1
|
Vanderlinden E, Boonen A, Noppen S, Schoofs G, Imbrechts M, Geukens N, Snoeck R, Stevaert A, Naesens L, Andrei G, Schols D. PRO-2000 exhibits SARS-CoV-2 antiviral activity by interfering with spike-heparin binding. Antiviral Res 2023; 217:105700. [PMID: 37562608 DOI: 10.1016/j.antiviral.2023.105700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/29/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Here, we report on the anti-SARS-CoV-2 activity of PRO-2000, a sulfonated polyanionic compound. In Vero cells infected with the Wuhan, alpha, beta, delta or omicron variant, PRO-2000 displayed EC50 values of 1.1 μM, 2.4 μM, 1.3 μM, 2.1 μM and 0.11 μM, respectively, and an average selectivity index (i.e. ratio of cytotoxic versus antiviral concentration) of 172. Its anti-SARS-CoV-2 activity was confirmed by virus yield assays in Vero cells, Caco2 cells and A549 cells overexpressing ACE2 and TMPRSS2 (A549-AT). Using pseudoviruses bearing the SARS-CoV-2 spike (S), PRO-2000 was shown to block the S-mediated pseudovirus entry in Vero cells and A549-AT cells, with EC50 values of 0.091 μM and 1.6 μM, respectively. This entry process is initiated by interaction of the S glycoprotein with angiotensin-converting enzyme 2 (ACE2) and heparan sulfate proteoglycans. Surface Plasmon Resonance (SPR) studies showed that PRO-2000 binds to the receptor-binding domain (RBD) of S with a KD of 1.6 nM. Similar KD values (range: 1.2 nM-2.1 nM) were obtained with the RBDs of the alpha, beta, delta and omicron variants. In an SPR neutralization assay, PRO-2000 had no effect on the interaction between the RBD and ACE2. Instead, PRO-2000 was proven to inhibit binding of the RBD to a heparin-coated sensor chip, yielding an IC50 of 1.1 nM. To conclude, PRO-2000 has the potential to inhibit a broad range of SARS-CoV-2 variants by blocking the heparin-binding site on the S protein.
Collapse
Affiliation(s)
- Evelien Vanderlinden
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium.
| | - Arnaud Boonen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Sam Noppen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Geert Schoofs
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Maya Imbrechts
- PharmAbs, The KU Leuven Antibody Center, Herestraat 49 box 820, 3000, Leuven, Belgium
| | - Nick Geukens
- PharmAbs, The KU Leuven Antibody Center, Herestraat 49 box 820, 3000, Leuven, Belgium
| | - Robert Snoeck
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Annelies Stevaert
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Lieve Naesens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Graciela Andrei
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
2
|
Sun L, Chopra P, Tomris I, van der Woude R, Liu L, de Vries RP, Boons GJ. Well-Defined Heparin Mimetics Can Inhibit Binding of the Trimeric Spike of SARS-CoV-2 in a Length-Dependent Manner. JACS AU 2023; 3:1185-1195. [PMID: 37101566 PMCID: PMC10089289 DOI: 10.1021/jacsau.3c00042] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
The emergence of new SARS-CoV-2 variants and the dangers of long-covid necessitate the development of broad-acting therapeutics that can reduce viral burden. SARS-CoV-2 employs heparan sulfate (HS) as an initial cellular attachment factor, and therefore, there is interest in developing heparin as a therapeutic for SARS-CoV-2. Its use is, however, complicated by structural heterogeneity and the risk of causing bleeding and thrombocytopenia. Here, we describe the preparation of well-defined heparin mimetics by a controlled head-to-tail assembly of HS oligosaccharides having an alkyne or azide moiety by copper-catalyzed azide-alkyne cycloaddition (CuAAC). Alkyne- and azide-containing sulfated oligosaccharides were prepared from a common precursor by modifying an anomeric linker with 4-pentynoic acid and by enzymatic extension with an N-acetyl-glucosamine having an azide moiety at C-6 (GlcNAc6N3), respectively, followed by CuAAC. The process of enzymatic extension with GlcNAc6N3 followed by CuAAC with the desired alkyne-containing oligosaccharides could be repeated to give compounds composed of 20 and 27 monosaccharides, respectively. The heparin mimetics could inhibit the binding of the SARS-CoV-2 spike or RBD to immobilized heparin or to Vero E6 cells. The inhibitory potency increased with increasing chain length, and a compound composed of four sulfated hexasaccharides linked by triazoles had a similar potency as unfractionated heparin. Sequence analysis and HS microarray binding studies with a wide range of RBDs of variants of concern indicate that they have maintained HS-binding capabilities and selectivities. The heparin mimetics exhibit no or reduced binding to antithrombin-III and platelet factor 4, respectively, which are associated with side effects.
