1
|
Zhang O, Lin H, Zhang H, Zhao H, Huang Y, Hsieh CY, Pan P, Hou T. Deep Lead Optimization: Leveraging Generative AI for Structural Modification. J Am Chem Soc 2024. [PMID: 39499822 DOI: 10.1021/jacs.4c11686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The integration of deep learning-based molecular generation models into drug discovery has garnered significant attention for its potential to expedite the development process. Central to this is lead optimization, a critical phase where existing molecules are refined into viable drug candidates. As various methods for deep lead optimization continue to emerge, it is essential to classify these approaches more clearly. We categorize lead optimization methods into two main types: goal-directed and structure-directed. Our focus is on structure-directed optimization, which, while highly relevant to practical applications, is less explored compared to goal-directed methods. Through a systematic review of conventional computational approaches, we identify four tasks specific to structure-directed optimization: fragment replacement, linker design, scaffold hopping, and side-chain decoration. We discuss the motivations, training data construction, and current developments for each of these tasks. Additionally, we use classical optimization taxonomy to classify both goal-directed and structure-directed methods, highlighting their challenges and future development prospects. Finally, we propose a reference protocol for experimental chemists to effectively utilize Generative AI (GenAI)-based tools in structural modification tasks, bridging the gap between methodological advancements and practical applications.
Collapse
Affiliation(s)
- Odin Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Haitao Lin
- AI Lab, Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Hui Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Huifeng Zhao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yufei Huang
- AI Lab, Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Chang-Yu Hsieh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Peichen Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
2
|
Bharadwaj S, Deepika K, Kumar A, Jaiswal S, Miglani S, Singh D, Fartyal P, Kumar R, Singh S, Singh MP, Gaidhane AM, Kumar B, Jha V. Exploring the Artificial Intelligence and Its Impact in Pharmaceutical Sciences: Insights Toward the Horizons Where Technology Meets Tradition. Chem Biol Drug Des 2024; 104:e14639. [PMID: 39396920 DOI: 10.1111/cbdd.14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/03/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
The technological revolutions in computers and the advancement of high-throughput screening technologies have driven the application of artificial intelligence (AI) for faster discovery of drug molecules with more efficiency, and cost-friendly finding of hit or lead molecules. The ability of software and network frameworks to interpret molecular structures' representations and establish relationships/correlations has enabled various research teams to develop numerous AI platforms for identifying new lead molecules or discovering new targets for already established drug molecules. The prediction of biological activity, ADME properties, and toxicity parameters in early stages have reduced the chances of failure and associated costs in later clinical stages, which was observed at a high rate in the tedious, expensive, and laborious drug discovery process. This review focuses on the different AI and machine learning (ML) techniques with their applications mainly focused on the pharmaceutical industry. The applications of AI frameworks in the identification of molecular target, hit identification/hit-to-lead optimization, analyzing drug-receptor interactions, drug repurposing, polypharmacology, synthetic accessibility, clinical trial design, and pharmaceutical developments are discussed in detail. We have also compiled the details of various startups in AI in this field. This review will provide a comprehensive analysis and outline various state-of-the-art AI/ML techniques to the readers with their framework applications. This review also highlights the challenges in this field, which need to be addressed for further success in pharmaceutical applications.
Collapse
Affiliation(s)
- Shruti Bharadwaj
- Center for SeNSE, Indian Institute of Technology Delhi (IIT), New Delhi, India
| | - Kumari Deepika
- Department of Computer Engineering, Pune Institute of Computer Technology, Pune, India
| | - Asim Kumar
- Amity Institute of Pharmacy (AIP), Amity University Haryana, Manesar, India
| | - Shivani Jaiswal
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Shaweta Miglani
- Department of Education, Central University of Punjab, Bathinda, India
| | - Damini Singh
- IES Institute of Pharmacy, IES University, Bhopal, Madhya Pradesh, India
| | - Prachi Fartyal
- Department of Mathematics, Govt PG College Bajpur (US Nagar), Bazpur, Uttarakhand, India
| | - Roshan Kumar
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, India
- Department of Microbiology, Central University of Punjab, VPO-Ghudda, Punjab, India
| | - Shareen Singh
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Mahendra Pratap Singh
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Abhay M Gaidhane
- Jawaharlal Nehru Medical College, and Global Health Academy, School of Epidemiology and Public Health, Datta Meghe Institute of Higher Education, Wardha, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar, Uttarakhand, India
| | - Vibhu Jha
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
3
|
Sultan A, Sieg J, Mathea M, Volkamer A. Transformers for Molecular Property Prediction: Lessons Learned from the Past Five Years. J Chem Inf Model 2024; 64:6259-6280. [PMID: 39136669 DOI: 10.1021/acs.jcim.4c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Molecular Property Prediction (MPP) is vital for drug discovery, crop protection, and environmental science. Over the last decades, diverse computational techniques have been developed, from using simple physical and chemical properties and molecular fingerprints in statistical models and classical machine learning to advanced deep learning approaches. In this review, we aim to distill insights from current research on employing transformer models for MPP. We analyze the currently available models and explore key questions that arise when training and fine-tuning a transformer model for MPP. These questions encompass the choice and scale of the pretraining data, optimal architecture selections, and promising pretraining objectives. Our analysis highlights areas not yet covered in current research, inviting further exploration to enhance the field's understanding. Additionally, we address the challenges in comparing different models, emphasizing the need for standardized data splitting and robust statistical analysis.
