1
|
Masand VH, Al-Hussain S, Alzahrani AY, Al-Mutairi AA, Sultan Alqahtani A, Samad A, Alafeefy AM, Jawarkar RD, Zaki MEA. Unveiling dynamics of nitrogen content and selected nitrogen heterocycles in thrombin inhibitors: a ceteris paribus approach. Expert Opin Drug Discov 2024; 19:991-1009. [PMID: 38898679 DOI: 10.1080/17460441.2024.2368743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Despite the progress in comprehending molecular design principles and biochemical processes associated with thrombin inhibition, there is a crucial need to optimize efforts and curtail the recurrence of synthesis-testing cycles. Nitrogen and N-heterocycles are key features of many anti-thrombin drugs. Hence, a pragmatic analysis of nitrogen and N-heterocycles in thrombin inhibitors is important throughout the drug discovery pipeline. In the present work, the authors present an analysis with a specific focus on understanding the occurrence and distribution of nitrogen and selected N-heterocycles in the realm of thrombin inhibitors. RESEARCH DESIGN AND METHODS A dataset comprising 4359 thrombin inhibitors is used to scrutinize various categories of nitrogen atoms such as ring, non-ring, aromatic, and non-aromatic. In addition, selected aromatic and aliphatic N-heterocycles have been analyzed. RESULTS The analysis indicates that ~62% of thrombin inhibitors possess five or fewer nitrogen atoms. Substituted N-heterocycles have a high occurrence, like pyrrolidine (23.24%), pyridine (20.56%), piperidine (16.10%), thiazole (9.61%), imidazole (7.36%), etc. in thrombin inhibitors. CONCLUSIONS The majority of active thrombin inhibitors contain nitrogen atoms close to 5 and a combination of N-heterocycles like pyrrolidine, pyridine, piperidine, etc. This analysis provides crucial insights to optimize the transformation of lead compounds into potential anti-thrombin inhibitors.
Collapse
Affiliation(s)
- Vijay H Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati, India
| | - Sami Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Abdullah Y Alzahrani
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail Asser, Saudi Arabia
| | - Aamal A Al-Mutairi
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Arwa Sultan Alqahtani
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Abdul Samad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Ahmed M Alafeefy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Universiti Teknologi MARA [UiTM], Bandar Puncak Alam, Selangor, Malaysia
| | - Rahul D Jawarkar
- Department of Medicinal Chemistry and Drug Discovery, Dr Rajendra Gode Institute of Pharmacy, Amravati, India
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Torres-Paris C, Song HJ, Engelberger F, Ramírez-Sarmiento CA, Komives EA. The Light Chain Allosterically Enhances the Protease Activity of Murine Urokinase-Type Plasminogen Activator. Biochemistry 2024; 63:1434-1444. [PMID: 38780522 PMCID: PMC11154964 DOI: 10.1021/acs.biochem.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
The active form of the murine urokinase-type plasminogen activator (muPA) is formed by a 27-residue disordered light chain connecting the amino-terminal fragment (ATF) with the serine protease domain. The two chains are tethered by a disulfide bond between C1CT in the disordered light chain and C122CT in the protease domain. Previous work showed that the presence of the disordered light chain affected the inhibition of the protease domain by antibodies. Here we show that the disordered light chain induced a 3.7-fold increase in kcat of the protease domain of muPA. In addition, hydrogen-deuterium exchange mass spectrometry (HDX-MS) and accelerated molecular dynamics (AMD) were performed to identify the interactions between the disordered light chain and the protease domain. HDX-MS revealed that the light chain is contacting the 110s, the turn between the β10- and β11-strand, and the β7-strand. A reduction in deuterium uptake was also observed in the activation loop, the 140s loop and the 220s loop, which forms the S1-specificty pocket where the substrate binds. These loops are further away from where the light chain seems to be interacting with the protease domain. Our results suggest that the light chain most likely increases the activity of muPA by allosterically favoring conformations in which the specificity pocket is formed. We propose a model by which the allostery would be transmitted through the β-strands of the β-barrels to the loops on the other side of the protease domain.
