
Collapse
Affiliation(s)
- Valentin
J. Hoerschinger
- Department
of General, Inorganic and Theoretical Chemistry, and Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, 6020 Innsbruck, Austria
| | - Franz Waibl
- Department
of General, Inorganic and Theoretical Chemistry, and Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, 6020 Innsbruck, Austria
| | - Nancy D. Pomarici
- Department
of General, Inorganic and Theoretical Chemistry, and Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, 6020 Innsbruck, Austria
| | - Johannes R. Loeffler
- Department
of General, Inorganic and Theoretical Chemistry, and Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, 6020 Innsbruck, Austria
| | - Charlotte M. Deane
- Department
of Statistics, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Guy Georges
- Roche
Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg 82377, Germany
| | - Hubert Kettenberger
- Roche
Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg 82377, Germany
| | - Monica L. Fernández-Quintero
- Department
of General, Inorganic and Theoretical Chemistry, and Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, 6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Department
of General, Inorganic and Theoretical Chemistry, and Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
14
|
Vaissier Welborn V. Understanding Cysteine Reactivity in Protein Environments with Electric Fields. J Phys Chem B 2023; 127:9936-9942. [PMID: 37962274 DOI: 10.1021/acs.jpcb.3c05749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The role cysteine residues play in proteins is mediated by their protonation state, whereby the thiolate form of the side chain is highly reactive while the thiol form is more inert. However, the pKa of cysteine residues is hard to predict as it can differ widely from its reference value in solution, an effect that is accentuated by local effects in the heterogeneous protein environment. Here, we present a new approach to the prediction of cysteine reactivity based on electric field calculations at the thiol/thiolate group. We validated our approach by predicting the protonation state of cysteine residues in different protein environments (in the active site, at the protein surface, and buried within the protein interior), including Cys-25 in papaya protease omega, which was proven problematic for the more traditional constant pH molecular dynamics (MD) technique. We predict pKa shifts consistent with experimental observations, and the decomposition of the electric fields into contributions from molecular fragments provides a direct handle to rationalize local pH and pKa effects in proteins without introducing parameters other than those of the force field used for MD simulations.
Collapse
Affiliation(s)
- Valerie Vaissier Welborn
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
- Macromolecules Innovation Institute (MII),Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
15
|
Wei W, Hogues H, Sulea T. Comparative Performance of High-Throughput Methods for Protein p Ka Predictions. J Chem Inf Model 2023; 63:5169-5181. [PMID: 37549424 PMCID: PMC10466379 DOI: 10.1021/acs.jcim.3c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 08/09/2023]
Abstract
The medically relevant field of protein-based therapeutics has triggered a demand for protein engineering in different pH environments of biological relevance. In silico engineering workflows typically employ high-throughput screening campaigns that require evaluating large sets of protein residues and point mutations by fast yet accurate computational algorithms. While several high-throughput pKa prediction methods exist, their accuracies are unclear due to the lack of a current comprehensive benchmarking. Here, seven fast, efficient, and accessible approaches including PROPKA3, DeepKa, PKAI, PKAI+, DelPhiPKa, MCCE2, and H++ were systematically tested on a nonredundant subset of 408 measured protein residue pKa shifts from the pKa database (PKAD). While no method outperformed the null hypotheses with confidence, as illustrated by statistical bootstrapping, DeepKa, PKAI+, PROPKA3, and H++ had utility. More specifically, DeepKa consistently performed well in tests across multiple and individual amino acid residue types, as reflected by lower errors, higher correlations, and improved classifications. Arithmetic averaging of the best empirical predictors into simple consensuses improved overall transferability and accuracy up to a root-mean-square error of 0.76 pKa units and a correlation coefficient (R2) of 0.45 to experimental pKa shifts. This analysis should provide a basis for further methodological developments and guide future applications, which require embedding of computationally inexpensive pKa prediction methods, such as the optimization of antibodies for pH-dependent antigen binding.
Collapse
Affiliation(s)
- Wanlei Wei
- Human Health Therapeutics
Research Centre, National Research Council
Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Hervé Hogues
- Human Health Therapeutics
Research Centre, National Research Council
Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Traian Sulea
- Human Health Therapeutics
Research Centre, National Research Council
Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| |
Collapse
|
16
|
Casadevall G, Pierce C, Guan B, Iglesias-Fernandez J, Lim HY, Greenberg LR, Walsh ME, Shi K, Gordon W, Aihara H, Evans RL, Kazlauskas R, Osuna S. Designing Efficient Enzymes: Eight Predicted Mutations Convert a Hydroxynitrile Lyase into an Efficient Esterase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554512. [PMID: 37662272 PMCID: PMC10473745 DOI: 10.1101/2023.08.23.554512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Hydroxynitrile lyase from rubber tree (HbHNL) shares 45% identical amino acid residues with the homologous esterase from tobacco, SABP2, but the two enzymes catalyze different reactions. The x-ray structures reveal a serine-histidine-aspartate catalytic triad in both enzymes along with several differing amino acid residues within the active site. Previous exchange of three amino acid residues in the active site of HbHNL with the corresponding amino acid residue in SABP2 (T11G-E79H-K236M) created variant HNL3, which showed low esterase activity toward p-nitrophenyl acetate. Further structure comparison reveals additional differences surrounding the active site. HbHNL contains an improperly positioned oxyanion hole residue and differing solvation of the catalytic aspartate. We hypothesized that correcting these structural differences would impart good esterase activity on the corresponding HbHNL variant. To predict the amino acid substitutions needed to correct the structure, we calculated shortest path maps for both HbHNL and SABP2, which reveal correlated movements of amino acids in the two enzymes. Replacing four amino acid residues (C81L-N104T-V106F-G176S) whose movements are connected to the movements of the catalytic residues yielded variant HNL7TV (stabilizing substitution H103V was also added), which showed an esterase catalytic efficiency comparable to that of SABP2. The x-ray structure of an intermediate variant, HNL6V, showed an altered solvation of the catalytic aspartate and a partially corrected oxyanion hole. This dramatic increase in catalytic efficiency demonstrates the ability of shortest path maps to predict which residues outside the active site contribute to catalytic activity.