Collapse
Affiliation(s)
- Afnan Sultan
- Data Driven Drug Design, Center for Bioinformatics, Saarland University, Saarbrücken 66123, Germany
| | | | | | - Andrea Volkamer
- Data Driven Drug Design, Center for Bioinformatics, Saarland University, Saarbrücken 66123, Germany
| |
Collapse
|
4
|
Panei FP, Gkeka P, Bonomi M. Identifying small-molecules binding sites in RNA conformational ensembles with SHAMAN. Nat Commun 2024; 15:5725. [PMID: 38977675 PMCID: PMC11231146 DOI: 10.1038/s41467-024-49638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
The rational targeting of RNA with small molecules is hampered by our still limited understanding of RNA structural and dynamic properties. Most in silico tools for binding site identification rely on static structures and therefore cannot face the challenges posed by the dynamic nature of RNA molecules. Here, we present SHAMAN, a computational technique to identify potential small-molecule binding sites in RNA structural ensembles. SHAMAN enables exploring the conformational landscape of RNA with atomistic molecular dynamics simulations and at the same time identifying RNA pockets in an efficient way with the aid of probes and enhanced-sampling techniques. In our benchmark composed of large, structured riboswitches as well as small, flexible viral RNAs, SHAMAN successfully identifies all the experimentally resolved pockets and ranks them among the most favorite probe hotspots. Overall, SHAMAN sets a solid foundation for future drug design efforts targeting RNA with small molecules, effectively addressing the long-standing challenges in the field.
Collapse
Affiliation(s)
- F P Panei
- Integrated Drug Discovery, Molecular Design Sciences, Sanofi, Vitry-sur-Seine, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Computational Structural Biology Unit, Paris, France
- Sorbonne Université, Ecole Doctorale Complexité du Vivant, Paris, France
| | - P Gkeka
- Integrated Drug Discovery, Molecular Design Sciences, Sanofi, Vitry-sur-Seine, France.
| | - M Bonomi
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Computational Structural Biology Unit, Paris, France.
| |
Collapse
|
5
|
Tipo J, Gottipati K, Choi KH. High-resolution RNA tertiary structures in Zika virus stem-loop A for the development of inhibitory small molecules. RNA (NEW YORK, N.Y.) 2024; 30:609-623. [PMID: 38383158 PMCID: PMC11098461 DOI: 10.1261/rna.079796.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
Flaviviruses such as Zika (ZIKV) and dengue virus (DENV) are positive-sense RNA viruses belonging to Flaviviridae The flavivirus genome contains a 5' end stem-loop promoter sequence known as stem-loop A (SLA) that is recognized by the flavivirus polymerase NS5 during viral RNA synthesis and 5' guanosine cap methylation. The crystal structures of ZIKV and DENV SLAs show a well-defined fold, consisting of a bottom stem, side loop, and top stem-loop, providing unique interaction sites for small molecule inhibitors to disrupt the promoter function. To facilitate the identification of small molecule binding sites in flavivirus SLA, we determined high-resolution structures of the bottom and top stems of ZIKV SLA, which contain a single U- or G-bulge, respectively. Both bulge nucleotides exhibit multiple orientations, from folded back on the adjacent nucleotide to flipped out of the helix, and are stabilized by stacking or base triple interactions. These structures suggest that even a single unpaired nucleotide can provide flexibility to RNA structures, and its conformation is mainly determined by the stabilizing chemical environment. To facilitate discovery of small molecule inhibitors that interfere with the functions of ZIKV SLA, we screened and identified compounds that bind to the bottom and top stems of ZIKV SLA.
Collapse
Affiliation(s)
- Jerricho Tipo
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Keerthi Gottipati
- Department of Biochemistry and Molecular Biology, and Sealy Center for Structural Biology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Kyung H Choi
- Department of Biochemistry and Molecular Biology, and Sealy Center for Structural Biology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
6
|
Nandi S, Bhaduri S, Das D, Ghosh P, Mandal M, Mitra P. Deciphering the Lexicon of Protein Targets: A Review on Multifaceted Drug Discovery in the Era of Artificial Intelligence. Mol Pharm 2024; 21:1563-1590. [PMID: 38466810 DOI: 10.1021/acs.molpharmaceut.3c01161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Understanding protein sequence and structure is essential for understanding protein-protein interactions (PPIs), which are essential for many biological processes and diseases. Targeting protein binding hot spots, which regulate signaling and growth, with rational drug design is promising. Rational drug design uses structural data and computational tools to study protein binding sites and protein interfaces to design inhibitors that can change these interactions, thereby potentially leading to therapeutic approaches. Artificial intelligence (AI), such as machine learning (ML) and deep learning (DL), has advanced drug discovery and design by providing computational resources and methods. Quantum chemistry is essential for drug reactivity, toxicology, drug screening, and quantitative structure-activity relationship (QSAR) properties. This review discusses the methodologies and challenges of identifying and characterizing hot spots and binding sites. It also explores the strategies and applications of artificial-intelligence-based rational drug design technologies that target proteins and protein-protein interaction (PPI) binding hot spots. It provides valuable insights for drug design with therapeutic implications. We have also demonstrated the pathological conditions of heat shock protein 27 (HSP27) and matrix metallopoproteinases (MMP2 and MMP9) and designed inhibitors of these proteins using the drug discovery paradigm in a case study on the discovery of drug molecules for cancer treatment. Additionally, the implications of benzothiazole derivatives for anticancer drug design and discovery are deliberated.
Collapse
Affiliation(s)
- Suvendu Nandi
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Soumyadeep Bhaduri
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Debraj Das
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Priya Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Pralay Mitra
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
7
|
Zhang L, Rao V, Cornell W. r-BRICS - A Revised BRICS Module That Breaks Ring Structures and Carbon Chains. ChemMedChem 2024; 19:e202300202. [PMID: 37574458 DOI: 10.1002/cmdc.202300202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/24/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Molecular fragmentation has been frequently used for machine learning, molecular modeling, and drug discovery studies. However, the current molecular fragmentation tools often lead to large fragments that are useful to limited tasks. Specifically, long aliphatic chains, certain connected ring structures, fused rings, as well as various nitrogen-containing molecular entities often remain intact when using BRICS. With no known methods to solve this issue, we find that the fragments taken from BRICS are inflexible for tasks such as fragment-based machine learning, coarse-graining, and ligand-protein interaction assessment. In this work, a revised BRICS (r-BRICS) module is developed to allow more flexible fragmentation on a wider variety of molecules. It is shown that r-BRICS generates smaller fragments than BRICS, allowing localized fragment assessments. Furthermore, r-BRICS generates a fragment database with significantly more unique small fragments than BRICS, which is potentially useful for fragment-based drug discovery.
