1
|
Hoffer L, Charifi-Hoareau G, Barelier S, Betzi S, Miller T, Morelli X, Roche P. ChemoDOTS: a web server to design chemistry-driven focused libraries. Nucleic Acids Res 2024; 52:W461-W468. [PMID: 38686808 PMCID: PMC11223810 DOI: 10.1093/nar/gkae326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
In drug discovery, the successful optimization of an initial hit compound into a lead molecule requires multiple cycles of chemical modification. Consequently, there is a need to efficiently generate synthesizable chemical libraries to navigate the chemical space surrounding the primary hit. To address this need, we introduce ChemoDOTS, an easy-to-use web server for hit-to-lead chemical optimization freely available at https://chemodots.marseille.inserm.fr/. With this tool, users enter an activated form of the initial hit molecule then choose from automatically detected reactive functions. The server proposes compatible chemical transformations via an ensemble of encoded chemical reactions widely used in the pharmaceutical industry during hit-to-lead optimization. After selection of the desired reactions, all compatible chemical building blocks are automatically coupled to the initial hit to generate a raw chemical library. Post-processing filters can be applied to extract a subset of compounds with specific physicochemical properties. Finally, explicit stereoisomers and tautomers are computed, and a 3D conformer is generated for each molecule. The resulting virtual library is compatible with most docking software for virtual screening campaigns. ChemoDOTS rapidly generates synthetically feasible, hit-focused, large, diverse chemical libraries with finely-tuned physicochemical properties via a user-friendly interface providing a powerful resource for researchers engaged in hit-to-lead optimization.
Collapse
Affiliation(s)
- Laurent Hoffer
- CRCM, CNRS, Inserm, Institut Paoli-Calmettes, Aix-Marseille Univ, Marseille 13273, France
| | | | - Sarah Barelier
- CRCM, CNRS, Inserm, Institut Paoli-Calmettes, Aix-Marseille Univ, Marseille 13273, France
| | - Stéphane Betzi
- CRCM, CNRS, Inserm, Institut Paoli-Calmettes, Aix-Marseille Univ, Marseille 13273, France
| | - Thomas Miller
- CRCM, CNRS, Inserm, Institut Paoli-Calmettes, Aix-Marseille Univ, Marseille 13273, France
| | - Xavier Morelli
- CRCM, CNRS, Inserm, Institut Paoli-Calmettes, Aix-Marseille Univ, Marseille 13273, France
| | - Philippe Roche
- CRCM, CNRS, Inserm, Institut Paoli-Calmettes, Aix-Marseille Univ, Marseille 13273, France
| |
Collapse
|
2
|
Nandi S, Bhaduri S, Das D, Ghosh P, Mandal M, Mitra P. Deciphering the Lexicon of Protein Targets: A Review on Multifaceted Drug Discovery in the Era of Artificial Intelligence. Mol Pharm 2024; 21:1563-1590. [PMID: 38466810 DOI: 10.1021/acs.molpharmaceut.3c01161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Understanding protein sequence and structure is essential for understanding protein-protein interactions (PPIs), which are essential for many biological processes and diseases. Targeting protein binding hot spots, which regulate signaling and growth, with rational drug design is promising. Rational drug design uses structural data and computational tools to study protein binding sites and protein interfaces to design inhibitors that can change these interactions, thereby potentially leading to therapeutic approaches. Artificial intelligence (AI), such as machine learning (ML) and deep learning (DL), has advanced drug discovery and design by providing computational resources and methods. Quantum chemistry is essential for drug reactivity, toxicology, drug screening, and quantitative structure-activity relationship (QSAR) properties. This review discusses the methodologies and challenges of identifying and characterizing hot spots and binding sites. It also explores the strategies and applications of artificial-intelligence-based rational drug design technologies that target proteins and protein-protein interaction (PPI) binding hot spots. It provides valuable insights for drug design with therapeutic implications. We have also demonstrated the pathological conditions of heat shock protein 27 (HSP27) and matrix metallopoproteinases (MMP2 and MMP9) and designed inhibitors of these proteins using the drug discovery paradigm in a case study on the discovery of drug molecules for cancer treatment. Additionally, the implications of benzothiazole derivatives for anticancer drug design and discovery are deliberated.