Collapse
Affiliation(s)
- Guillem Casadevall
- Institut de Química Computacional i Catálisi and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Colin Pierce
- Biotechnology Institute and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108 USA
| | - Bo Guan
- Biotechnology Institute and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108 USA
| | - Javier Iglesias-Fernandez
- Institut de Química Computacional i Catálisi and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Huey-Yee Lim
- Biotechnology Institute and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108 USA
| | - Lauren R Greenberg
- Biotechnology Institute and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108 USA
| | - Meghan E Walsh
- Biotechnology Institute and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108 USA
| | - Ke Shi
- Biotechnology Institute and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108 USA
| | - Wendy Gordon
- Biotechnology Institute and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108 USA
| | - Hideki Aihara
- Biotechnology Institute and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108 USA
| | - Robert L Evans
- Biotechnology Institute and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108 USA
| | - Romas Kazlauskas
- Biotechnology Institute and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108 USA
| | - Sílvia Osuna
- Institut de Química Computacional i Catálisi and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
17
|
Bayrak M, Mata J, Conn C, Floury J, Logan A. Application of small angle scattering (SAS) in structural characterisation of casein and casein-based products during digestion. Food Res Int 2023; 169:112810. [PMID: 37254386 DOI: 10.1016/j.foodres.2023.112810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
In recent years, small and ultra-small angle scattering techniques, collectively known as small angle scattering (SAS) have been used to study various food structures during the digestion process. These techniques play an important role in structural characterisation due to the non-destructive nature (especially when using neutrons), various in situ capabilities and a large length scale (of 1 nm to ∼20 μm) they cover. The application of these techniques in the structural characterisation of dairy products has expanded significantly in recent years. Casein, a major dairy protein, forms the basis of a wide range of gel structures at different length scales. These gel structures have been extensively researched utilising scattering techniques to obtain structural information at the nano and micron scale that complements electron and confocal microscopy. Especially, neutrons have provided opportunity to study these gels in their natural environment by using various in situ options. One such example is understanding changes in casein gel structures during digestion in the gastrointestinal tract, which is essential for designing personalised food structures for a wide range of food-related diseases and improve health outcomes. In this review, we present an overview of casein gels investigated using small angle and ultra-small angle scattering techniques. We also reviewed their digestion using newly built setups recently employed in various research. To gain a greater understanding of micro and nano-scale structural changes during digestion, such as the effect of digestive juices and mechanical breakdown on structure, new setups for semi-solid food materials are needed to be optimised.
Collapse
Affiliation(s)
- Meltem Bayrak
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia; School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| | - Jitendra Mata
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia.
| | - Charlotte Conn
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| | | | - Amy Logan
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia.
| |
Collapse
|
18
|
Petri YD, Gutierrez CS, Raines RT. Chemoselective Caging of Carboxyl Groups for On-Demand Protein Activation with Small Molecules. Angew Chem Int Ed Engl 2023; 62:e202215614. [PMID: 36964973 PMCID: PMC10243506 DOI: 10.1002/anie.202215614] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 03/27/2023]
Abstract
Tools for on-demand protein activation enable impactful gain-of-function studies in biological settings. Thus far, however, proteins have been chemically caged at primarily Lys, Tyr, and Sec, typically through the genetic encoding of unnatural amino acids. Herein, we report that the preferential reactivity of diazo compounds with protonated acids can be used to expand this toolbox to solvent-accessible carboxyl groups with an elevated pKa value. As a model protein, we employed lysozyme (Lyz), which has an active-site Glu35 residue with a pKa value of 6.2. A diazo compound with a bioorthogonal self-immolative handle esterified Glu35 selectively, inactivating Lyz. The hydrolytic activity of the caged Lyz on bacterial cell walls was restored with two small-molecule triggers. The decaging was more efficient by small molecules than by esterases. This simple chemical strategy was also applied to a hemeprotein and an aspartyl protease, setting the stage for broad applicability.
Collapse
Affiliation(s)
- Yana D. Petri
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - Clair S. Gutierrez
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| |
Collapse
|
19
|
Edson CB, Liu M, Totsingan F, O’Berg E, Salvucci J, Dao U, Khare SD, Gross RA. Monomer Choice Influences N-Acryloyl Amino Acid Grafter Conversion via Protease Catalysis. Biomacromolecules 2023; 24:1798-1809. [PMID: 36996092 PMCID: PMC10139737 DOI: 10.1021/acs.biomac.3c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
End-capped peptides modified with reactive functional groups on the N-terminus provide a route to prepare peptide-polymer conjugates for a broad range of applications. Unfortunately, current chemical methods to construct modified peptides rely largely on solid-phase peptide synthesis (SPPS), which lacks green preparative characteristics and is costly, thus limiting its applicability to specialty applications such as regenerative medicine. This work evaluates N-terminally modified N-acryloyl-glutamic acid diethyl ester, N-acryloyl-leucine ethyl ester, and N-acryloyl-alanine ethyl ester as grafters and papain as the protease for the direct addition of amino acid ethyl ester (AA-OEt) monomers via protease-catalyzed peptide synthesis (PCPS) and the corresponding formation of N-acryloyl-functionalized oligopeptides in a one-pot aqueous reaction. It was hypothesized that by building N-acryloyl grafters from AA-OEt monomers that are known to be good substrates for papain in PCPS, the corresponding grafters would yield high grafter conversions, high ratio of grafter-oligopeptide to free NH2-oligopeptide, and high overall yield. However, this work demonstrates based on the grafter/monomers studied herein that the dominant factor in N-acryloyl-AA-OEt grafter conversion is the co-monomer used in co-oligomerizations. Computational modeling using Rosetta qualitatively recapitulates the results and provides insight into the structural and energetic bases underlying substrate selectivity. The findings herein expand our knowledge of factors that determine the efficiency of preparing N-acryloyl-terminated oligopeptides by PCPS that could provide practical routes to peptide macromers for conjugation to polymers and surfaces for a broad range of applications.