Collapse
Affiliation(s)
- Leili Zhang
- IBM Thomas J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY, 10598, USA
| | - Vasumitra Rao
- IBM Thomas J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY, 10598, USA
| | - Wendy Cornell
- IBM Thomas J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY, 10598, USA
| |
Collapse
|
8
|
Jinsong S, Qifeng J, Xing C, Hao Y, Wang L. Molecular fragmentation as a crucial step in the AI-based drug development pathway. Commun Chem 2024; 7:20. [PMID: 38302655 PMCID: PMC10834946 DOI: 10.1038/s42004-024-01109-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
The AI-based small molecule drug discovery has become a significant trend at the intersection of computer science and life sciences. In the pursuit of novel compounds, fragment-based drug discovery has emerged as a novel approach. The Generative Pre-trained Transformers (GPT) model has showcased remarkable prowess across various domains, rooted in its pre-training and representation learning of fundamental linguistic units. Analogous to natural language, molecular encoding, as a form of chemical language, necessitates fragmentation aligned with specific chemical logic for accurate molecular encoding. This review provides a comprehensive overview of the current state of the art in molecular fragmentation. We systematically summarize the approaches and applications of various molecular fragmentation techniques, with special emphasis on the characteristics and scope of applicability of each technique, and discuss their applications. We also provide an outlook on the current development trends of molecular fragmentation techniques, including some potential research directions and challenges.
Collapse
Affiliation(s)
- Shao Jinsong
- Nantong University, School of Information Science and Technology, Nantong, China
| | - Jia Qifeng
- Nantong University, School of Information Science and Technology, Nantong, China
| | - Chen Xing
- Nantong University, School of Information Science and Technology, Nantong, China
| | - Yajie Hao
- Nantong University, School of Information Science and Technology, Nantong, China
| | - Li Wang
- Nantong University, Research Center for Intelligence Information Technology, Nantong, China.
| |
Collapse
|
9
|
Bess A, Berglind F, Mukhopadhyay S, Brylinski M, Alvin C, Fattah F, Wasan KM. Identification of oral therapeutics using an AI platform against the virus responsible for COVID-19, SARS-CoV-2. Front Pharmacol 2023; 14:1297924. [PMID: 38186640 PMCID: PMC10770831 DOI: 10.3389/fphar.2023.1297924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Purpose: This study introduces a sophisticated computational pipeline, eVir, designed for the discovery of antiviral drugs based on their interactions within the human protein network. There is a pressing need for cost-effective therapeutics for infectious diseases (e.g., COVID-19), particularly in resource-limited countries. Therefore, our team devised an Artificial Intelligence (AI) system to explore repurposing opportunities for currently used oral therapies. The eVir system operates by identifying pharmaceutical compounds that mirror the effects of antiviral peptides (AVPs)-fragments of human proteins known to interfere with fundamental phases of the viral life cycle: entry, fusion, and replication. eVir extrapolates the probable antiviral efficacy of a given compound by analyzing its established and predicted impacts on the human protein-protein interaction network. This innovative approach provides a promising platform for drug repurposing against SARS-CoV-2 or any virus for which peptide data is available. Methods: The eVir AI software pipeline processes drug-protein and protein-protein interaction networks generated from open-source datasets. eVir uses Node2Vec, a graph embedding technique, to understand the nuanced connections among drugs and proteins. The embeddings are input a Siamese Network (SNet) and MLPs, each tailored for the specific mechanisms of entry, fusion, and replication, to evaluate the similarity between drugs and AVPs. Scores generated from the SNet and MLPs undergo a Platt probability calibration and are combined into a unified score that gauges the potential antiviral efficacy of a drug. This integrated approach seeks to boost drug identification confidence, offering a potential solution for detecting therapeutic candidates with pronounced antiviral potency. Once identified a number of compounds were tested for efficacy and toxicity in lung carcinoma cells (Calu-3) infected with SARS-CoV-2. A lead compound was further identified to determine its efficacy and toxicity in K18-hACE2 mice infected with SARS-CoV-2. Computational Predictions: The SNet confidently differentiated between similar and dissimilar drug pairs with an accuracy of 97.28% and AUC of 99.47%. Key compounds identified through these networks included Zinc, Mebendazole, Levomenol, Gefitinib, Niclosamide, and Imatinib. Notably, Mebendazole and Zinc showcased the highest similarity scores, while Imatinib, Levemenol, and Gefitinib also ranked within the top 20, suggesting their significant pharmacological potentials. Further examination of protein binding analysis using explainable AI focused on reverse engineering the causality of the networks. Protein interaction scores for Mebendazole and Imatinib revealed their effects on notable proteins such as CDPK1, VEGF2, ABL1, and several tyrosine protein kinases. Laboratory Studies: This study determined that Mebendazole, Gefitinib, Topotecan and to some extent Carfilzomib showed conventional drug-response curves, with IC50 values near or below that of Remdesivir with excellent confidence all above R2>0.91, and no cytotoxicity at the IC50 concentration in Calu-3 cells. Cyclosporine A showed antiviral activity, but also unconventional drug-response curves and low R2 which are explained by the non-dose dependent toxicity of the compound. Additionally, Niclosamide demonstrated a conventional drug-response curve with high confidence; however, its inherent cytotoxicity may be a confounding element that misrepresents true antiviral efficacy, by reflecting cellular damage rather than a genuine antiviral action. Remdesivir was used as a control compound and was evaluated in parallel with the submitted test article and had conventional drug-response curves validating the overall results of the assay. Mebendazole was identified from the cell studies to have efficacy at non-toxic concentrations and were further evaluated in mice infected with SARS-CoV-2. Mebendazole administered to K18-hACE2 mice infected with SARS-CoV-2, resulted in a 44.2% reduction in lung viral load compared to non-treated placebo control respectively. There were no significant differences in body weight and all clinical chemistry determinations evaluated (i.e., kidney and liver enzymes) between the different treatment groups. Conclusion: This research underscores the potential of repurposing existing compounds for treating COVID-19. Our preliminary findings underscore the therapeutic promise of several compounds, notably Mebendazole, in both in vitro and in vivo settings against SARS-CoV-2. Several of the drugs explored, especially Mebendazole, are off-label medication; their cost-effectiveness position them as economical therapies against SARS-CoV-2.