Collapse
Affiliation(s)
- Constanza Torres-Paris
- Department
of Chemistry and Biochemistry, Mail Code 0309, University of California San Diego, 9325 S Scholars Dr, La Jolla, California 92161, United States
| | - Harriet J. Song
- Department
of Chemistry and Biochemistry, Mail Code 0309, University of California San Diego, 9325 S Scholars Dr, La Jolla, California 92161, United States
| | - Felipe Engelberger
- Institute
for Biological and Medical Engineering, Schools of Engineering, Medicine
and Biological Sciences, Pontificia Universidad
Católica de Chile, Santiago 7820436, Chile
- ANID
- Millennium Science Initiative Program - Millennium Institute for
Integrative Biology (iBio), Santiago 8331150, Chile
| | - César A. Ramírez-Sarmiento
- Institute
for Biological and Medical Engineering, Schools of Engineering, Medicine
and Biological Sciences, Pontificia Universidad
Católica de Chile, Santiago 7820436, Chile
- ANID
- Millennium Science Initiative Program - Millennium Institute for
Integrative Biology (iBio), Santiago 8331150, Chile
| | - Elizabeth A. Komives
- Department
of Chemistry and Biochemistry, Mail Code 0309, University of California San Diego, 9325 S Scholars Dr, La Jolla, California 92161, United States
| |
Collapse
|
3
|
Wu D, Salsbury FR. Allosteric Modulation of Thrombin by Thrombomodulin: Insights from Logistic Regression and Statistical Analysis of Molecular Dynamics Simulations. ACS OMEGA 2024; 9:23086-23100. [PMID: 38826540 PMCID: PMC11137727 DOI: 10.1021/acsomega.4c03375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024]
Abstract
Thrombomodulin (TM), a transmembrane receptor integral to the anticoagulant pathway, governs thrombin's substrate specificity via interaction with thrombin's anion-binding exosite I. Despite its established role, the precise mechanisms underlying this regulatory function are yet to be fully unraveled. In this study, we deepen the understanding of these mechanisms through eight independent 1 μs all-atom simulations, analyzing thrombin both in its free form and when bound to TM fragments TM456 and TM56. Our investigations revealed distinct and significant conformational changes in thrombin mediated by the binding of TM56 and TM456. While TM56 predominantly influences motions within exosite I, TM456 orchestrates coordinated alterations across various loop regions, thereby unveiling a multifaceted modulatory role that extends beyond that of TM56. A highlight of our study is the identification of critical hydrogen bonds that undergo transformations during TM56 and TM456 binding, shedding light on the pivotal allosteric influence exerted by TM4 on thrombin's structural dynamics. This work offers a nuanced appreciation of TM's regulatory role in blood coagulation, paving the way for innovative approaches in the development of anticoagulant therapies and expanding the horizons in oncology therapeutics through a deeper understanding of molecular interactions in the coagulation pathway.
Collapse
Affiliation(s)
- Dizhou Wu
- Department of Physics, Wake
Forest University, Winston-Salem, North Carolina 27106, United
States
| | - Freddie R. Salsbury
- Department of Physics, Wake
Forest University, Winston-Salem, North Carolina 27106, United
States
| |
Collapse
|
4
|
Wu D, Prem A, Xiao J, Salsbury FR. Thrombin - A Molecular Dynamics Perspective. Mini Rev Med Chem 2024; 24:1112-1124. [PMID: 37605420 DOI: 10.2174/1389557523666230821102655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 08/23/2023]
Abstract
Thrombin is a crucial enzyme involved in blood coagulation, essential for maintaining circulatory system integrity and preventing excessive bleeding. However, thrombin is also implicated in pathological conditions such as thrombosis and cancer. Despite the application of various experimental techniques, including X-ray crystallography, NMR spectroscopy, and HDXMS, none of these methods can precisely detect thrombin's dynamics and conformational ensembles at high spatial and temporal resolution. Fortunately, molecular dynamics (MD) simulation, a computational technique that allows the investigation of molecular functions and dynamics in atomic detail, can be used to explore thrombin behavior. This review summarizes recent MD simulation studies on thrombin and its interactions with other biomolecules. Specifically, the 17 studies discussed here provide insights into thrombin's switch between 'slow' and 'fast' forms, active and inactive forms, the role of Na+ binding, the effects of light chain mutation, and thrombin's interactions with other biomolecules. The findings of these studies have significant implications for developing new therapies for thrombosis and cancer. By understanding thrombin's complex behavior, researchers can design more effective drugs and treatments that target thrombin.
Collapse
Affiliation(s)
- Dizhou Wu
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Athul Prem
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Jiajie Xiao
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
- Freenome, South San Francisco, CA, 94080, USA
| | - Freddie R Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
| |
Collapse
|
5
|
Wu D, Salsbury FR. Unraveling the Role of Hydrogen Bonds in Thrombin via Two Machine Learning Methods. J Chem Inf Model 2023; 63:3705-3718. [PMID: 37285464 PMCID: PMC11164249 DOI: 10.1021/acs.jcim.3c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydrogen bonds play a critical role in the folding and stability of proteins, such as proteins and nucleic acids, by providing strong and directional interactions. They help to maintain the secondary and 3D structure of proteins, and structural changes in these molecules often result from the formation or breaking of hydrogen bonds. To gain insights into these hydrogen bonding networks, we applied two machine learning models - a logistic regression model and a decision tree model - to study four variants of thrombin: wild-type, ΔK9, E8K, and R4A. Our results showed that both models have their unique advantages. The logistic regression model highlighted potential key residues (GLU295) in thrombin's allosteric pathways, while the decision tree model identified important hydrogen bonding motifs. This information can aid in understanding the mechanisms of folding in proteins and has potential applications in drug design and other therapies. The use of these two models highlights their usefulness in studying hydrogen bonding networks in proteins.