Collapse
Affiliation(s)
- Cody B. Edson
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8 St. Troy, NY 12180
| | - Melinda Liu
- Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Filbert Totsingan
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8 St. Troy, NY 12180
| | - Evan O’Berg
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8 St. Troy, NY 12180
| | - John Salvucci
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8 St. Troy, NY 12180
| | - Uyen Dao
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8 St. Troy, NY 12180
| | - Sagar D. Khare
- Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Richard A. Gross
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8 St. Troy, NY 12180
| |
Collapse
|
20
|
Rasmussen CB, Scavenius C, Thøgersen IB, Harwood SL, Larsen Ø, Bjerga GEK, Stougaard P, Enghild JJ, Thøgersen MS. Characterization of a novel cold-adapted intracellular serine protease from the extremophile Planococcus halocryophilus Or1. Front Microbiol 2023; 14:1121857. [PMID: 36910232 PMCID: PMC9995970 DOI: 10.3389/fmicb.2023.1121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
The enzymes of microorganisms that live in cold environments must be able to function at ambient temperatures. Cold-adapted enzymes generally have less ordered structures that convey a higher catalytic rate, but at the cost of lower thermodynamic stability. In this study, we characterized P355, a novel intracellular subtilisin protease (ISP) derived from the genome of Planococcus halocryophilus Or1, which is a bacterium metabolically active down to -25°C. P355's stability and activity at varying pH values, temperatures, and salt concentrations, as well as its temperature-dependent kinetics, were determined and compared to an uncharacterized thermophilic ISP (T0099) from Parageobacillus thermoglucosidasius, a previously characterized ISP (T0034) from Planococcus sp. AW02J18, and Subtilisin Carlsberg (SC). The results showed that P355 was the most heat-labile of these enzymes, closely followed by T0034. P355 and T0034 exhibited catalytic constants (k cat ) that were much higher than those of T0099 and SC. Thus, both P355 and T0034 demonstrate the characteristics of the stability-activity trade-off that has been widely observed in cold-adapted proteases.
Collapse
Affiliation(s)
| | | | - Ida B. Thøgersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Øivind Larsen
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS, Bergen, Norway
| | | | - Peter Stougaard
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Jan J. Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
21
|
Coukos JS, Lee CW, Pillai KS, Liu KJ, Moellering RE. Widespread, Reversible Cysteine Modification by Methylglyoxal Regulates Metabolic Enzyme Function. ACS Chem Biol 2023; 18:91-101. [PMID: 36562291 PMCID: PMC9872086 DOI: 10.1021/acschembio.2c00727] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Methylglyoxal (MGO), a reactive metabolite byproduct of glucose metabolism, is known to form a variety of posttranslational modifications (PTMs) on nucleophilic amino acids. For example, cysteine, the most nucleophilic proteinogenic amino acid, forms reversible hemithioacetal and stable mercaptomethylimidazole adducts with MGO. The high reactivity of cysteine toward MGO and the rate of formation of such modifications provide the opportunity for mechanisms by which proteins and pathways might rapidly sense and respond to alterations in levels of MGO. This indirect measure of alterations in glycolytic flux would thereby allow disparate cellular processes to dynamically respond to changes in nutrient availability and utilization. Here we report the use of quantitative LC-MS/MS-based chemoproteomic profiling approaches with a cysteine-reactive probe to map the proteome-wide landscape of MGO modification of cysteine residues. This approach led to the identification of many sites of potential functional regulation by MGO. We further characterized the role that such modifications have in a catalytic cysteine residue in a key metabolic enzyme and the resulting effects on cellular metabolism.
Collapse
Affiliation(s)
- John S. Coukos
- Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Chris W. Lee
- Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Kavya S. Pillai
- Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Kimberly J. Liu
- Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Raymond E. Moellering
- Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
22
|
Martins LS, Kruger HG, Naicker T, Alves CN, Lameira J, Araújo Silva JR. Computational insights for predicting the binding and selectivity of peptidomimetic plasmepsin IV inhibitors against cathepsin D. RSC Adv 2022; 13:602-614. [PMID: 36605626 PMCID: PMC9773328 DOI: 10.1039/d2ra06246a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Plasmepsins (Plms) are aspartic proteases involved in the degradation of human hemoglobin by P. falciparum and are essential for the survival and growth of the parasite. Therefore, Plm enzymes are reported as an important antimalarial drug target. Herein, we have applied molecular docking, molecular dynamics (MD) simulations, and binding free energy with the Linear Interaction Energy (LIE) approach to investigate the binding of peptidomimetic PlmIV inhibitors with a particular focus on understanding their selectivity against the human Asp protease cathepsin D (CatD). The residual decomposition analysis results suggest that amino acid differences in the subsite S3 of PlmIV and CatD are responsible for the higher selectivity of the 5a inhibitor. These findings yield excellent agreement with experimental binding data and provide new details regarding van der Waals and electrostatic interactions of subsite residues as well as structural properties of the PlmIV and CatD systems.