Collapse
Affiliation(s)
- Adam Bess
- Department of Computer Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Frej Berglind
- Department of Computer Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Supratik Mukhopadhyay
- Department of Environmental Sciences, Center for Computation & Technology, Coastal Studies Institute, Louisiana State University, Baton Rouge, LA, United States
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Chris Alvin
- Department of Computer Science, Furman University, Greenville, SC, United States
| | - Fanan Fattah
- Department of Urologic Sciences, Faculty of Medicine and the Neglected Global Diseases Initiative, University of British Columbia, Vancouver, BC, Canada
| | - Kishor M. Wasan
- Department of Urologic Sciences, Faculty of Medicine and the Neglected Global Diseases Initiative, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Buehler Y, Reymond JL. Expanding Bioactive Fragment Space with the Generated Database GDB-13s. J Chem Inf Model 2023; 63:6239-6248. [PMID: 37722101 PMCID: PMC10598793 DOI: 10.1021/acs.jcim.3c01096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Indexed: 09/20/2023]
Abstract
Identifying innovative fragments for drug design can help medicinal chemistry address new targets and overcome the limitations of the classical molecular series. By deconstructing molecules into ring fragments (RFs, consisting of ring atoms plus ring-adjacent atoms) and acyclic fragments (AFs, consisting of only acyclic atoms), we find that public databases of molecules (i.e., ZINC and PubChem) and natural products (i.e., COCONUT) contain mostly RFs and AFs of up to 13 atoms. We also find that many RFs and AFs are enriched in bioactive vs inactive compounds from ChEMBL. We then analyze the generated database GDB-13s, which enumerates 99 million possible molecules of up to 13 atoms, for RFs and AFs resembling ChEMBL bioactive RFs and AFs. This analysis reveals a large number of novel RFs and AFs that are structurally simple, have favorable synthetic accessibility scores, and represent opportunities for synthetic chemistry to contribute to drug innovation in the context of fragment-based drug discovery.
Collapse
Affiliation(s)
- Ye Buehler
- Department of Chemistry,
Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry,
Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
11
|
Shama Bhat G, Shaik Mohammad F. Computational Fragment-Based Design of Phytochemical Derivatives as EGFR Inhibitors. Chem Biodivers 2023; 20:e202300681. [PMID: 37399183 DOI: 10.1002/cbdv.202300681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
Epidermal growth factor receptor (EGFR) is a potential target with disease modifying benefits against Alzheimer's disease (AD). Repurposing of FDA approved drugs against EGFR have shown beneficial effect against AD but are confined to quinazoline, quinoline and aminopyrimidines. Futuristically, the possibility of acquiring drug resistance mutation as seen in the case of cancer could also hamper AD treatment. To identify novel chemical scaffolds, we rooted on phytochemicals identified from plants such as Acorus calamus, Bacopa monnieri, Convolvulus pluricaulis, Tinospora cordifloia, and Withania somnifera that have well-established records in the treatment of brain disorders. The rationale was to mimic the biosynthetic metabolite extension process observed in the plants for synthesizing new phytochemical derivates. Thus, novel compounds were designed computationally by fragment-based method followed by extensive in silico analysis to pick potential phytochemical derivates. PCD1, 8 and 10 were predicted to have better blood brain barrier permeability. ADMET and SoM analysis suggested that these PCDs exhibited druglike properties. Further simulation studies showed that PCD1 and PCD8 stably interact with EGFR and have the potential to be used even in cases of drug-resistance mutations. With further experimental evidence, these PCDs could be leveraged as potential inhibitors of EGFR.
Collapse
Affiliation(s)
- Gayathri Shama Bhat
- Department of Biotechnology, Manipal Institute of Technology, Manipal, 576104, Karnataka, India
| | - Fayaz Shaik Mohammad
- Department of Biotechnology, Manipal Institute of Technology, Manipal, 576104, Karnataka, India
| |
Collapse
|
12
|
Diao Y, Hu F, Shen Z, Li H. MacFrag: segmenting large-scale molecules to obtain diverse fragments with high qualities. Bioinformatics 2023; 39:6986129. [PMID: 36637187 PMCID: PMC9872447 DOI: 10.1093/bioinformatics/btad012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
SUMMARY Construction of high-quality fragment libraries by segmenting organic compounds is an important part of the drug discovery paradigm. This article presents a new method, MacFrag, for efficient molecule fragmentation. MacFrag utilized a modified version of BRICS rules to break chemical bonds and introduced an efficient subgraphs extraction algorithm for rapid enumeration of the fragment space. The evaluation results with ChEMBL dataset exhibited that MacFrag was overall faster than BRICS implemented in RDKit and modified molBLOCKS. Meanwhile, the fragments acquired through MacFrag were more compliant with the 'Rule of Three'. AVAILABILITY AND IMPLEMENTATION https://github.com/yydiao1025/MacFrag. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yanyan Diao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Hu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zihao Shen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Honglin Li
- To whom correspondence should be addressed.
| |
Collapse
|
13
|
Gallarati S, van Gerwen P, Laplaza R, Vela S, Fabrizio A, Corminboeuf C. OSCAR: an extensive repository of chemically and functionally diverse organocatalysts. Chem Sci 2022; 13:13782-13794. [PMID: 36544722 PMCID: PMC9710326 DOI: 10.1039/d2sc04251g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022] Open
Abstract
The automated construction of datasets has become increasingly relevant in computational chemistry. While transition-metal catalysis has greatly benefitted from bottom-up or top-down strategies for the curation of organometallic complexes libraries, the field of organocatalysis is mostly dominated by case-by-case studies, with a lack of transferable data-driven tools that facilitate both the exploration of a wider range of catalyst space and the optimization of reaction properties. For these reasons, we introduce OSCAR, a repository of 4000 experimentally derived organocatalysts along with their corresponding building blocks and combinatorially enriched structures. We outline the fragment-based approach used for database generation and showcase the chemical diversity, in terms of functions and molecular properties, covered in OSCAR. The structures and corresponding stereoelectronic properties are publicly available (https://archive.materialscloud.org/record/2022.106) and constitute the starting point to build generative and predictive models for organocatalyst performance.
