1
|
Tracy DA, Fernandez-Alberti S, Galindo JF, Tretiak S, Roitberg AE. Nonadiabatic Excited-State Molecular Dynamics with an Explicit Solvent: NEXMD-SANDER Implementation. J Phys Chem B 2024. [PMID: 39530349 DOI: 10.1021/acs.jpcb.4c05600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In this article, the nonadiabatic excited-state Molecular dynamics (NEXMD) package is linked with the SANDER package, provided by AMBERTOOLS. The combination of these software packages enables the simulation of photoinduced dynamics of large multichromophoric conjugated molecules involving several coupled electronic excited states embedded in an explicit solvent by using the quantum/mechanics/molecular mechanics (QM/MM) methodology. The fewest switches surface hopping algorithm, as implemented in NEXMD, is used to account for quantum transitions among the adiabatic excited-state simulations of the photoexcitation and subsequent nonadiabatic electronic transitions, and vibrational energy relaxation of a substituted polyphenylenevinylene oligomer (PPV3-NO2) in vacuum and methanol as an explicit solvent has been used as a test case. The impact of including specific solvent molecules in the QM region is also analyzed. Our NEXMD-SANDER QM/MM implementation provides a useful computational tool to simulate qualitatively solvent-dependent effects, like electron transfer, stabilization of charge-separated excited states, and the role of solvent reorganization in the molecular optical properties, observed in solution-based spectroscopic experiments.
Collapse
Affiliation(s)
- Dustin A Tracy
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | | | - Johan Fabian Galindo
- Departamento de Química, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia
| | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS) and Center for integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Adrian E Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- CONICET─Universidad de Buenos Aires, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
2
|
Feyersinger F, Hartmann PE, Hoja J, Reinholdt P, Libisch F, Kongsted J, Puschnig P, Boese AD. Dissociation Energies via Embedding Techniques. J Phys Chem A 2024; 128:9275-9286. [PMID: 39402985 PMCID: PMC11514013 DOI: 10.1021/acs.jpca.4c02851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/22/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Due to the large number of interactions, evaluating interaction energies for large or periodic systems results in time-consuming calculations. Prime examples are liquids, adsorbates, and molecular crystals. Thus, there is a high demand for a cheap but still accurate method to determine interaction energies and gradients. One approach to counteract the computational cost is to fragment a large cluster into smaller subsystems, sometimes called many-body expansion, with the fragments being molecules or parts thereof. These subsystems can then be embedded into larger entities, representing the bigger system. In this work, we test several subsystem approaches and explore their limits and behaviors, determined by calculations of trimer interaction energies. The methods presented here encompass mechanical embedding, point charges, polarizable embedding, polarizable density embedding, and density embedding. We evaluate nonembedded fragmentation, QM/MM (quantum mechanics/molecular mechanics), and QM/QM (quantum mechanics/quantum mechanics) embedding theories. Finally, we make use of symmetry-adapted perturbation theory utilizing density functional theory for the monomers to interpret the results. Depending on the strength of the interaction, different embedding methods and schemes prove favorable to accurately describe a system. The embedding approaches presented here are able to decrease the interaction energy errors with respect to full system calculations by a factor of up to 20 in comparison to simple/unembedded approaches, leading to errors below 0.1 kJ/mol.
Collapse
Affiliation(s)
- Florian Feyersinger
- Department
of Chemistry, University of Graz, Heinrichstraße 28/IV, 8010 Graz, Austria
- Department
of Physics, University of Graz, 8010 Graz, Austria
| | - Peter E. Hartmann
- Department
of Chemistry, University of Graz, Heinrichstraße 28/IV, 8010 Graz, Austria
| | - Johannes Hoja
- Department
of Chemistry, University of Graz, Heinrichstraße 28/IV, 8010 Graz, Austria
| | - Peter Reinholdt
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Florian Libisch
- Institute
for Theoretical Physics, TU Wien, 1040 Vienna, Austria
| | - Jacob Kongsted
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Peter Puschnig
- Department
of Physics, University of Graz, 8010 Graz, Austria
| | - A. Daniel Boese
- Department
of Chemistry, University of Graz, Heinrichstraße 28/IV, 8010 Graz, Austria
| |
Collapse
|
3
|
Xu W, Xu H, Zhu M, Wen J. Ultrafast dynamics in spatially confined photoisomerization: accelerated simulations through machine learning models. Phys Chem Chem Phys 2024; 26:25994-26003. [PMID: 39370956 DOI: 10.1039/d4cp01497a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
This study sheds light on the exploration of photoresponsive host-guest systems, highlighting the intricate interplay between confined spaces and photosensitive guest molecules. Conducting nonadiabatic molecular dynamics (NAMD) simulations based on electronic structure calculations for such large systems remains a formidable challenge. By leveraging machine learning (ML) as an accelerator for NAMD simulations, we analytically constructed excited-state potential energy surfaces along relevant collective variables to investigate photoisomerization processes efficiently. Combining the quantum mechanics/molecular mechanics (QM/MM) methodology with ML-based NAMD simulations, we elucidated the reaction pathways and identified the key degrees of freedom as reaction coordinates leading to conical intersections. A machine learning-based nonadiabatic dynamics model has been developed to compare the excited-state dynamics of the guest molecule, benzopyran, in both the gas phase and its behavior within the confined space of cucurbit[5]uril. This comparative analysis was designed to determine the influence of the environment on the photoisomerization rate of the guest molecule. The results underscore the effectiveness of ML models in simulating trajectory evolution in a cost-effective manner. This research offers a practical approach to accelerate NAMD simulations in large-scale systems of photochemical reactions, with potential applications in other host-guest complex systems.