Collapse
Affiliation(s)
- Suvendu Nandi
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Soumyadeep Bhaduri
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Debraj Das
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Priya Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Pralay Mitra
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
3
|
Hönig SMN, Flachsenberg F, Ehrt C, Neumann A, Schmidt R, Lemmen C, Rarey M. SpaceGrow: efficient shape-based virtual screening of billion-sized combinatorial fragment spaces. J Comput Aided Mol Des 2024; 38:13. [PMID: 38493240 PMCID: PMC10944417 DOI: 10.1007/s10822-024-00551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
The growing size of make-on-demand chemical libraries is posing new challenges to cheminformatics. These ultra-large chemical libraries became too large for exhaustive enumeration. Using a combinatorial approach instead, the resource requirement scales approximately with the number of synthons instead of the number of molecules. This gives access to billions or trillions of compounds as so-called chemical spaces with moderate hardware and in a reasonable time frame. While extremely performant ligand-based 2D methods exist in this context, 3D methods still largely rely on exhaustive enumeration and therefore fail to apply. Here, we present SpaceGrow: a novel shape-based 3D approach for ligand-based virtual screening of billions of compounds within hours on a single CPU. Compared to a conventional superposition tool, SpaceGrow shows comparable pose reproduction capacity based on RMSD and superior ranking performance while being orders of magnitude faster. Result assessment of two differently sized subsets of the eXplore space reveals a higher probability of finding superior results in larger spaces highlighting the potential of searching in ultra-large spaces. Furthermore, the application of SpaceGrow in a drug discovery workflow was investigated in four examples involving G protein-coupled receptors (GPCRs) with the aim to identify compounds with similar binding capabilities and molecular novelty.
Collapse
Affiliation(s)
- Sophia M N Hönig
- BioSolveIT, An der Ziegelei 79, 53757, Sankt Augustin, Germany
- Universität Hamburg, ZBH - Center for Bioinformatics, Albert-Einstein-Ring 8-10, 22761, Hamburg, Germany
| | | | - Christiane Ehrt
- Universität Hamburg, ZBH - Center for Bioinformatics, Albert-Einstein-Ring 8-10, 22761, Hamburg, Germany
| | | | - Robert Schmidt
- BioSolveIT, An der Ziegelei 79, 53757, Sankt Augustin, Germany
| | | | - Matthias Rarey
- Universität Hamburg, ZBH - Center for Bioinformatics, Albert-Einstein-Ring 8-10, 22761, Hamburg, Germany.
| |
Collapse
|
4
|
Abstract
We present an efficient algorithm for substructure search in combinatorial libraries defined by synthons, i.e., substructures with connection points. Our method improves on existing approaches by introducing powerful heuristics and fast fingerprint screening to quickly eliminate branches of nonmatching combinations of synthons. With this, we achieve typical response times of a few seconds on a standard desktop computer for searches in large combinatorial libraries like the Enamine REAL Space. We published the Java source as part of the OpenChemLib under the BSD license, and we implemented tools to enable substructure search in custom combinatorial libraries.
Collapse
Affiliation(s)
- Thomas Liphardt
- Scientific Computing Drug Discovery, Idorsia Pharmaceuticals, Ltd., CH-4123 Allschwil, Switzerland
| | - Thomas Sander
- Scientific Computing Drug Discovery, Idorsia Pharmaceuticals, Ltd., CH-4123 Allschwil, Switzerland
| |
Collapse
|
5
|
Korn M, Ehrt C, Ruggiu F, Gastreich M, Rarey M. Navigating large chemical spaces in early-phase drug discovery. Curr Opin Struct Biol 2023; 80:102578. [PMID: 37019067 DOI: 10.1016/j.sbi.2023.102578] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/28/2023] [Accepted: 02/26/2023] [Indexed: 04/07/2023]
Abstract
The size of actionable chemical spaces is surging, owing to a variety of novel techniques, both computational and experimental. As a consequence, novel molecular matter is now at our fingertips that cannot and should not be neglected in early-phase drug discovery. Huge, combinatorial, make-on-demand chemical spaces with high probability of synthetic success rise exponentially in content, generative machine learning models go hand in hand with synthesis prediction, and DNA-encoded libraries offer new ways of hit structure discovery. These technologies enable to search for new chemical matter in a much broader and deeper manner with less effort and fewer financial resources. These transformational developments require new cheminformatics approaches to make huge chemical spaces searchable and analyzable with low resources, and with as little energy consumption as possible. Substantial progress has been made in the past years with respect to computation as well as organic synthesis. First examples of bioactive compounds resulting from the successful use of these novel technologies demonstrate their power to contribute to tomorrow's drug discovery programs. This article gives a compact overview of the state-of-the-art.