Collapse
Affiliation(s)
- Simone Gallarati
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Puck van Gerwen
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- National Center for Competence in Research - Catalysis (NCCR-Catalysis), Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Ruben Laplaza
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- National Center for Competence in Research - Catalysis (NCCR-Catalysis), Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Sergi Vela
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Alberto Fabrizio
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- National Center for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Clemence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- National Center for Competence in Research - Catalysis (NCCR-Catalysis), Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- National Center for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
14
|
Towards systematic exploration of chemical space: building the fragment library module in molecular property diagnostic suite. Mol Divers 2022:10.1007/s11030-022-10506-5. [PMID: 35925528 PMCID: PMC9362107 DOI: 10.1007/s11030-022-10506-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/23/2022] [Indexed: 11/04/2022]
Abstract
A fragment-based drug discovery (FBDD) approach has traditionally been of utmost significance in drug design studies. It allows the exploration of large chemical space to find novel scaffolds and chemotypes which can be improved into selective inhibitors with good affinity. In the current work, several public domain chemical libraries (ChEMBL, DrugCentral, PDB ligands, COCONUT, and SAVI) comprising bioactive and virtual molecules were retrieved to develop a fragment library. A systematic fragmentation method that breaks a given molecule into rings, linkers, and substituents was used to cleave the molecules and the fragments were analyzed. Further, only the ring framework was taken into the consideration to develop a fragment library that consists of a total number of 107,614 unique fragments. This set represents a rich diverse structure framework that covers a wide variety of yet-to-be-explored fragments for a wide range of small molecule-based applications. This fragment library is an integral part of the molecular property diagnostic suite (MPDS) suite that can be used with other modeling and informatics methods for FBDD approaches. The fragment library module of MPDS can be accessed at http://mpds.neist.res.in:8085.
Collapse
|
15
|
A fragment-based drug discovery strategy applied to the identification of NDM-1 β-lactamase inhibitors. Eur J Med Chem 2022; 240:114599. [PMID: 35841882 DOI: 10.1016/j.ejmech.2022.114599] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/26/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022]
Abstract
Hydrolysis of β-lactam drugs, a major class of antibiotics, by serine or metallo-β-lactamases (SBL or MBL) is one of the main mechanisms for antibiotic resistance. New Delhi Metallo-β-lactamase-1 (NDM-1), an acquired metallo-carbapenemase first reported in 2009, is currently considered one of the most clinically relevant targets for the development of β-lactam-β-lactamase inhibitor combinations active on NDM-producing clinical isolates. Identification of scaffolds that could be further rationally pharmacomodulated to design new and efficient NDM-1 inhibitors is thus urgently needed. Fragment-based drug discovery (FBDD) has become of great interest for the development of new drugs for the past few years and combination of several FBDD strategies, such as virtual and NMR screening, can reduce the drawbacks of each of them independently. Our methodology starting from a high throughput virtual screening on NDM-1 of a large library (more than 700,000 compounds) allowed, after slicing the hit molecules into fragments, to build a targeted library. These hit fragments were included in an in-house untargeted library fragments that was screened by Saturation Transfer Difference (STD) Nuclear Magnetic Resonance (NMR). 37 fragments were finally identified and used to establish a pharmacophore. 10 molecules based on these hit fragments were synthesized to validate our strategy. Indenone 89 that combined two identified fragments shows an inhibitory activity on NDM-1 with a Ki value of 4 μM.
Collapse
|
16
|
Wang Y, Magar R, Liang C, Barati Farimani A. Improving Molecular Contrastive Learning via Faulty Negative Mitigation and Decomposed Fragment Contrast. J Chem Inf Model 2022; 62:2713-2725. [PMID: 35638560 DOI: 10.1021/acs.jcim.2c00495] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Deep learning has been a prevalence in computational chemistry and widely implemented in molecular property predictions. Recently, self-supervised learning (SSL), especially contrastive learning (CL), has gathered growing attention for the potential to learn molecular representations that generalize to the gigantic chemical space. Unlike supervised learning, SSL can directly leverage large unlabeled data, which greatly reduces the effort to acquire molecular property labels through costly and time-consuming simulations or experiments. However, most molecular SSL methods borrow the insights from the machine learning community but neglect the unique cheminformatics (e.g., molecular fingerprints) and multilevel graphical structures (e.g., functional groups) of molecules. In this work, we propose iMolCLR, improvement of Molecular Contrastive Learning of Representations with graph neural networks (GNNs) in two aspects: (1) mitigating faulty negative contrastive instances via considering cheminformatics similarities between molecule pairs and (2) fragment-level contrasting between intramolecule and intermolecule substructures decomposed from molecules. Experiments have shown that the proposed strategies significantly improve the performance of GNN models on various challenging molecular property predictions. In comparison to the previous CL framework, iMolCLR demonstrates an averaged 1.2% improvement of ROC-AUC on eight classification benchmarks and an averaged 10.1% decrease of the error on six regression benchmarks. On most benchmarks, the generic GNN pretrained by iMolCLR rivals or even surpasses supervised learning models with sophisticated architectures and engineered features. Further investigations demonstrate that representations learned through iMolCLR intrinsically embed scaffolds and functional groups that can reason molecule similarities.