Collapse
Affiliation(s)
- Weijia Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Haoyang Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Jin Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
4
|
Peschel MT, Kussmann J, Ochsenfeld C, de Vivie-Riedle R. Simulation of the non-adiabatic dynamics of an enone-Lewis acid complex in an explicit solvent. Phys Chem Chem Phys 2024; 26:23256-23263. [PMID: 39193656 DOI: 10.1039/d4cp02492c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Unlocking the full potential of Lewis acid catalysis for photochemical transformations requires a comprehensive understanding of the ultrafast dynamics of substrate-Lewis acid complexes. In a previous article [Peschel et al., Angew. Chem. Int. Ed., 2021, 60, 10155], time-resolved spectroscopy supported by static calculations revealed that the Lewis acid remains attached during the relaxation of the model complex cyclohexenone-BF3. In contrast to the experimental observation, surface-hopping dynamics in the gas phase predicted ultrafast heterolytic dissociation. We attributed the discrepancy to missing solvent interactions. Thus, in this work, we present an interface between the SHARC and FermiONs++ program packages, which enables us to investigate the ultrafast dynamics of cyclohexenone-BF3 in an explicit solvent environment. Our simulations demonstrate that the solvent prevents the dissociation of the complex, leading to an intriguing dissociation-reassociation mechanism. Comparing the dynamics with and without triplet states highlights their role in the relaxation process and shows that the Lewis acid inhibits intersystem crossing. These findings provide a clear picture of the relaxation process, which may aid in designing future Lewis acid catalysts for photochemical applications. They underscore that an explicit solvent model is required to describe relaxation processes in weakly bound states, as energy transfer to the solvent is crucial for the system to reach its minimum geometries.
Collapse
Affiliation(s)
- Martin T Peschel
- Department of Chemistry, Ludwig-Maximilians-Universität München (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany.
| | - Jörg Kussmann
- Department of Chemistry, Ludwig-Maximilians-Universität München (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany.
| | - Christian Ochsenfeld
- Department of Chemistry, Ludwig-Maximilians-Universität München (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany.
- Max-Planck-Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany
| | - Regina de Vivie-Riedle
- Department of Chemistry, Ludwig-Maximilians-Universität München (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany.
| |
Collapse
|
5
|
Li G, Shi Z, Huang L, Wang L. Multiconfigurational Surface Hopping: a Time-Dependent Variational Approach with Momentum-Jump Trajectories. J Chem Theory Comput 2024. [PMID: 39215702 DOI: 10.1021/acs.jctc.4c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The Ehrenfest mean field dynamics and trajectory surface hopping have been widely used in nonadiabatic dynamics simulations. Based on the time-dependent variational principle (TDVP), the multiconfigurational Ehrenfest (MCE) method has also been developed and can be regarded as a multiconfigurational extension of the traditional Ehrenfest dynamics. However, it is not straightforward to apply the TDVP to surface hopping trajectories because there exists momentum jump during surface hops. To solve this problem, we here propose a multiconfigurational surface hopping (MCSH) method, where continuous momenta are obtained by linear interpolation and the interpolated trajectories are used to construct the basis functions for TDVP in a postprocessing manner. As demonstrated in a series of representative spin-boson models, MCSH achieves high accuracy with only several hundred trajectory bases and can uniformly improve the performance of surface hopping. In principle, MCSH can be combined with all kinds of mixed quantum-classical trajectories and thus has the potential to properly describe general nonadiabatic dynamics.
Collapse
Affiliation(s)
- Guijie Li
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhecun Shi
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Lei Huang
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Huang H, Peng J, Zhang Y, Gu FL, Lan Z, Xu C. The development of the QM/MM interface and its application for the on-the-fly QM/MM nonadiabatic dynamics in JADE package: Theory, implementation, and applications. J Chem Phys 2024; 160:234101. [PMID: 38884395 DOI: 10.1063/5.0215036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Understanding the nonadiabatic dynamics of complex systems is a challenging task in computational photochemistry. Herein, we present an efficient and user-friendly quantum mechanics/molecular mechanics (QM/MM) interface to run on-the-fly nonadiabatic dynamics. Currently, this interface consists of an independent set of codes designed for general-purpose use. Herein, we demonstrate the ability and feasibility of the QM/MM interface by integrating it with our long-term developed JADE package. Tailored to handle nonadiabatic processes in various complex systems, especially condensed phases and protein environments, we delve into the theories, implementations, and applications of on-the-fly QM/MM nonadiabatic dynamics. The QM/MM approach is established within the framework of the additive QM/MM scheme, employing electrostatic embedding, link-atom inclusion, and charge-redistribution schemes to treat the QM/MM boundary. Trajectory surface-hopping dynamics are facilitated using the fewest switches algorithm, encompassing classical and quantum treatments for nuclear and electronic motions, respectively. Finally, we report simulations of nonadiabatic dynamics for two typical systems: azomethane in water and the retinal chromophore PSB3 in a protein environment. Our results not only illustrate the power of the QM/MM program but also reveal the important roles of environmental factors in nonadiabatic processes.