Collapse
Affiliation(s)
- Lucas Sousa Martins
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do ParáBelémPará 66075-110Brazil
| | | | - Tricia Naicker
- Catalysis and Peptide Research Unit, University of KwaZulu-NatalDurban 4000South Africa
| | - Cláudio Nahum Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do ParáBelémPará 66075-110Brazil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do ParáBelémPará 66075-110Brazil
| | - José Rogério Araújo Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do ParáBelémPará 66075-110Brazil
| |
Collapse
|
23
|
Santos LH, Caffarena ER, Ferreira RS. pH and non-covalent ligand binding modulate Zika virus NS2B/NS3 protease binding site residues: Discoveries from MD and constant pH MD simulations. J Biomol Struct Dyn 2022; 40:10359-10372. [PMID: 34180376 DOI: 10.1080/07391102.2021.1943528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Zika virus (ZIKV) is a global health concern and has been linked to severe neurological pathologies. Although no medication is available yet, many efforts to develop antivirals and host cell binding inhibitors led to attractive drug-like scaffolds, mainly targeting the nonstructural NS2B/NS3 protease (NS2B/NS3pro). NS2B/NS3pro active site has several titratable residues susceptible to pH changes and ligand binding; hence, understanding these residues' protonation is essential to drug design efforts targeting the active site. Here we use in silico methods to probe non-covalent binding and its effect on pKa shifts of the active site residues on a ligand-free protease and with a non-peptidic competitive inhibitor (Ki=13.5 µM). By applying constant pH molecular dynamics, we found that the catalytic residues of the unbound NS2B/NS3pro achieved the protonation needed for the serine protease mechanism over the pH value of 8.5. Nevertheless, the protease in the holo state achieved this same scenario at lower pH values. Also, non-covalent binding affected the catalytic triad (H51, D75, and S135) by stabilizing their distances and interaction network. Thus, NS2B/NS3pro residues configuration for activity might be both pH-dependent and influenced by ligand binding. However, compound presence within the binding site destabilized the NS2B, interfering with the closed and active conformation necessary for substrate binding and catalysis. Our outcomes provide valuable insights into non-covalent inhibitor behavior and its effect on protease active site residues, impacting optimization and design of novel compounds. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lucianna H Santos
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ernesto R Caffarena
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica, Fiocruz, Rio de Janeiro, Brazil
| | - Rafaela S Ferreira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
24
|
Harris JA, Liu R, Martins de Oliveira V, Vázquez-Montelongo EA, Henderson JA, Shen J. GPU-Accelerated All-Atom Particle-Mesh Ewald Continuous Constant pH Molecular Dynamics in Amber. J Chem Theory Comput 2022; 18:7510-7527. [PMID: 36377980 PMCID: PMC10130738 DOI: 10.1021/acs.jctc.2c00586] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Constant pH molecular dynamics (MD) simulations sample protonation states on the fly according to the conformational environment and user specified pH conditions; however, the current accuracy is limited due to the use of implicit-solvent models or a hybrid solvent scheme. Here, we report the first GPU-accelerated implementation, parametrization, and validation of the all-atom continuous constant pH MD (CpHMD) method with particle-mesh Ewald (PME) electrostatics in the Amber22 pmemd.cuda engine. The titration parameters for Asp, Glu, His, Cys, and Lys were derived for the CHARMM c22 and Amber ff14sb and ff19sb force fields. We then evaluated the PME-CpHMD method using the asynchronous pH replica-exchange titration simulations with the c22 force field for six benchmark proteins, including BBL, hen egg white lysozyme (HEWL), staphylococcal nuclease (SNase), thioredoxin, ribonuclease A (RNaseA), and human muscle creatine kinase (HMCK). The root-mean-square deviation from the experimental pKa's of Asp, Glu, His, and Cys is 0.76 pH units, and the Pearson's correlation coefficient for the pKa shifts with respect to model values is 0.80. We demonstrated that a finite-size correction or much enlarged simulation box size can remove a systematic error of the calculated pKa's and improve agreement with experiment. Importantly, the simulations captured the relevant biology in several challenging cases, e.g., the titration order of the catalytic dyad Glu35/Asp52 in HEWL and the coupled residues Asp19/Asp21 in SNase, the large pKa upshift of the deeply buried catalytic Asp26 in thioredoxin, and the large pKa downshift of the deeply buried catalytic Cys283 in HMCK. We anticipate that PME-CpHMD will offer proper pH control to improve the accuracies of MD simulations and enable mechanistic studies of proton-coupled dynamical processes that are ubiquitous in biology but remain poorly understood due to the lack of experimental tools and limitation of current MD simulations.
Collapse
Affiliation(s)
- Julie A Harris
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland21201, United States
| | - Ruibin Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland21201, United States
| | - Vinicius Martins de Oliveira
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland21201, United States.,Lilly Biotechnology Center, San Diego, California92121, United States
| | | | - Jack A Henderson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland21201, United States
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland21201, United States
| |
Collapse
|
25
|
de Oliveira VM, Liu R, Shen J. Constant pH molecular dynamics simulations: Current status and recent applications. Curr Opin Struct Biol 2022; 77:102498. [PMID: 36410222 PMCID: PMC9933785 DOI: 10.1016/j.sbi.2022.102498] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022]
Abstract
Many important protein functions are carried out through proton-coupled conformational dynamics. Thus, the ability to accurately model protonation states dynamically has wide-ranging implications. Over the past two decades, two main types of constant pH methods (discrete and continuous) have been developed to enable proton-coupled molecular dynamics (MD) simulations. In this short review, we discuss the current status of the development and highlight recent applications that have advanced our understanding of protein structure-function relationships. We conclude the review by outlining the remaining challenges in the method development and projecting important areas for future applications.
Collapse
Affiliation(s)
- Vinicius Martins de Oliveira
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, 20201, Maryland, U.S.A
| | - Ruibin Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, 20201, Maryland, U.S.A
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, 20201, MD, USA.
| |
Collapse
|
26
|
Smith N, Wilson MA. Understanding Cysteine Chemistry Using Conventional and Serial X-Ray Protein Crystallography. CRYSTALS 2022; 12:1671. [PMID: 36685087 PMCID: PMC9850494 DOI: 10.3390/cryst12111671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Proteins that use cysteine residues for catalysis or regulation are widely distributed and intensively studied, with many biomedically important examples. Enzymes where cysteine is a catalytic nucleophile typically generate covalent catalytic intermediates whose structures are important for understanding mechanism and for designing targeted inhibitors. The formation of catalytic intermediates can change enzyme conformational dynamics, sometimes activating protein motions that are important for catalytic turnover. However, these transiently populated intermediate species have been challenging to structurally characterize using traditional crystallographic approaches. This review describes the use and promise of new time-resolved serial crystallographic methods to study cysteine-dependent enzymes, with a focus on the main (Mpro) and papain-like (PLpro) cysteine proteases of SARS-CoV-2 as well as other examples. We review features of cysteine chemistry that are relevant for the design and execution of time-resolved serial crystallography experiments. In addition, we discuss emerging X-ray techniques such as time-resolved sulfur X-ray spectroscopy that may be able to detect changes in sulfur charge state and covalency during catalysis or regulatory modification. In summary, cysteine-dependent enzymes have features that make them especially attractive targets for new time-resolved serial crystallography approaches, which can reveal both changes to enzyme structure and dynamics during catalysis in crystalline samples.