Collapse
Affiliation(s)
- Malte Korn
- Universität Hamburg, ZBH - Center for Bioinformatics, Bundesstr. 43, 20146 Hamburg, Germany
| | - Christiane Ehrt
- Universität Hamburg, ZBH - Center for Bioinformatics, Bundesstr. 43, 20146 Hamburg, Germany
| | - Fiorella Ruggiu
- insitro, 279 E Grand Ave., CA 94608, South San Francisco, USA
| | - Marcus Gastreich
- BioSolveIT GmbH, An der Ziegelei 79, 53757 Sankt Augustin, Germany
| | - Matthias Rarey
- Universität Hamburg, ZBH - Center for Bioinformatics, Bundesstr. 43, 20146 Hamburg, Germany.
| |
Collapse
|
6
|
Merkys A, Vaitkus A, Grybauskas A, Konovalovas A, Quirós M, Gražulis S. Graph isomorphism-based algorithm for cross-checking chemical and crystallographic descriptions. J Cheminform 2023; 15:25. [PMID: 36814296 PMCID: PMC9948373 DOI: 10.1186/s13321-023-00692-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Published reports of chemical compounds often contain multiple machine-readable descriptions which may supplement each other in order to yield coherent and complete chemical representations. This publication presents a method to cross-check such descriptions using a canonical representation and isomorphism of molecular graphs. If immediate agreement between compound descriptions is not found, the algorithm derives the minimal set of simplifications required for both descriptions to arrive to a matching form (if any). The proposed algorithm is used to cross-check chemical descriptions from the Crystallography Open Database to identify coherently described entries as well as those requiring further curation.
Collapse
Affiliation(s)
- Andrius Merkys
- Sector of Crystallography and Chemical Informatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| | - Antanas Vaitkus
- grid.6441.70000 0001 2243 2806Sector of Crystallography and Chemical Informatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Algirdas Grybauskas
- grid.6441.70000 0001 2243 2806Sector of Crystallography and Chemical Informatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aleksandras Konovalovas
- grid.6441.70000 0001 2243 2806Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Miguel Quirós
- grid.4489.10000000121678994Departamento de Química Inorgánica, Universidad de Granada, 18071 Granada, Spain
| | - Saulius Gražulis
- grid.6441.70000 0001 2243 2806Sector of Crystallography and Chemical Informatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
7
|
Rarey M, Nicklaus MC, Warr W. Special Issue on Reaction Informatics and Chemical Space. J Chem Inf Model 2022; 62:2009-2010. [DOI: 10.1021/acs.jcim.2c00390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Matthias Rarey
- Universität Hamburg, ZBH − Center for Bioinformatics, 20146 Hamburg, Germany
| | - Marc C. Nicklaus
- NCI, NIH, CADD Group, NCI-Frederick, Frederick, Maryland 21702, United States
| | - Wendy Warr
- Wendy Warr & Associates, Cheshire CW4 7HZ, U.K
| |
Collapse
|
8
|
Warr WA, Nicklaus MC, Nicolaou CA, Rarey M. Exploration of Ultralarge Compound Collections for Drug Discovery. J Chem Inf Model 2022; 62:2021-2034. [PMID: 35421301 DOI: 10.1021/acs.jcim.2c00224] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Designing new medicines more cheaply and quickly is tightly linked to the quest of exploring chemical space more widely and efficiently. Chemical space is monumentally large, but recent advances in computer software and hardware have enabled researchers to navigate virtual chemical spaces containing billions of chemical structures. This review specifically concerns collections of many millions or even billions of enumerated chemical structures as well as even larger chemical spaces that are not fully enumerated. We present examples of chemical libraries and spaces and the means used to construct them, and we discuss new technologies for searching huge libraries and for searching combinatorially in chemical space. We also cover space navigation techniques and consider new approaches to de novo drug design and the impact of the "autonomous laboratory" on synthesis of designed compounds. Finally, we summarize some other challenges and opportunities for the future.
Collapse
Affiliation(s)
- Wendy A Warr
- Wendy Warr & Associates, 6 Berwick Court, Holmes Chapel, Crewe, Cheshire CW4 7HZ, United Kingdom
| | - Marc C Nicklaus
- NCI, NIH, CADD Group, NCI-Frederick, Frederick, Maryland 21702, United States
| | - Christos A Nicolaou
- Discovery Chemistry, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Matthias Rarey
- Universität Hamburg, ZBH Center for Bioinformatics, 20146 Hamburg, Germany
| |
Collapse
|