Collapse
Affiliation(s)
- Haiyi Huang
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
- MOE Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiawei Peng
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yulin Zhang
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Feng Long Gu
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
7
|
Polonius S, Lehrner D, González L, Mai S. Resolving Photoinduced Femtosecond Three-Dimensional Solute-Solvent Dynamics through Surface Hopping Simulations. J Chem Theory Comput 2024; 20:4738-4750. [PMID: 38768386 PMCID: PMC11171268 DOI: 10.1021/acs.jctc.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Photoinduced dynamics in solution is governed by mutual solute-solvent interactions, which give rise to phenomena like solvatochromism, the Stokes shift, dual fluorescence, or charge transfer. Understanding these phenomena requires simulating the solute's photoinduced dynamics and simultaneously resolving the three-dimensional solvent distribution dynamics. If using trajectory surface hopping (TSH) to this aim, thousands of trajectories are required to adequately sample the time-dependent three-dimensional solvent distribution functions, and thus resolve the solvent dynamics with sub-Ångstrom and femtosecond accuracy and sufficiently low noise levels. Unfortunately, simulating thousands of trajectories with TSH in the framework of hybrid quantum mechanical/molecular mechanical (QM/MM) can be prohibitively expensive when employing ab initio electronic structure methods. To tackle this challenge, we recently introduced a computationally efficient approach that combines efficient linear vibronic coupling models with molecular mechanics (LVC/MM) via electrostatic embedding [Polonius et al., JCTC 2023, 19, 7171-7186]. This method provides solvent-embedded, nonadiabatically coupled potential energy surfaces while scaling similarly to MM force fields. Here, we employ TSH with LVC/MM to unravel the photoinduced dynamics of two small thiocarbonyl compounds solvated in water. We describe how to estimate the number of trajectories required to produce nearly noise-free three-dimensional solvent distribution functions and present an analysis based on approximately 10,000 trajectories propagated for 3 ps. In the electronic ground state, both molecules exhibit in-plane hydrogen bonds to the sulfur atom. Shortly after excitation, these bonds are broken and reform perpendicular to the molecular plane on timescales that differ by an order of magnitude due to steric effects. We also show that the solvent relaxation dynamics is coupled to the electronic dynamics, including intersystem crossing. These findings are relevant to advance the understanding of the coupled solute-solvent dynamics of solvated photoexcited molecules, e.g., biologically relevant thio-nucleobases.
Collapse
Affiliation(s)
- Severin Polonius
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - David Lehrner
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
- Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Sebastian Mai
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| |
Collapse
|
8
|
Losantos R, Prampolini G, Monari A. A Portrait of the Chromophore as a Young System-Quantum-Derived Force Field Unraveling Solvent Reorganization upon Optical Excitation of Cyclocurcumin Derivatives. Molecules 2024; 29:1752. [PMID: 38675572 PMCID: PMC11052401 DOI: 10.3390/molecules29081752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The study of fast non-equilibrium solvent relaxation in organic chromophores is still challenging for molecular modeling and simulation approaches, and is often overlooked, even in the case of non-adiabatic dynamics simulations. Yet, especially in the case of photoswitches, the interaction with the environment can strongly modulate the photophysical outcomes. To unravel such a delicate interplay, in the present contribution we resorted to a mixed quantum-classical approach, based on quantum mechanically derived force fields. The main task is to rationalize the solvent reorganization pathways in chromophores derived from cyclocurcumin, which are suitable for light-activated chemotherapy to destabilize cellular lipid membranes. The accurate and reliable decryption delivered by the quantum-derived force fields points to important differences in the solvent's reorganization, in terms of both structure and time scale evolution.
Collapse
Affiliation(s)
- Raúl Losantos
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
- ITODYS, Université Paris Cité and CNRS, F-75006 Paris, France
| | - Giacomo Prampolini
- Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), Area della Ricerca, Via G. Moruzzi 1, I-56124 Pisa, Italy;
| | - Antonio Monari
- ITODYS, Université Paris Cité and CNRS, F-75006 Paris, France
| |
Collapse
|
9
|
Kim SS, Rhee YM. Potential energy interpolation with target-customized weighting coordinates: application to excited-state dynamics of photoactive yellow protein chromophore in water. Phys Chem Chem Phys 2024; 26:9021-9036. [PMID: 38440829 DOI: 10.1039/d3cp05643k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Interpolation of potential energy surfaces (PESs) can provide a practical route to performing molecular dynamics simulations with a reliability matching a high-level quantum chemical calculation. An obstacle to its widespread use is perhaps the lack of general and optimal interpolation settings that can be applied in a black-box manner for any given molecular system. How to set up the weights for interpolation is one such task, and we still need to diversify the approaches in order to treat various systems. Here, we develop a new interpolation weighting scheme, which allows us to choose the weighting coordinates in a system-specific manner, by amplifying the contribution from specific internal coordinates. The new weighting scheme with an appropriate selection of coordinates is proved to be effective in reducing the interpolation error along the reaction pathway. As a demonstration, we consider the photoactive yellow protein chromophore system, as it constitutes itself as an interesting target that bears long-standing questions related to excited-state dynamics inside protein environments. We build its two-state diabatic interpolated PES with the new weighting scheme. We indeed see the utility of our scheme by conducting nonadiabatic molecular dynamics simulations with the required semi-global PES based on a limited number of data points.