Collapse
Affiliation(s)
- Lifeng Sun
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Pradeep Chopra
- Complex
Carbohydrate Research Center, The University
of Georgia, Athens, Georgia 30602, United States
| | - Ilhan Tomris
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Roosmarijn van der Woude
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Lin Liu
- Complex
Carbohydrate Research Center, The University
of Georgia, Athens, Georgia 30602, United States
| | - Robert P. de Vries
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Geert-Jan Boons
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Complex
Carbohydrate Research Center, The University
of Georgia, Athens, Georgia 30602, United States
- Bijvoet
Center for Biomolecular Research, Utrecht
University, 3584 CG Utrecht, The Netherlands
- Chemistry
Department, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
3
|
Kim SH, Kearns FL, Rosenfeld MA, Votapka L, Casalino L, Papanikolas M, Amaro RE, Freeman R. SARS-CoV-2 evolved variants optimize binding to cellular glycocalyx. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101346. [PMID: 37077408 PMCID: PMC10080732 DOI: 10.1016/j.xcrp.2023.101346] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/07/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023]
Abstract
Viral variants of concern continue to arise for SARS-CoV-2, potentially impacting both methods for detection and mechanisms of action. Here, we investigate the effect of an evolving spike positive charge in SARS-CoV-2 variants and subsequent interactions with heparan sulfate and the angiotensin converting enzyme 2 (ACE2) in the glycocalyx. We show that the positively charged Omicron variant evolved enhanced binding rates to the negatively charged glycocalyx. Moreover, we discover that while the Omicron spike-ACE2 affinity is comparable to that of the Delta variant, the Omicron spike interactions with heparan sulfate are significantly enhanced, giving rise to a ternary complex of spike-heparan sulfate-ACE2 with a large proportion of double-bound and triple-bound ACE2. Our findings suggest that SARS-CoV-2 variants evolve to be more dependent on heparan sulfate in viral attachment and infection. This discovery enables us to engineer a second-generation lateral-flow test strip that harnesses both heparin and ACE2 to reliably detect all variants of concern, including Omicron.
Collapse
Affiliation(s)
- Sang Hoon Kim
- Department of Applied Physical Sciences, University of North Carolina - Chapel Hill, 1112 Murray Hall, CB#3050, Chapel Hill, NC 27599-2100, USA
| | - Fiona L Kearns
- Department of Chemistry and Biochemistry, University of California, San Diego, 4238 Urey Hall, MC-0340, La Jolla, CA 92093-0340, USA
| | - Mia A Rosenfeld
- Department of Chemistry and Biochemistry, University of California, San Diego, 4238 Urey Hall, MC-0340, La Jolla, CA 92093-0340, USA
| | - Lane Votapka
- Department of Chemistry and Biochemistry, University of California, San Diego, 4238 Urey Hall, MC-0340, La Jolla, CA 92093-0340, USA
| | - Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California, San Diego, 4238 Urey Hall, MC-0340, La Jolla, CA 92093-0340, USA
| | - Micah Papanikolas
- Department of Applied Physical Sciences, University of North Carolina - Chapel Hill, 1112 Murray Hall, CB#3050, Chapel Hill, NC 27599-2100, USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, 4238 Urey Hall, MC-0340, La Jolla, CA 92093-0340, USA
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina - Chapel Hill, 1112 Murray Hall, CB#3050, Chapel Hill, NC 27599-2100, USA
| |
Collapse
|
4
|
Heparan Sulfate and Enoxaparin Interact at the Interface of the Spike Protein of HCoV-229E but Not with HCoV-OC43. Viruses 2023; 15:v15030663. [PMID: 36992372 PMCID: PMC10056857 DOI: 10.3390/v15030663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/20/2022] [Accepted: 01/05/2023] [Indexed: 03/05/2023] Open
Abstract
It is known that the spike protein of human coronaviruses can bind to a secondary receptor, or coreceptor, to facilitate the virus entry. While HCoV-229E uses human aminopeptidase N (hAPN) as a receptor, HCoV-OC43 binds to 9-O-acetyl-sialic acid (9-O-Ac-Sia), which is linked in a terminal way to the oligosaccharides that decorate glycoproteins and gangliosides on the surface of the host cell. Thus, evaluating the possible inhibitory activity of heparan sulfate, a linear polysaccharide found in animal tissues, and enoxaparin sodium on these viral strains can be considered attractive. Therefore, our study also aims to evaluate these molecules’ antiviral activity as possible adsorption inhibitors against non-SARS-CoV. Once the molecules’ activity was verified in in vitro experiments, the binding was studied by molecular docking and molecular dynamic simulations confirming the interactions at the interface of the spike proteins.