Collapse
|
27
|
Hugele A, Löffler S, Molina BH, Guillon M, Montaser AB, Auriola S, Huttunen KM. Aminopeptidase B can bioconvert L-type amino acid transporter 1 (LAT1)-utilizing amide prodrugs in the brain. Front Pharmacol 2022; 13:1034964. [PMID: 36339537 PMCID: PMC9631218 DOI: 10.3389/fphar.2022.1034964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022] Open
Abstract
A prodrug approach is a powerful method to temporarily change the physicochemical and thus, pharmacokinetic properties of drugs. However, in site-selective targeted prodrug delivery, tissue or cell-specific bioconverting enzyme is needed to be utilized to release the active parent drug at a particular location. Unfortunately, ubiquitously expressed enzymes, such as phosphatases and carboxylesterases are well used in phosphate and ester prodrug applications, but less is known about enzymes selectively expressed, e.g., in the brain and enzymes that can hydrolyze more stable prodrug bonds, such as amides and carbamates. In the present study, L-type amino acid transporter 1 (LAT1)-utilizing amide prodrugs bioconverting enzyme was identified by gradually exploring the environment and possible determinants, such as pH and metal ions, that affect amide prodrug hydrolysis. Based on inducement by cobalt ions and slightly elevated pH (8.5) as well as localization in plasma, liver, and particularly in the brain, aminopeptidase B was proposed to be responsible for the bioconversion of the majority of the studied amino acid amide prodrugs. However, this enzyme hydrolyzed only those prodrugs that contained an aromatic promoiety (L-Phe), while leaving the aliphatic promoeities (L-Lys) and the smallest prodrug (with L-Phe promoiety) intact. Moreover, the parent drugs’ structure (flexibility and the number of aromatic rings) largely affected the bioconversion rate. It was also noticed in this study, that there were species differences in the bioconversion rate by aminopeptidase B (rodents > human), although the in vitro–in vivo correlation of the studied prodrugs was relatively accurate.
Collapse
|
28
|
Hofer F, Fischer AL, Kamenik AS, Waibl F, Fernández-Quintero ML, Liedl KR. pH-dependent structural diversity of profilin allergens determines thermal stability. FRONTIERS IN ALLERGY 2022; 3:1007000. [PMID: 36324331 PMCID: PMC9618696 DOI: 10.3389/falgy.2022.1007000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022] Open
Abstract
The family of profilin allergens is a common class of proteins found in plants, viruses and various eukaryotes including mammals. Profilins are characterized by an evolutionary conserved structural fold, which is responsible for their cross-reactive nature of Immunoglobulin E (IgE) antibodies. Despite their high overall structural similarity, they exhibit substantial differences in their biophysical properties, such as thermal and pH stability. To understand the origin of these functional differences of Amb a 8, Art v 4 and Bet v 2, we performed constant pH molecular dynamics simulation in combination with Gaussian accelerated MD simulations. Depending on the respective protonation at different pH levels, we find distinct differences in conformational flexibility, which are consistent with experimentally determined melting temperatures. These variations in flexibility are accompanied by ensemble shifts in the conformational landscape and quantified and localized by residue-wise B-factors and dihedral entropies. These findings strengthen the link between flexibility of profilin allergens and their thermal stability. Thus, our results clearly show the importance of considering protonation dependent conformational ensembles in solution to elucidate biophysical differences between these structurally similar allergens.
Collapse
|
29
|
Garrido Ruiz D, Sandoval-Perez A, Rangarajan AV, Gunderson EL, Jacobson MP. Cysteine Oxidation in Proteins: Structure, Biophysics, and Simulation. Biochemistry 2022; 61:2165-2176. [PMID: 36161872 PMCID: PMC9583617 DOI: 10.1021/acs.biochem.2c00349] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Cysteine side chains
can exist in distinct oxidation
states depending
on the pH and redox potential of the environment, and cysteine oxidation
plays important yet complex regulatory roles. Compared with the effects
of post-translational modifications such as phosphorylation, the effects
of oxidation of cysteine to sulfenic, sulfinic, and sulfonic acid
on protein structure and function remain relatively poorly characterized.
We present an analysis of the role of cysteine reactivity as a regulatory
factor in proteins, emphasizing the interplay between electrostatics
and redox potential as key determinants of the resulting oxidation
state. A review of current computational approaches suggests underdeveloped
areas of research for studying cysteine reactivity through molecular
simulations.