Collapse
Affiliation(s)
- Seung Soo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| |
Collapse
|
10
|
Li Manni G, Fdez. Galván I, Alavi A, Aleotti F, Aquilante F, Autschbach J, Avagliano D, Baiardi A, Bao JJ, Battaglia S, Birnoschi L, Blanco-González A, Bokarev SI, Broer R, Cacciari R, Calio PB, Carlson RK, Carvalho Couto R, Cerdán L, Chibotaru LF, Chilton NF, Church JR, Conti I, Coriani S, Cuéllar-Zuquin J, Daoud RE, Dattani N, Decleva P, de Graaf C, Delcey M, De Vico L, Dobrautz W, Dong SS, Feng R, Ferré N, Filatov(Gulak) M, Gagliardi L, Garavelli M, González L, Guan Y, Guo M, Hennefarth MR, Hermes MR, Hoyer CE, Huix-Rotllant M, Jaiswal VK, Kaiser A, Kaliakin DS, Khamesian M, King DS, Kochetov V, Krośnicki M, Kumaar AA, Larsson ED, Lehtola S, Lepetit MB, Lischka H, López Ríos P, Lundberg M, Ma D, Mai S, Marquetand P, Merritt ICD, Montorsi F, Mörchen M, Nenov A, Nguyen VHA, Nishimoto Y, Oakley MS, Olivucci M, Oppel M, Padula D, Pandharkar R, Phung QM, Plasser F, Raggi G, Rebolini E, Reiher M, Rivalta I, Roca-Sanjuán D, Romig T, Safari AA, Sánchez-Mansilla A, Sand AM, Schapiro I, Scott TR, Segarra-Martí J, Segatta F, Sergentu DC, Sharma P, Shepard R, Shu Y, Staab JK, Straatsma TP, Sørensen LK, Tenorio BNC, Truhlar DG, Ungur L, Vacher M, Veryazov V, Voß TA, Weser O, Wu D, Yang X, Yarkony D, Zhou C, Zobel JP, Lindh R. The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry. J Chem Theory Comput 2023; 19:6933-6991. [PMID: 37216210 PMCID: PMC10601490 DOI: 10.1021/acs.jctc.3c00182] [Citation(s) in RCA: 76] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Indexed: 05/24/2023]
Abstract
The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations.
Collapse
Affiliation(s)
- Giovanni Li Manni
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Ignacio Fdez. Galván
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Ali Alavi
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Yusuf Hamied
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Flavia Aleotti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Francesco Aquilante
- Theory and
Simulation of Materials (THEOS) and National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jochen Autschbach
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
| | - Davide Avagliano
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Alberto Baiardi
- ETH Zurich, Laboratory for Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Jie J. Bao
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Stefano Battaglia
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Letitia Birnoschi
- The Department
of Chemistry, The University of Manchester, M13 9PL, Manchester, U.K.
| | - Alejandro Blanco-González
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
| | - Sergey I. Bokarev
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
- Chemistry
Department, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Ria Broer
- Theoretical
Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Roberto Cacciari
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Paul B. Calio
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Rebecca K. Carlson
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Rafael Carvalho Couto
- Division
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Luis Cerdán
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
- Instituto
de Óptica (IO−CSIC), Consejo
Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Liviu F. Chibotaru
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Nicholas F. Chilton
- The Department
of Chemistry, The University of Manchester, M13 9PL, Manchester, U.K.