Collapse
|
5
|
Vergara NG, Gatchel M, Abrams CF. Entropic Overcompensation of the N501Y Mutation on SARS-CoV-2 S Binding to ACE2. J Chem Inf Model 2023; 63:633-642. [PMID: 36584335 PMCID: PMC9843633 DOI: 10.1021/acs.jcim.2c01246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 12/31/2022]
Abstract
Recent experimental work has shown that the N501Y mutation in the SARS-CoV-2 S glycoprotein's receptor binding domain (RBD) increases binding affinity to the angiotensin-converting enzyme 2 (ACE2), primarily by overcompensating for a less favorable enthalpy of binding by greatly reducing the entropic penalty for complex formation, but the basis for this entropic overcompensation is not clear [Prévost et al. J. Biol. Chem.2021, 297, 101151]. We use all-atom molecular dynamics simulations and free-energy calculations to qualitatively assess the impact of the N501Y mutation on the enthalpy and entropy of binding of RBD to ACE2. Our calculations correctly predict that N501Y causes a less favorable enthalpy of binding to ACE2 relative to the original strain. Furthermore, we show that this is overcompensated for by a more entropically favorable increase in large-scale quaternary flexibility and intraprotein root mean square fluctuations of residue positions upon binding in both RBD and ACE2. The enhanced quaternary flexibility stems from N501Y's ability to remodel the inter-residue interactions between the two proteins away from interactions central to the epitope and toward more peripheral interactions. These findings suggest that an important factor in determining protein-protein binding affinity is the degree to which fluctuations are distributed throughout the complex and that residue mutations that may seem to result in weaker interactions than their wild-type counterparts may yet result in increased binding affinity thanks to their ability to suppress unfavorable entropy changes upon binding.
Collapse
Affiliation(s)
- Natasha Gupta Vergara
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Megan Gatchel
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Cameron F. Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
Yoshida N, Maruyama Y, Mitsutake A, Kuroda A, Fujiki R, Kanemaru K, Okamoto D, Kobryn AE, Gusarov S, Nakano H. Computational Analysis of the SARS-CoV-2 RBD-ACE2-Binding Process Based on MD and the 3D-RISM Theory. J Chem Inf Model 2022; 62:2889-2898. [PMID: 35583118 PMCID: PMC9159518 DOI: 10.1021/acs.jcim.2c00192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Indexed: 12/26/2022]
Abstract
The binding process of angiotensin-converting enzyme 2 (ACE2) to the receptor-binding domain (RBD) of the severe acute respiratory syndrome-like coronavirus 2 spike protein was investigated using molecular dynamics simulation and the three-dimensional reference interaction-site model theory. The results suggested that the protein-binding process consists of a protein-protein approaching step, followed by a local structural rearrangement step. In the approaching step, the interprotein interaction energy decreased as the proteins approached each other, whereas the solvation free energy increased. As the proteins approached, the glycan of ACE2 first established a hydrogen bond with the RBD. Thereafter, the number of interprotein hydrogen bonds increased rapidly. The solvation free energy increased because of the desolvation of the protein as it approached its partner. The spatial distribution function of the solvent revealed the presence of hydrogen bonds bridged by water molecules on the RBD-ACE2 interface. Finally, principal component analysis revealed that ACE2 showed a pronounced conformational change, whereas there was no significant change in RBD.
Collapse
Affiliation(s)
- Norio Yoshida
- Department of Chemistry, Graduate School of Science,
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka
819-0395, Japan
- Department of Complex Systems Science,
Graduate School of Informatics, Furo-cho, Chikusa-Ward, Nagoya 464-8601,
Japan
| | - Yutaka Maruyama
- Department of Physics, School of Science and Technology,
Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kanagawa,
Kawasaki 214-8571, Japan
| | - Ayori Mitsutake
- Department of Physics, School of Science and Technology,
Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kanagawa,
Kawasaki 214-8571, Japan
| | - Akiyoshi Kuroda
- RIKEN Center for Computational
Science, 7-1-26, Minatojima-Minami-Machi, Chuo-ku, Hyogo, Kobe 650-0047,
Japan
| | - Ryo Fujiki
- Department of Chemistry, Graduate School of Science,
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka
819-0395, Japan
| | - Kodai Kanemaru
- Department of Chemistry, Graduate School of Science,
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka
819-0395, Japan
| | - Daisuke Okamoto
- Department of Chemistry, Graduate School of Science,
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka
819-0395, Japan
| | - Alexander E. Kobryn
- Nanotechnology Research Centre, National
Research Council Canada, 11421 Saskatchewan Drive NW, Edmonton AB T6G 2M9,
Canada
| | - Sergey Gusarov
- Nanotechnology Research Centre, National
Research Council Canada, 11421 Saskatchewan Drive NW, Edmonton AB T6G 2M9,
Canada
| | - Haruyuki Nakano
- Department of Chemistry, Graduate School of Science,
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka
819-0395, Japan
| |
Collapse
|