Collapse
Affiliation(s)
- Diego Garrido Ruiz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Angelica Sandoval-Perez
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Amith Vikram Rangarajan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Emma L Gunderson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| |
Collapse
|
30
|
High-level expression and improved pepsin activity by enhancing the conserved domain stability based on a scissor-like model. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Comparative study of the unbinding process of some HTLV-1 protease inhibitors using unbiased molecular dynamics simulations. PLoS One 2022; 17:e0263200. [PMID: 35834445 PMCID: PMC9282663 DOI: 10.1371/journal.pone.0263200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/28/2022] [Indexed: 12/15/2022] Open
Abstract
The HTLV-1 protease is one of the major antiviral targets to overwhelm this virus. Several research groups have developed protease inhibitors, but none has been successful. In this regard, developing new HTLV-1 protease inhibitors to fix the defects in previous inhibitors may overcome the lack of curative treatment for this oncovirus. Thus, we decided to study the unbinding pathways of the most potent (compound 10, PDB ID 4YDF, Ki = 15 nM) and one of the weakest (compound 9, PDB ID 4YDG, Ki = 7900 nM) protease inhibitors, which are very structurally similar. We conducted 12 successful short and long simulations (totaling 14.8 μs) to unbind the compounds from two monoprotonated (mp) forms of protease using the Supervised Molecular Dynamics (SuMD) without applying any biasing force. The results revealed that Asp32 or Asp32′ in the two forms of mp state similarly exert powerful effects on maintaining both potent and weak inhibitors in the binding pocket of HTLV-1 protease. In the potent inhibitor’s unbinding process, His66′ was a great supporter that was absent in the weak inhibitor’s unbinding pathway. In contrast, in the weak inhibitor’s unbinding process, Trp98/Trp98′ by pi-pi stacking interactions were unfavorable for the stability of the inhibitor in the binding site. In our opinion, these results will assist in designing more potent and effective inhibitors for the HTLV-1 protease.
Collapse
|
32
|
Wahba MI. Gum tragacanth for immobilization of Bacillus licheniformis protease: Optimization, thermodynamics and application. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
33
|
Wang H, Perera L, Jork N, Zong G, Riley AM, Potter BVL, Jessen HJ, Shears SB. A structural exposé of noncanonical molecular reactivity within the protein tyrosine phosphatase WPD loop. Nat Commun 2022; 13:2231. [PMID: 35468885 PMCID: PMC9038691 DOI: 10.1038/s41467-022-29673-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/25/2022] [Indexed: 01/06/2023] Open
Abstract
Structural snapshots of protein/ligand complexes are a prerequisite for gaining atomic level insight into enzymatic reaction mechanisms. An important group of enzymes has been deprived of this analytical privilege: members of the protein tyrosine phosphatase (PTP) superfamily with catalytic WPD-loops lacking the indispensable general-acid/base within a tryptophan-proline-aspartate/glutamate context. Here, we provide the ligand/enzyme crystal complexes for one such PTP outlier: Arabidopsis thaliana Plant and Fungi Atypical Dual Specificity Phosphatase 1 (AtPFA-DSP1), herein unveiled as a regioselective and efficient phosphatase towards inositol pyrophosphate (PP-InsP) signaling molecules. Although the WPD loop is missing its canonical tripeptide motif, this structural element contributes to catalysis by assisting PP-InsP delivery into the catalytic pocket, for a choreographed exchange with phosphate reaction product. Subsequently, an intramolecular proton donation by PP-InsP substrate is posited to substitute functionally for the absent aspartate/glutamate general-acid. Overall, we expand mechanistic insight into adaptability of the conserved PTP structural elements.
Collapse
Affiliation(s)
- Huanchen Wang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Nikolaus Jork
- Institute of Organic Chemistry, and CIBSS - the Center for Integrative Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Guangning Zong
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Andrew M Riley
- Drug Discovery and Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Barry V L Potter
- Drug Discovery and Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Henning J Jessen
- Institute of Organic Chemistry, and CIBSS - the Center for Integrative Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Stephen B Shears
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
34
|
Abstract
Vegetable tannin is widely applied in various industries, in agriculture, and in water treatment as a natural polyphenolic compound; however, little data has been collected concerning the relationship between structure and eco-toxicity. Here, the toxicity of six commercial tannin and three model chemicals was assessed using Photobacterium phosphoreum. Two kinds of hydrolyzed tannin displayed higher bioluminescence inhibition than four kinds of condensed tannin, and the model chemical of hydrolyzed tannin also showed greater toxicity than those of condensed tannin, indicating the structure dependent eco-toxicity of vegetable tannin. The reactive toxicity mechanism was proposed, which was illustrated by molecular simulations based on the model chemicals and luciferase.
Collapse
|
35
|
Abstract
Analysis of the SARS-CoV-2 sequence revealed a multibasic furin cleavage site at the S1/S2 boundary of the spike protein distinguishing this virus from SARS-CoV. Furin, the best-characterized member of the mammalian proprotein convertases, is an ubiquitously expressed single pass type 1 transmembrane protein. Cleavage of SARS-CoV-2 spike protein by furin promotes viral entry into lung cells. While furin knockout is embryonically lethal, its knockout in differentiated somatic cells is not, thus furin provides an exciting therapeutic target for viral pathogens including SARS-CoV-2 and bacterial infections. Several peptide-based and small-molecule inhibitors of furin have been recently reported, and select cocrystal structures have been solved, paving the way for further optimization and selection of clinical candidates. This perspective highlights furin structure, substrates, recent inhibitors, and crystal structures with emphasis on furin's role in SARS-CoV-2 infection, where the current data strongly suggest its inhibition as a promising therapeutic intervention for SARS-CoV-2.
Collapse
Affiliation(s)
- Essam
Eldin A. Osman
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Alnawaz Rehemtulla
- Department
of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
36
|
Fossat MJ, Posey AE, Pappu RV. Quantifying charge state heterogeneity for proteins with multiple ionizable residues. Biophys J 2021; 120:5438-5453. [PMID: 34826385 PMCID: PMC8715249 DOI: 10.1016/j.bpj.2021.11.2886] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 01/07/2023] Open
Abstract
Ionizable residues can release and take up protons and this has an influence on protein structure and function. The extent of protonation is linked to the overall pH of the solution and the local environments of ionizable residues. Binding or unbinding of a single proton generates a distinct charge microstate defined by a specific pattern of charges. Accordingly, the overall partition function is a sum over all charge microstates and Boltzmann weights of all conformations associated with each of the charge microstates. This ensemble-of-ensembles description recast as a q-canonical ensemble allows us to analyze and interpret potentiometric titrations that provide information regarding net charge as a function of pH. In the q-canonical ensemble, charge microstates are grouped into mesostates where each mesostate is a collection of microstates of the same net charge. Here, we show that leveraging the structure of the q-canonical ensemble allows us to decouple contributions of net proton binding and release from proton arrangement and conformational considerations. Through application of the q-canonical formalism to analyze potentiometric measurements of net charge in proteins with repetitive patterns of Lys and Glu residues, we determine the underlying mesostate pKa values and, more importantly, we estimate relative mesostate populations as a function of pH. This is a strength of using the q-canonical approach that cannot be replicated using purely site-specific analyses. Overall, our work shows how measurements of charge equilibria, decoupled from measurements of conformational equilibria, and analyzed using the framework of the q-canonical ensemble, provide protein-specific quantitative descriptions of pH-dependent populations of mesostates. This method is of direct relevance for measuring and understanding how different charge states contribute to conformational, binding, and phase equilibria of proteins.