Collapse
Affiliation(s)
- Dizhou Wu
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27106, United States
| | - Freddie R Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27106, United States
| |
Collapse
|
6
|
Wu X, Xu LY, Li EM, Dong G. Molecular dynamics simulation study on the structures of fascin mutants. J Mol Recognit 2023; 36:e2998. [PMID: 36225126 DOI: 10.1002/jmr.2998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023]
Abstract
Fascin is a filamentous actin (F-actin) bundling protein, which cross-links F-actin into bundles and becomes an important component of filopodia on the cell surface. Fascin is overexpressed in many types of cancers. The mutation of fascin affects its ability to bind to F-actin and the progress of cancer. In this paper, we have studied the effects of residues of K22, K41, K43, K241, K358, K399, and K471 using molecular dynamics (MD) simulation. For the strong-effect residues, that is, K22, K41, K43, K358, and K471, our results show that the mutation of K to A leads to large values of root mean square fluctuation (RMSF) around the mutated residues, indicating those residues are important for the flexibility and thermal stability. On the other hand, based on residue cross-correlation analysis, alanine mutations of these residues reinforce the correlation between residues. Together with the RMSF data, the local flexibility is extended to the entire protein by the strong correlations to influence the dynamics and function of fascin. By contrast, for the mutants of K241A and K399A those do not affect the function of fascin, the RMSF data do not show significant differences compared with wild-type fascin. These findings are in a good agreement with experimental studies.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People's Republic of China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, People's Republic of China
- Cancer Research Center, Shantou University Medical College, Shantou, People's Republic of China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, People's Republic of China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People's Republic of China
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, People's Republic of China
| | - Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People's Republic of China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, People's Republic of China
- Medical Informatics Research Center, Shantou University Medical College, Shantou, People's Republic of China
| |
Collapse
|
7
|
Simulations suggest double sodium binding induces unexpected conformational changes in thrombin. J Mol Model 2022; 28:120. [PMID: 35419655 PMCID: PMC9186379 DOI: 10.1007/s00894-022-05076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
Thrombin is a Na[Formula: see text]-activated serine protease existing in two forms targeted to procoagulant and anticoagulant activities, respectively. There is one Na[Formula: see text]-binding site that has been the focus of the study of the thrombin. However, molecular dynamics (MD) simulations suggest that there might be actually two Na[Formula: see text]-binding sites in thrombin and that Na[Formula: see text] ions can even bind to two sites simultaneously. In this study, we performed 12 independent 2-µs all-atom MD simulations for the wild-type (WT) thrombin and we studied the effects of the different Na[Formula: see text] binding modes on thrombin. From the root-mean-square fluctuations (RMSF) for the [Formula: see text]-carbons, we see that the atomic fluctuations mainly change in the 60s, 170s, and 220s loops, and the connection (residue 167 to 170). The correlation matrices for different binding modes suggest regions that may play an important role in thrombin's allosteric response and provide us a possible allosteric pathway for the sodium binding. Amorim-Hennig (AH) clustering tells us how the structure of the regions of interest changes on sodium binding. Principal component analysis (PCA) shows us how the different regions of thrombin change conformation together with sodium binding. Solvent-accessible surface area (SASA) exposes the conformational change in exosite I and catalytic triad. Finally, we argue that the double binding mode might be an inactive mode and that the kinetic scheme for the Na[Formula: see text] binding to thrombin might be a multiple-step mechanism rather than a 2-step mechanism.
Collapse
|
8
|
Exosite Binding in Thrombin: A Global Structural/Dynamic Overview of Complexes with Aptamers and Other Ligands. Int J Mol Sci 2021; 22:ijms221910803. [PMID: 34639143 PMCID: PMC8509272 DOI: 10.3390/ijms221910803] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Thrombin is the key enzyme of the entire hemostatic process since it is able to exert both procoagulant and anticoagulant functions; therefore, it represents an attractive target for the developments of biomolecules with therapeutic potential. Thrombin can perform its many functional activities because of its ability to recognize a wide variety of substrates, inhibitors, and cofactors. These molecules frequently are bound to positively charged regions on the surface of protein called exosites. In this review, we carried out extensive analyses of the structural determinants of thrombin partnerships by surveying literature data as well as the structural content of the Protein Data Bank (PDB). In particular, we used the information collected on functional, natural, and synthetic molecular ligands to define the anatomy of the exosites and to quantify the interface area between thrombin and exosite ligands. In this framework, we reviewed in detail the specificity of thrombin binding to aptamers, a class of compounds with intriguing pharmaceutical properties. Although these compounds anchor to protein using conservative patterns on its surface, the present analysis highlights some interesting peculiarities. Moreover, the impact of thrombin binding aptamers in the elucidation of the cross-talk between the two distant exosites is illustrated. Collectively, the data and the work here reviewed may provide insights into the design of novel thrombin inhibitors.
Collapse
|