Collapse
Affiliation(s)
- Yuyang Wang
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rishikesh Magar
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Chen Liang
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Amir Barati Farimani
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
17
|
Molecular generation by Fast Assembly of (Deep)SMILES fragments. J Cheminform 2021; 13:88. [PMID: 34775976 PMCID: PMC8591910 DOI: 10.1186/s13321-021-00566-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years, in silico molecular design is regaining interest. To generate on a computer molecules with optimized properties, scoring functions can be coupled with a molecular generator to design novel molecules with a desired property profile. RESULTS In this article, a simple method is described to generate only valid molecules at high frequency ([Formula: see text] molecule/s using a single CPU core), given a molecular training set. The proposed method generates diverse SMILES (or DeepSMILES) encoded molecules while also showing some propensity at training set distribution matching. When working with DeepSMILES, the method reaches peak performance ([Formula: see text] molecule/s) because it relies almost exclusively on string operations. The "Fast Assembly of SMILES Fragments" software is released as open-source at https://github.com/UnixJunkie/FASMIFRA . Experiments regarding speed, training set distribution matching, molecular diversity and benchmark against several other methods are also shown.
Collapse
|
18
|
Artificial intelligence for the discovery of novel antimicrobial agents for emerging infectious diseases. Drug Discov Today 2021; 27:1099-1107. [PMID: 34748992 PMCID: PMC8570449 DOI: 10.1016/j.drudis.2021.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023]
Abstract
The search for effective drugs to treat new and existing diseases is a laborious one requiring a large investment of capital, resources, and time. The coronavirus 2019 (COVID-19) pandemic has been a painful reminder of the lack of development of new antimicrobial agents to treat emerging infectious diseases. Artificial intelligence (AI) and other in silico techniques can drive a more efficient, cost-friendly approach to drug discovery by helping move potential candidates with better clinical tolerance forward in the pipeline. Several research teams have developed successful AI platforms for hit identification, lead generation, and lead optimization. In this review, we investigate the technologies at the forefront of spearheading an AI revolution in drug discovery and pharmaceutical sciences.
Collapse
|
19
|
Reverse fragment based drug discovery approach via simple estimation of fragment contributions. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Reverse fragment based drug discovery approach via simple estimation of fragment contributions. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Kanev GK, de Graaf C, Westerman BA, de Esch IJP, Kooistra AJ. KLIFS: an overhaul after the first 5 years of supporting kinase research. Nucleic Acids Res 2021; 49:D562-D569. [PMID: 33084889 PMCID: PMC7778968 DOI: 10.1093/nar/gkaa895] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Kinases are a prime target of drug development efforts with >60 drug approvals in the past two decades. Due to the research into this protein family, a wealth of data has been accumulated that keeps on growing. KLIFS-Kinase-Ligand Interaction Fingerprints and Structures-is a structural database focusing on how kinase inhibitors interact with their targets. The aim of KLIFS is to support (structure-based) kinase research through the systematic collection, annotation, and processing of kinase structures. Now, 5 years after releasing the initial KLIFS website, the database has undergone a complete overhaul with a new website, new logo, and new functionalities. In this article, we start by looking back at how KLIFS has been used by the research community, followed by a description of the renewed KLIFS, and conclude with showcasing the functionalities of KLIFS. Major changes include the integration of approved drugs and inhibitors in clinical trials, extension of the coverage to atypical kinases, and a RESTful API for programmatic access. KLIFS is available at the new domain https://klifs.net.
Collapse
Affiliation(s)
- Georgi K Kanev
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
- Department of Neurosurgery, Amsterdam University Medical Centers, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Chris de Graaf
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Bart A Westerman
- Department of Neurosurgery, Amsterdam University Medical Centers, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Albert J Kooistra
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
22
|
Sydow D, Schmiel P, Mortier J, Volkamer A. KinFragLib: Exploring the Kinase Inhibitor Space Using Subpocket-Focused Fragmentation and Recombination. J Chem Inf Model 2020; 60:6081-6094. [PMID: 33155465 DOI: 10.1021/acs.jcim.0c00839] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein kinases play a crucial role in many cell signaling processes, making them one of the most important families of drug targets. In this context, fragment-based drug design strategies have been successfully applied to develop novel kinase inhibitors. These strategies usually follow a knowledge-driven approach to optimize a focused set of fragments to a potent kinase inhibitor. Alternatively, KinFragLib explores and extends the chemical space of kinase inhibitors using data-driven fragmentation and recombination. The method builds on available structural kinome data from the KLIFS database for over 2500 kinase DFG-in structures cocrystallized with noncovalent kinase ligands. The computational fragmentation method splits the ligands into fragments with respect to their 3D proximity to six predefined functionally relevant subpocket centers. The resulting fragment library consists of six subpocket pools with over 7000 fragments, available at https://github.com/volkamerlab/KinFragLib. KinFragLib offers two main applications: on the one hand, in-depth analyses of the chemical space of known kinase inhibitors, subpocket characteristics, and connections, and on the other hand, subpocket-informed recombination of fragments to generate potential novel inhibitors. The latter showed that recombining only a subset of 624 representative fragments generated 6.7 million molecules. This combinatorial library contains, besides some known kinase inhibitors, more than 99% novel chemical matter compared to ChEMBL and 63% molecules compliant with Lipinski's rule of five.
Collapse
Affiliation(s)
- Dominique Sydow
- In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Paula Schmiel
- In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jérémie Mortier
- Digital Technologies, Computational Molecular Design, Bayer AG, 13342 Berlin, Germany
| | - Andrea Volkamer
- In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
23
|
Mansbach RA, Leus IV, Mehla J, Lopez CA, Walker JK, Rybenkov VV, Hengartner NW, Zgurskaya HI, Gnanakaran S. Machine Learning Algorithm Identifies an Antibiotic Vocabulary for Permeating Gram-Negative Bacteria. J Chem Inf Model 2020; 60:2838-2847. [PMID: 32453589 DOI: 10.1021/acs.jcim.0c00352] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Drug discovery faces a crisis. The industry has used up the "obvious" space in which to find novel drugs for biomedical applications, and productivity is declining. One strategy to combat this is rational approaches to expand the search space without relying on chemical intuition, to avoid rediscovery of similar spaces. In this work, we present proof of concept of an approach to rationally identify a "chemical vocabulary" related to a specific drug activity of interest without employing known rules. We focus on the pressing concern of multidrug resistance in Pseudomonas aeruginosa by searching for submolecules that promote compound entry into this bacterium. By synergizing theory, computation, and experiment, we validate our approach, explain the molecular mechanism behind identified fragments promoting compound entry, and select candidate compounds from an external library that display good permeation ability.