Collapse
Affiliation(s)
- Martin J Fossat
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri
| | - Ammon E Posey
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
37
|
Santos VC, Campos ACB, Waldner BJ, Liedl KR, Ferreira RS. Impact of different protonation states on virtual screening performance against cruzain. Chem Biol Drug Des 2021; 99:703-716. [PMID: 34923756 DOI: 10.1111/cbdd.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/12/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022]
Abstract
The cysteine protease cruzain is a Chagas disease target, exploited in computational studies. However, there is no consensus on the protonation states of the active site residues Cys25, His162, and Glu208 at the enzyme's active pH range. We evaluated the impact of different protonation states of these residues on docking calculations. Through a retrospective study with cruzain inhibitors and decoys, we compared the performance of virtual screening using four grids, varying protonation states of Cys25, His162, and Glu208. Based on enrichment factors and ROC plots, docking with the four grids affected compound ranking and the overall charge of top-ranking compounds. Different grids can be complementary and synergistic, increasing the odds of finding different ligands with diverse chemical properties.
Collapse
Affiliation(s)
- Viviane Corrêa Santos
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Augusto César Broilo Campos
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Birgit J Waldner
- Institute of General, Inorganic and Theoretical Chemistry, and Centre for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 82, Innsbruck, Tyrol, 6020, Austria
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Centre for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 82, Innsbruck, Tyrol, 6020, Austria
| | - Rafaela Salgado Ferreira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
38
|
Santo AAE, Lazaroti VHR, Feliciano GT. Multidimensional redox potential/p Ka coupling in multicopper oxidases from molecular dynamics: implications for the proton transfer mechanism. Phys Chem Chem Phys 2021; 23:27348-27354. [PMID: 34854859 DOI: 10.1039/d1cp03095g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bilirubin oxidases (BOD) are metalloenzymes that catalyze the conversion of O2 and bilirubin to biliverdin and water in the metabolism of chlorophyll and porphyrin. In this work we have used the CpHMD method to analyze the effects of the different oxidation states on the BOD trinuclear cluster (TNC). Our results demonstrate that there is a link between the different oxidation states of copper ions and the protonation capacity of nearby titratable residues. Each configuration affects pKa differently, creating proton gradients within the enzyme that act in an extremely orderly manner. This order is closely linked to the catalytic mechanism and leads us to the conclusion of the entry of the O2 molecule and its reduction in water molecules is associated with the probability of the release of protons from nearby acid groups. With this information, we deduce that under the initial reaction conditions the acidic side chains of nearby residues can be protonated; this allows the enzyme to reduce the activation energy of the reaction by coupling the proton transfer to oxidation state changes in the metallic center.
Collapse
Affiliation(s)
- Anderson A E Santo
- Enginerring, Physics and Mathematics Department, São Paulo State University (Unesp), Institute of Chemistry, Araraquara, Brazil.
| | - Vitor Hugo R Lazaroti
- Enginerring, Physics and Mathematics Department, São Paulo State University (Unesp), Institute of Chemistry, Araraquara, Brazil.
| | - Gustavo T Feliciano
- Enginerring, Physics and Mathematics Department, São Paulo State University (Unesp), Institute of Chemistry, Araraquara, Brazil.
| |
Collapse
|
39
|
Catalano C, AL Mughram MH, Guo Y, Kellogg GE. 3D interaction homology: Hydropathic interaction environments of serine and cysteine are strikingly different and their roles adapt in membrane proteins. Curr Res Struct Biol 2021; 3:239-256. [PMID: 34693344 PMCID: PMC8517007 DOI: 10.1016/j.crstbi.2021.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/23/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Atomic-resolution protein structural models are prerequisites for many downstream activities like structure-function studies or structure-based drug discovery. Unfortunately, this data is often unavailable for some of the most interesting and therapeutically important proteins. Thus, computational tools for building native-like structural models from less-than-ideal experimental data are needed. To this end, interaction homology exploits the character, strength and loci of the sets of interactions that define a structure. Each residue type has its own limited set of backbone angle-dependent interaction motifs, as defined by their environments. In this work, we characterize the interactions of serine, cysteine and S-bridged cysteine in terms of 3D hydropathic environment maps. As a result, we explore several intriguing questions. Are the environments different between the isosteric serine and cysteine residues? Do some environments promote the formation of cystine S-S bonds? With the increasing availability of structural data for water-insoluble membrane proteins, are there environmental differences for these residues between soluble and membrane proteins? The environments surrounding serine and cysteine residues are dramatically different: serine residues are about 50% solvent exposed, while cysteines are only 10% exposed; the latter are more involved in hydrophobic interactions although there are backbone angle-dependent differences. Our analysis suggests that one driving force for -S-S- bond formation is a rather substantial increase in burial and hydrophobic interactions in cystines. Serine and cysteine become less and more, respectively, solvent-exposed in membrane proteins. 3D hydropathic environment maps are an evolving structure analysis tool showing promise as elements in a new protein structure prediction paradigm.