| | | | - Irene Conti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Sonia Coriani
- Department
of Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, 2800 Kongens Lyngby, Denmark
| | - Juliana Cuéllar-Zuquin
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
| | - Razan E. Daoud
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Nike Dattani
- HPQC Labs, Waterloo, N2T 2K9 Ontario Canada
- HPQC College, Waterloo, N2T 2K9 Ontario Canada
| | - Piero Decleva
- Istituto
Officina dei Materiali IOM-CNR and Dipartimento di Scienze Chimiche
e Farmaceutiche, Università degli
Studi di Trieste, I-34121 Trieste, Italy
| | - Coen de Graaf
- Department
of Physical and Inorganic Chemistry, Universitat
Rovira i Virgili, Tarragona 43007, Spain
- ICREA, Pg. Lluís
Companys 23, 08010 Barcelona, Spain
| | - Mickaël
G. Delcey
- Division
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Luca De Vico
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Werner Dobrautz
- Chalmers
University of Technology, Department of Chemistry
and Chemical Engineering, 41296 Gothenburg, Sweden
| | - Sijia S. Dong
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry and Chemical Biology, Department of Physics, and Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Rulin Feng
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
- Department
of Chemistry, Fudan University, Shanghai 200433, China
| | - Nicolas Ferré
- Institut
de Chimie Radicalaire (UMR-7273), Aix-Marseille
Univ, CNRS, ICR 13013 Marseille, France
| | | | - Laura Gagliardi
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Marco Garavelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Yafu Guan
- State Key
Laboratory of Molecular Reaction Dynamics and Center for Theoretical
Computational Chemistry, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Meiyuan Guo
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Matthew R. Hennefarth
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew R. Hermes
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Chad E. Hoyer
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Miquel Huix-Rotllant
- Institut
de Chimie Radicalaire (UMR-7273), Aix-Marseille
Univ, CNRS, ICR 13013 Marseille, France
| | - Vishal Kumar Jaiswal
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Andy Kaiser
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Danil S. Kaliakin
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
| | - Marjan Khamesian
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Daniel S. King
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Vladislav Kochetov
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Marek Krośnicki
- Institute
of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics
and Informatics, University of Gdańsk, ul Wita Stwosza 57, 80-952, Gdańsk, Poland
| | | | - Ernst D. Larsson
- Division
of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
| | - Susi Lehtola
- Molecular
Sciences Software Institute, Blacksburg, Virginia 24061, United States
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 University of Helsinki, Finland
| | - Marie-Bernadette Lepetit
- Condensed
Matter Theory Group, Institut Néel, CNRS UPR 2940, 38042 Grenoble, France
- Theory
Group, Institut Laue Langevin, 38042 Grenoble, France
| | - Hans Lischka
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409-1061, United States
| | - Pablo López Ríos
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Marcus Lundberg
- Department
of Chemistry − Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Dongxia Ma
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Sebastian Mai
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Philipp Marquetand
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | | | - Francesco Montorsi
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Maximilian Mörchen
- ETH Zurich, Laboratory for Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Artur Nenov
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Vu Ha Anh Nguyen
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Yoshio Nishimoto
- Graduate
School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Meagan S. Oakley
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Massimo Olivucci
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Markus Oppel
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Daniele Padula
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Riddhish Pandharkar
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Quan Manh Phung
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Felix Plasser
- Department
of Chemistry, Loughborough University, Loughborough, LE11 3TU, U.K.
| | - Gerardo Raggi
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
- Quantum
Materials and Software LTD, 128 City Road, London, EC1V 2NX, United Kingdom
| | - Elisa Rebolini
- Scientific
Computing Group, Institut Laue Langevin, 38042 Grenoble, France
| | - Markus Reiher
- ETH Zurich, Laboratory for Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Ivan Rivalta
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Daniel Roca-Sanjuán
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
| | - Thies Romig
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Arta Anushirwan Safari
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Aitor Sánchez-Mansilla
- Department
of Physical and Inorganic Chemistry, Universitat
Rovira i Virgili, Tarragona 43007, Spain
| | - Andrew M. Sand
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Igor Schapiro
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Thais R. Scott
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Javier Segarra-Martí
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
| | - Francesco Segatta
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Dumitru-Claudiu Sergentu
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
- Laboratory
RA-03, RECENT AIR, A. I. Cuza University of Iaşi, RA-03 Laboratory (RECENT AIR), Iaşi 700506, Romania
| | - Prachi Sharma
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Ron Shepard
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, USA
| | - Yinan Shu
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Jakob K. Staab
- The Department
of Chemistry, The University of Manchester, M13 9PL, Manchester, U.K.
| | - Tjerk P. Straatsma
- National
Center for Computational Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831-6373, United States
- Department
of Chemistry and Biochemistry, University
of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | | | - Bruno Nunes Cabral Tenorio
- Department
of Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, 2800 Kongens Lyngby, Denmark
| | - Donald G. Truhlar
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Liviu Ungur
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Morgane Vacher
- Nantes
Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Valera Veryazov
- Division
of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
| | - Torben Arne Voß
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Oskar Weser
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Dihua Wu
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Xuchun Yang
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
| | - David Yarkony
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chen Zhou
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - J. Patrick Zobel
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Roland Lindh
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
- Uppsala
Center for Computational Chemistry (UC3), Uppsala University, PO Box 576, SE-751 23 Uppsala. Sweden
| |
Collapse
|
11
|
Polonius S, Zhuravel O, Bachmair B, Mai S. LVC/MM: A Hybrid Linear Vibronic Coupling/Molecular Mechanics Model with Distributed Multipole-Based Electrostatic Embedding for Highly Efficient Surface Hopping Dynamics in Solution. J Chem Theory Comput 2023; 19:7171-7186. [PMID: 37788824 PMCID: PMC10601485 DOI: 10.1021/acs.jctc.3c00805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 10/05/2023]
Abstract
We present a theoretical framework for a hybrid linear vibronic coupling model electrostatically embedded into a molecular mechanics environment, termed the linear vibronic coupling/molecular mechanics (LVC/MM) method, for the surface hopping including arbitrary coupling (SHARC) molecular dynamics package. Electrostatic embedding is realized through the computation of interactions between environment point charges and distributed multipole expansions (DMEs, up to quadrupoles) that represent each electronic state and transition densities in the diabatic basis. The DME parameters are obtained through a restrained electrostatic potential (RESP) fit, which we extended to yield higher-order multipoles. We also implemented in SHARC a scheme for achieving roto-translational invariance of LVC models as well as a general quantum mechanics/molecular mechanics (QM/MM) interface, an OpenMM interface, and restraining potentials for simulating liquid droplets. Using thioformaldehyde in water as a test case, we demonstrate that LVC/MM can accurately reproduce the solvation structure and energetics of rigid solutes, with errors on the order of 1-2 kcal/mol compared to a BP86/MM reference. The implementation in SHARC is shown to be very efficient, enabling the simulation of trajectories on the nanosecond time scale in a matter of days.