Collapse
Affiliation(s)
- Rachael A Mansbach
- Department of Theoretical Biology and Biophysics, Los Alamos National Lab, MS-K710, P.O. Box 1663, Los Alamos, New Mexico 87545-0001, United States
| | - Inga V Leus
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, SLSRC, Rm 1000, Norman, Oklahoma 73019-5251, United States
| | - Jitender Mehla
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, SLSRC, Rm 1000, Norman, Oklahoma 73019-5251, United States
| | - Cesar A Lopez
- Department of Theoretical Biology and Biophysics, Los Alamos National Lab, MS-K710, P.O. Box 1663, Los Alamos, New Mexico 87545-0001, United States
| | - John K Walker
- Pharmacology and Physiological Science, School of Medicine, Saint Louis University, Schwitalla Hall, Room M362, St. Louis, Missouri 63104, United States
| | - Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, SLSRC, Rm 1000, Norman, Oklahoma 73019-5251, United States
| | - Nicolas W Hengartner
- Department of Theoretical Biology and Biophysics, Los Alamos National Lab, MS-K710, P.O. Box 1663, Los Alamos, New Mexico 87545-0001, United States
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, SLSRC, Rm 1000, Norman, Oklahoma 73019-5251, United States
| | - S Gnanakaran
- Department of Theoretical Biology and Biophysics, Los Alamos National Lab, MS-K710, P.O. Box 1663, Los Alamos, New Mexico 87545-0001, United States
| |
Collapse
|
24
|
Polishchuk P. CReM: chemically reasonable mutations framework for structure generation. J Cheminform 2020; 12:28. [PMID: 33430959 PMCID: PMC7178718 DOI: 10.1186/s13321-020-00431-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Structure generators are widely used in de novo design studies and their performance substantially influences an outcome. Approaches based on the deep learning models and conventional atom-based approaches may result in invalid structures and fail to address their synthetic feasibility issues. On the other hand, conventional reaction-based approaches result in synthetically feasible compounds but novelty and diversity of generated compounds may be limited. Fragment-based approaches can provide both better novelty and diversity of generated compounds but the issue of synthetic complexity of generated structure was not explicitly addressed before. Here we developed a new framework of fragment-based structure generation that, by design, results in the chemically valid structures and provides flexible control over diversity, novelty, synthetic complexity and chemotypes of generated compounds. The framework was implemented as an open-source Python module and can be used to create custom workflows for the exploration of chemical space.
Collapse
Affiliation(s)
- Pavel Polishchuk
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Hnevotinska 5, 77900, Olomouc, Czech Republic.
| |
Collapse
|
25
|
Exploring fragment-based target-specific ranking protocol with machine learning on cathepsin S. J Comput Aided Mol Des 2019; 33:1095-1105. [PMID: 31729618 DOI: 10.1007/s10822-019-00247-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/02/2019] [Indexed: 12/12/2022]
Abstract
Cathepsin S (CatS), a member of cysteine cathepsin proteases, has been well studied due to its significant role in many pathological processes, including arthritis, cancer and cardiovascular diseases. CatS inhibitors have been included in D3R-GC3 for both docking pose prediction and affinity ranking, and in D3R-GC4 for binding affinity ranking. The difficulties posed by CatS inhibitors in D3R mainly come from three aspects: large size, high flexibility and similar chemical structures. We have participated in GC4; our best submitted model, which employs a similarity-based alignment docking and Vina scoring protocol, yielded Kendall's τ of 0.23 for 459 binders in GC4. In our further explorations with machine learning, by curating a CatS specific training set, adopting a similarity-based constrained docking method as well as an arm-based fragmentation strategy which can describe large inhibitors in a locality-sensitive fashion, our best structure-based ranking protocol can achieve Kendall's τ of 0.52 for all binders in GC4. In this exploration process, we have demonstrated the importance of training data, docking approaches and fragmentation strategies in inhibitor-ranking protocol development with machine learning.
Collapse
|
26
|
Foscato M, Venkatraman V, Jensen VR. DENOPTIM: Software for Computational de Novo Design of Organic and Inorganic Molecules. J Chem Inf Model 2019; 59:4077-4082. [DOI: 10.1021/acs.jcim.9b00516] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Marco Foscato
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Vishwesh Venkatraman
- Department of Chemistry, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Vidar R. Jensen
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
27
|
Abstract
Introduction: The development of drug candidates with a defined selectivity profile and a unique molecular structure is of fundamental interest for drug discovery. In contrast to the costly screening of large substance libraries, the targeted de novo design of a drug by using structural information of either the biological target and/or structure-activity relationship data of active modulators offers an efficient and intellectually appealing alternative. Areas covered: This review provides an overview on the different techniques of de novo drug design (ligand-based drug design, structure-based drug design, and fragment-based drug design) and highlights successful examples of this targeted approach toward selective modulators of therapeutically relevant targets. Expert opinion: De novo drug design has established itself as a very efficient method for the development of potent and selective modulators for a variety of different biological target classes. The ever-growing wealth of structural data on therapeutic targets will certainly further enhance the importance of de novo design for the drug discovery process in the future. However, a consistent use of the terminology of de novo drug design in the scientific literature should be sought.