Collapse
Affiliation(s)
- Claudio Catalano
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohammed H. AL Mughram
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Youzhong Guo
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Glen E. Kellogg
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
40
|
Privat C, Madurga S, Mas F, Rubio-Martinez J. Unravelling Constant pH Molecular Dynamics in Oligopeptides with Explicit Solvation Model. Polymers (Basel) 2021; 13:polym13193311. [PMID: 34641127 PMCID: PMC8512540 DOI: 10.3390/polym13193311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
An accurate description of the protonation state of amino acids is essential to correctly simulate the conformational space and the mechanisms of action of proteins or other biochemical systems. The pH and the electrochemical environments are decisive factors to define the effective pKa of amino acids and, therefore, the protonation state. However, they are poorly considered in Molecular Dynamics (MD) simulations. To deal with this problem, constant pH Molecular Dynamics (cpHMD) methods have been developed in recent decades, demonstrating a great ability to consider the effective pKa of amino acids within complex structures. Nonetheless, there are very few studies that assess the effect of these approaches in the conformational sampling. In a previous work of our research group, we detected strengths and weaknesses of the discrete cpHMD method implemented in AMBER when simulating capped tripeptides in implicit solvent. Now, we progressed this assessment by including explicit solvation in these peptides. To analyze more in depth the scope of the reported limitations, we also carried out simulations of oligopeptides with distinct positions of the titratable amino acids. Our study showed that the explicit solvation model does not improve the previously noted weaknesses and, furthermore, the separation of the titratable amino acids in oligopeptides can minimize them, thus providing guidelines to improve the conformational sampling in the cpHMD simulations.
Collapse
|
41
|
Al Shaer DM, Albericio F, Torre BG. Synthesis of New Peptide‐Based Ligands with 1,2‐HOPO Pendant Chelators and Thermodynamic Evaluation of Their Iron(III) Complexes**. ChemistrySelect 2021. [DOI: 10.1002/slct.202102105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Danah M. Al Shaer
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP) School of Laboratory Medicine and Medical Sciences College of Health Sciences University of KwaZulu-Natal Durban 4041 South Africa
- Peptide Science Laboratory School of Chemistry and Physics University of KwaZulu-Natal Durban 4001 South Africa
| | - Fernando Albericio
- Peptide Science Laboratory School of Chemistry and Physics University of KwaZulu-Natal Durban 4001 South Africa
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) 08034 Barcelona Spain
- CIBER-BBN Networking Centre on Bioengineering Biomaterials and Nanomedicine and Department of Organic Chemistry University of Barcelona 08028 Barcelona Spain
| | - Beatriz G. Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP) School of Laboratory Medicine and Medical Sciences College of Health Sciences University of KwaZulu-Natal Durban 4041 South Africa
| |
Collapse
|
42
|
Turner LD, Nielsen AL, Lin L, Pellett S, Sugane T, Olson ME, Johnson EA, Janda KD. Irreversible inhibition of BoNT/A protease: proximity-driven reactivity contingent upon a bifunctional approach. RSC Med Chem 2021; 12:960-969. [PMID: 34223161 PMCID: PMC8221255 DOI: 10.1039/d1md00089f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022] Open
Abstract
Botulinum neurotoxin A (BoNT/A) is categorized as a Tier 1 bioterrorism agent and persists within muscle neurons for months, causing paralysis. A readily available treatment that abrogates BoNT/A's toxicity and longevity is a necessity in the event of a widespread BoNT/A attack and for clinical treatment of botulism, yet remains an unmet need. Herein, we describe a comprehensive warhead screening campaign of bifunctional hydroxamate-based inhibitors for the irreversible inhibition of the BoNT/A light chain (LC). Using the 2,4-dichlorocinnamic hydroxamic acid (DCHA) metal-binding pharmacophore modified with a pendent warhead, a total of 37 compounds, possessing 13 distinct warhead types, were synthesized and evaluated for time-dependent inhibition against the BoNT/A LC. Iodoacetamides, maleimides, and an epoxide were found to exhibit time-dependent inhibition and their k GSH measured as a description of reactivity. The epoxide exhibited superior time-dependent inhibition over the iodoacetamides, despite reacting with glutathione (GSH) 51-fold slower. The proximity-driven covalent bond achieved with the epoxide inhibitor was contingent upon the vital hydroxamate-Zn2+ anchor in placing the warhead in an optimal position for reaction with Cys165. Monofunctional control compounds exemplified the necessity of the bifunctional approach, and Cys165 modification was confirmed through high-resolution mass spectrometry (HRMS) and ablation of time-dependent inhibitory activity against a C165A variant. Compounds were also evaluated against BoNT/A-intoxicated motor neuron cells, and their cell toxicity, serum stability, and selectivity against matrix metalloproteinases (MMPs) were characterized. The bifunctional approach allows the use of less intrinsically reactive electrophiles to intercept Cys165, thus expanding the toolbox of potential warheads for selective irreversible BoNT/A LC inhibition. We envision that this dual-targeted strategy is amenable to other metalloproteases that also possess non-catalytic cysteines proximal to the active-site metal center.
Collapse
Affiliation(s)
- Lewis D Turner
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), Scripps Research 10550 N Torrey Pines Road La Jolla CA 92037 USA
| | - Alexander L Nielsen
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), Scripps Research 10550 N Torrey Pines Road La Jolla CA 92037 USA
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Lucy Lin
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), Scripps Research 10550 N Torrey Pines Road La Jolla CA 92037 USA
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin 1550 Linden Drive Madison WI 53706 USA
| | - Takashi Sugane
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), Scripps Research 10550 N Torrey Pines Road La Jolla CA 92037 USA
| | - Margaret E Olson
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), Scripps Research 10550 N Torrey Pines Road La Jolla CA 92037 USA
- College of Pharmacy, Roosevelt University Schaumburg IL 60173 USA
| | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin 1550 Linden Drive Madison WI 53706 USA
| | - Kim D Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), Scripps Research 10550 N Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|