Collapse
Affiliation(s)
- Severin Polonius
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Oleksandra Zhuravel
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Brigitta Bachmair
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
- Research
Platform on Accelerating Photoreaction Discovery (ViRAPID), University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Sebastian Mai
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| |
Collapse
|
12
|
Menger MFSJ, Ou Q, Shao Y, Faraji S, Subotnik JE, Cofer-Shabica DV. Nature of Hops, Coordinates, and Detailed Balance for Nonadiabatic Simulations in the Condensed Phase. J Phys Chem A 2023; 127:8427-8436. [PMID: 37782887 DOI: 10.1021/acs.jpca.3c03546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Photoinduced processes play a crucial role in a multitude of important molecular phenomena. Accurately modeling these processes in an environment other than a vacuum requires a detailed description of the electronic states involved as well as how energy flows are coupled to the surroundings. Nonadiabatic effects must also be included in order to describe the exchange of energy between electronic and nuclear degrees of freedom correctly. In this work, we revisit the ring-opening reaction 1,3-cylohexadiene (CHD) in a solvent environment. Using our newly developed Interface for Non-Adiabatic Quantum mechanics/molecular mechanics in Solvent (INAQS) we trace the evolution of the reaction via hybrid quantum mechanics/molecular mechanics (QM/MM) surface hopping with a focus on the solvent's participation in the nonadiabatic relaxation process and the long-time approach to equilibrium. We explicitly include the MM solvent contribution to the nonadiabatic coupling vector─enabling an accurate approach to equilibrium at long times─and find that in highly multidimensional systems gradients can have little or nothing to do with the nonadiabatic couplings.
Collapse
Affiliation(s)
- Maximilian F S J Menger
- Theoretische Chemie, Physikalisch-Chemisches Institut, University Heidelberg, INF 229, 69120 Heidelberg, Germany
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Qi Ou
- AI for Science Institute, Beijing 100084, China
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Shirin Faraji
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Joseph E Subotnik
- Chemistry, University of Pennsylvania, 231 S. 34 Street, Cret Wing 141D, Philadelphia, Pennsylvania 19104-6243, United States
| | - D Vale Cofer-Shabica
- Chemistry, University of Pennsylvania, 231 S. 34 Street, Cret Wing 141D, Philadelphia, Pennsylvania 19104-6243, United States
| |
Collapse
|
13
|
Freixas VM, Malone W, Li X, Song H, Negrin-Yuvero H, Pérez-Castillo R, White A, Gibson TR, Makhov DV, Shalashilin DV, Zhang Y, Fedik N, Kulichenko M, Messerly R, Mohanam LN, Sharifzadeh S, Bastida A, Mukamel S, Fernandez-Alberti S, Tretiak S. NEXMD v2.0 Software Package for Nonadiabatic Excited State Molecular Dynamics Simulations. J Chem Theory Comput 2023; 19:5356-5368. [PMID: 37506288 DOI: 10.1021/acs.jctc.3c00583] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
We present NEXMD version 2.0, the second release of the NEXMD (Nonadiabatic EXcited-state Molecular Dynamics) software package. Across a variety of new features, NEXMD v2.0 incorporates new implementations of two hybrid quantum-classical dynamics methods, namely, Ehrenfest dynamics (EHR) and the Ab-Initio Multiple Cloning sampling technique for Multiconfigurational Ehrenfest quantum dynamics (MCE-AIMC or simply AIMC), which are alternative options to the previously implemented trajectory surface hopping (TSH) method. To illustrate these methodologies, we outline a direct comparison of these three hybrid quantum-classical dynamics methods as implemented in the same NEXMD framework, discussing their weaknesses and strengths, using the modeled photodynamics of a polyphenylene ethylene dendrimer building block as a representative example. We also describe the expanded normal-mode analysis and constraints for both the ground and excited states, newly implemented in the NEXMD v2.0 framework, which allow for a deeper analysis of the main vibrational motions involved in vibronic dynamics. Overall, NEXMD v2.0 expands the range of applications of NEXMD to a larger variety of multichromophore organic molecules and photophysical processes involving quantum coherences and persistent couplings between electronic excited states and nuclear velocity.