Collapse
Affiliation(s)
- Thomas Fischer
- a Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology , Zurich University of Applied Sciences ZHAW , Wädenswil , Switzerland
| | - Silvia Gazzola
- b Dipartimento di Scienza e Alta Tecnologia , Università degli Studi dell'Insubria , Como , Italy
| | - Rainer Riedl
- a Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology , Zurich University of Applied Sciences ZHAW , Wädenswil , Switzerland
| |
Collapse
|
28
|
Pu L, Naderi M, Liu T, Wu HC, Mukhopadhyay S, Brylinski M. eToxPred: a machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacol Toxicol 2019; 20:2. [PMID: 30621790 PMCID: PMC6325674 DOI: 10.1186/s40360-018-0282-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The efficiency of drug development defined as a number of successfully launched new pharmaceuticals normalized by financial investments has significantly declined. Nonetheless, recent advances in high-throughput experimental techniques and computational modeling promise reductions in the costs and development times required to bring new drugs to market. The prediction of toxicity of drug candidates is one of the important components of modern drug discovery. RESULTS In this work, we describe eToxPred, a new approach to reliably estimate the toxicity and synthetic accessibility of small organic compounds. eToxPred employs machine learning algorithms trained on molecular fingerprints to evaluate drug candidates. The performance is assessed against multiple datasets containing known drugs, potentially hazardous chemicals, natural products, and synthetic bioactive compounds. Encouragingly, eToxPred predicts the synthetic accessibility with the mean square error of only 4% and the toxicity with the accuracy of as high as 72%. CONCLUSIONS eToxPred can be incorporated into protocols to construct custom libraries for virtual screening in order to filter out those drug candidates that are potentially toxic or would be difficult to synthesize. It is freely available as a stand-alone software at https://github.com/pulimeng/etoxpred .
Collapse
Affiliation(s)
- Limeng Pu
- Division of Electrical & Computer Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Misagh Naderi
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Tairan Liu
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Hsiao-Chun Wu
- Division of Electrical & Computer Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Supratik Mukhopadhyay
- Department of Computer Science, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA. .,Center for Computation & Technology, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
29
|
Bian Y, Xie XQS. Computational Fragment-Based Drug Design: Current Trends, Strategies, and Applications. AAPS JOURNAL 2018; 20:59. [PMID: 29633051 DOI: 10.1208/s12248-018-0216-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/08/2018] [Indexed: 01/08/2023]
Abstract
Fragment-based drug design (FBDD) has become an effective methodology for drug development for decades. Successful applications of this strategy brought both opportunities and challenges to the field of Pharmaceutical Science. Recent progress in the computational fragment-based drug design provide an additional approach for future research in a time- and labor-efficient manner. Combining multiple in silico methodologies, computational FBDD possesses flexibilities on fragment library selection, protein model generation, and fragments/compounds docking mode prediction. These characteristics provide computational FBDD superiority in designing novel and potential compounds for a certain target. The purpose of this review is to discuss the latest advances, ranging from commonly used strategies to novel concepts and technologies in computational fragment-based drug design. Particularly, in this review, specifications and advantages are compared between experimental and computational FBDD, and additionally, limitations and future prospective are discussed and emphasized.
Collapse
Affiliation(s)
- Yuemin Bian
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA.,NIH National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA.,Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Xiang-Qun Sean Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA. .,NIH National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA. .,Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA. .,Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA. .,Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA.
| |
Collapse
|
30
|
Batiste L, Unzue A, Dolbois A, Hassler F, Wang X, Deerain N, Zhu J, Spiliotopoulos D, Nevado C, Caflisch A. Chemical Space Expansion of Bromodomain Ligands Guided by in Silico Virtual Couplings (AutoCouple). ACS CENTRAL SCIENCE 2018; 4:180-188. [PMID: 29532017 PMCID: PMC5833004 DOI: 10.1021/acscentsci.7b00401] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Indexed: 10/24/2023]
Abstract
Expanding the chemical space and simultaneously ensuring synthetic accessibility is of upmost importance, not only for the discovery of effective binders for novel protein classes but, more importantly, for the development of compounds against hard-to-drug proteins. Here, we present AutoCouple, a de novo approach to computational ligand design focused on the diversity-oriented generation of chemical entities via virtual couplings. In a benchmark application, chemically diverse compounds with low-nanomolar potency for the CBP bromodomain and high selectivity against the BRD4(1) bromodomain were achieved by the synthesis of about 50 derivatives of the original fragment. The binding mode was confirmed by X-ray crystallography, target engagement in cells was demonstrated, and antiproliferative activity was showcased in three cancer cell lines. These results reveal AutoCouple as a useful in silico coupling method to expand the chemical space in hit optimization campaigns resulting in potent, selective, and cell permeable bromodomain ligands.
Collapse
Affiliation(s)
- Laurent Batiste
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Andrea Unzue
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Aymeric Dolbois
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Fabrice Hassler
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Xuan Wang
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Nicholas Deerain
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Jian Zhu
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Dimitrios Spiliotopoulos
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Cristina Nevado
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Amedeo Caflisch
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| |
Collapse
|
31
|
Berenger F, Vu O, Meiler J. Consensus queries in ligand-based virtual screening experiments. J Cheminform 2017; 9:60. [PMID: 29185065 PMCID: PMC5705545 DOI: 10.1186/s13321-017-0248-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/20/2017] [Indexed: 11/10/2022] Open
Abstract
Background In ligand-based virtual screening experiments, a known active ligand is used in similarity searches to find putative active compounds for the same protein target. When there are several known active molecules, screening using all of them is more powerful than screening using a single ligand. A consensus query can be created by either screening serially with different ligands before merging the obtained similarity scores, or by combining the molecular descriptors (i.e. chemical fingerprints) of those ligands. Results We report on the discriminative power and speed of several consensus methods, on two datasets only made of experimentally verified molecules. The two datasets contain a total of 19 protein targets, 3776 known active and ~ 2 × 106 inactive molecules. Three chemical fingerprints are investigated: MACCS 166 bits, ECFP4 2048 bits and an unfolded version of MOLPRINT2D. Four different consensus policies and five consensus sizes were benchmarked. Conclusions The best consensus method is to rank candidate molecules using the maximum score obtained by each candidate molecule versus all known actives. When the number of actives used is small, the same screening performance can be approached by a consensus fingerprint. However, if the computational exploration of the chemical space is limited by speed (i.e. throughput), a consensus fingerprint allows to outperform this consensus of scores.
Collapse
Affiliation(s)
- Francois Berenger
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA. .,Division of System Cohort, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Oanh Vu
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|