Collapse
Affiliation(s)
- Victor M Freixas
- Departments of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Walter Malone
- Department of Physics, Tuskegee University, Tuskegee, Alabama 36088, United States
| | - Xinyang Li
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Huajing Song
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Hassiel Negrin-Yuvero
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Royle Pérez-Castillo
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Alexander White
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tammie R Gibson
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dmitry V Makhov
- School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
- School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
| | | | - Yu Zhang
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nikita Fedik
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Maksim Kulichenko
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Richard Messerly
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Luke Nambi Mohanam
- Department of Electrical and Computer Engineering, College of Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Sahar Sharifzadeh
- Department of Electrical and Computer Engineering, College of Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Adolfo Bastida
- Departamento de Química Física, Universidad de Murcia, Murcia 30100, Spain
| | - Shaul Mukamel
- Departments of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | | | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
14
|
Chakraborty P, Couto RC, List NH. Deciphering Methylation Effects on S 2( ππ*) Internal Conversion in the Simplest Linear α,β-Unsaturated Carbonyl. J Phys Chem A 2023. [PMID: 37331016 DOI: 10.1021/acs.jpca.3c02582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Chemical substituents can influence photodynamics by altering the location of critical points and the topography of the potential energy surfaces (electronic effect) and by selectively modifying the inertia of specific nuclear modes (inertial effects). Using nonadiabatic dynamics simulations, we investigate the impact of methylation on S2(ππ*) internal conversion in acrolein, the simplest linear α,β-unsaturated carbonyl. Consistent with time constants reported in a previous time-resolved photoelectron spectroscopy study, S2 → S1 deactivation occurs on an ultrafast time scale (∼50 fs). However, our simulations do not corroborate the sequential decay model used to fit the experiment. Instead, upon reaching the S1 state, the wavepacket bifurcates: a portion undergoes ballistic S1 → S0 deactivation (∼90 fs) mediated by fast bond-length alternation motion, while the remaining decays on the picosecond time scale. Our analysis reveals that methyl substitution, generally assumed to mainly exert inertial influence, is also manifested in important electronic effects due to its weak electron-donating ability. While methylation at the β C atom gives rise to effects principally of an inertial nature, such as retarding the twisting motion of the terminal -CHCH3 group and increasing its coupling with pyramidalization, methylation at the α or carbonyl C atom modifies the potential energy surfaces in a way that also contributes to altering the late S1-decay behavior. Specifically, our results suggest that the observed slowing of the picosecond component upon α-methylation is a consequence of a tighter surface and reduced amplitude along the central pyramidalization, effectively restricting the access to the S1/S0-intersection seam. Our work offers new insight into the S2(ππ*) internal conversion mechanisms in acrolein and its methylated derivatives and highlights site-selective methylation as a tuning knob to manipulate photochemical reactions.
Collapse
Affiliation(s)
- Pratip Chakraborty
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Rafael C Couto
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Nanna H List
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| |
Collapse
|
15
|
Tsuru S, Sharma B, Marx D, Hättig C. Structural Sampling and Solvation Models for the Simulation of Electronic Spectra: Pyrazine as a Case Study. J Chem Theory Comput 2023; 19:2291-2303. [PMID: 36971352 DOI: 10.1021/acs.jctc.2c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The impact of sampling methods on spectral broadening in the gas phase and on the convergence of spectra in aqueous solution when using microsolvation, continuum solvation, and hybrid models is studied using pyrazine as a test case. For the sake of comparing classical Maxwell-Boltzmann and Wigner samplings in the gas phase, static and time-resolved X-ray absorption spectra after photoexcitation to the lowest 1B2u(ππ*) state, as well as the static UV-vis absorption spectrum, are considered. In addition, the UV-vis absorption spectrum of pyrazine in aqueous solution is also computed in order to systematically investigate its convergence with the number of explicitly included solvent shells with and without taking bulk solvation effects into account with the conductor-like screening model to represent implicit water beyond such explicit solute complexes. Concerning the static and time-resolved X-ray absorption spectra of pyrazine at the carbon K-edge as well as its UV-vis absorption spectrum in the gas phase, we find that these spectra obtained with Wigner and Maxwell-Boltzmann samplings substantially agree. For the UV-vis absorption spectrum in the aqueous solution, only the first two energetically low-lying bands converge quickly with the size of the explicitly included solvation shells, either with or without an additional continuum solvation taken into account. In stark contrast, calculations of the higher-lying excitations relying on finite microsolvated clusters without additional continuum solvation severely suffer from unphysical charge-transfer excitations into Rydberg-like orbitals at the cluster/vacuum interface. This finding indicates that computational UV-vis absorption spectra covering sufficiently high-lying states converge only if continuum solvation of the explicitly microsolvated solutes is included in the models.
Collapse
|
16
|
Reidelbach M, Bai M, Schneeberger M, Zöllner MS, Kubicek K, Kirchberg H, Bressler C, Thorwart M, Herrmann C. Solvent Dynamics of Aqueous Halides before and after Photoionization. J Phys Chem B 2023; 127:1399-1413. [PMID: 36728132 DOI: 10.1021/acs.jpcb.2c07992] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Electron transfer reactions can be strongly influenced by solvent dynamics. We study the photoionization of halides in water as a model system for such reactions. There are no internal nuclear degrees of freedom in the solute, allowing the dynamics of the solvent to be uniquely identified. We simulate the equilibrium solvent dynamics for Cl-, Br-, I-, and their respective neutral atoms in water, comparing quantum mechanical/molecular mechanical (QM/MM) and classical molecular dynamics (MD) methods. On the basis of the obtained configurations, we calculate the extended X-ray absorption fine structure (EXAFS) spectra rigorously based on the MD snapshots and compare them in detail with other theoretical and experimental results available in the literature. We find our EXAFS spectra based on QM/MM MD simulations in good agreement with their experimental counterparts for the ions. Classical MD simulations for the ions lead to EXAFS spectra that agree equally well with the experiment when it comes to the oscillatory period of the signal, even though they differ from the QM/MM radial distribution functions extracted from the MD. The amplitude is, however, considerably overestimated. This suggests that to judge the reliability of theoretical simulation methods or to elucidate fine details of the atomistic dynamics of the solvent based on EXAFS spectra, the amplitude as well as the oscillatory period need to be considered. If simulations fail qualitatively, as does the classical MD for the aqueous neutral halogen atoms, the resulting EXAFS will also be strongly affected in both oscillatory period and amplitude. The good reliability of QM/MM-based EXAFS simulations, together with clear qualitative differences in the EXAFS spectra found between halides and their atomic counterparts, suggests that a combined theory and experimental EXAFS approach is suitable for elucidating the nonequilibrium solvent dynamics in the photoionization of halides and possibly also for electron transfer reactions in more complex systems.
Collapse
Affiliation(s)
- Marco Reidelbach
- Department of Chemistry, Universität Hamburg, Harbor Bldg. 610, Luruper Chaussee 149, 22761Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany
| | - Mei Bai
- The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany.,I. Institut für Theoretische Physik, Universität Hamburg, Notkestr. 9, 22607Hamburg, Germany
| | - Michaela Schneeberger
- Department of Chemistry, Universität Hamburg, Harbor Bldg. 610, Luruper Chaussee 149, 22761Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany
| | - Martin Sebastian Zöllner
- Department of Chemistry, Universität Hamburg, Harbor Bldg. 610, Luruper Chaussee 149, 22761Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany
| | - Katharina Kubicek
- The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany.,Department of Physics, Universität Hamburg, Notkestr. 85, 22607Hamburg, Germany.,European XFEL, Holzkoppel 4, 22869Schenefeld, Germany
| | - Henning Kirchberg
- The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany.,I. Institut für Theoretische Physik, Universität Hamburg, Notkestr. 9, 22607Hamburg, Germany
| | - Christian Bressler
- The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany.,Department of Physics, Universität Hamburg, Notkestr. 85, 22607Hamburg, Germany.,European XFEL, Holzkoppel 4, 22869Schenefeld, Germany
| | - Michael Thorwart
- The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany.,I. Institut für Theoretische Physik, Universität Hamburg, Notkestr. 9, 22607Hamburg, Germany
| | - Carmen Herrmann
- Department of Chemistry, Universität Hamburg, Harbor Bldg. 610, Luruper Chaussee 149, 22761Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany
| |
Collapse
|
17
|
Cárdenas G, Lucia‐Tamudo J, Mateo‐delaFuente H, Palmisano VF, Anguita‐Ortiz N, Ruano L, Pérez‐Barcia Á, Díaz‐Tendero S, Mandado M, Nogueira JJ. MoBioTools: A toolkit to setup quantum mechanics/molecular mechanics calculations. J Comput Chem 2023; 44:516-533. [PMID: 36507763 PMCID: PMC10107847 DOI: 10.1002/jcc.27018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022]
Abstract
We present a toolkit that allows for the preparation of QM/MM input files from a conformational ensemble of molecular geometries. The package is currently compatible with trajectory and topology files in Amber, CHARMM, GROMACS and NAMD formats, and has the possibility to generate QM/MM input files for Gaussian (09 and 16), Orca (≥4.0), NWChem and (Open)Molcas. The toolkit can be used in command line, so that no programming experience is required, although it presents some features that can also be employed as a python application programming interface. We apply the toolkit in four situations in which different electronic-structure properties of organic molecules in the presence of a solvent or a complex biological environment are computed: the reduction potential of the nucleobases in acetonitrile, an energy decomposition analysis of tyrosine interacting with water, the absorption spectrum of an azobenzene derivative integrated into a voltage-gated ion channel, and the absorption and emission spectra of the luciferine/luciferase complex. These examples show that the toolkit can be employed in a manifold of situations for both the electronic ground state and electronically excited states. It also allows for the automatic correction of the active space in the case of CASSCF calculations on an ensemble of geometries, as it is shown for the azobenzene derivative photoswitch case.
Collapse
Affiliation(s)
- Gustavo Cárdenas
- Department of ChemistryUniversidad Autónoma de MadridMadridSpain
| | | | | | | | | | - Lorena Ruano
- Department of ChemistryUniversidad Autónoma de MadridMadridSpain
| | | | - Sergio Díaz‐Tendero
- Department of ChemistryUniversidad Autónoma de MadridMadridSpain
- Institute for Advanced Research in Chemistry (IAdChem)Universidad Autónoma de MadridMadridSpain
- Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de MadridMadridSpain
| | - Marcos Mandado
- Department of Physical ChemistryUniversity of VigoVigoSpain
| | - Juan J. Nogueira
- Department of ChemistryUniversidad Autónoma de MadridMadridSpain
- Institute for Advanced Research in Chemistry (IAdChem)Universidad Autónoma de MadridMadridSpain
| |
Collapse
|
18
|
Csizi K, Reiher M. Universal
QM
/
MM
approaches for general nanoscale applications. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2023. [DOI: 10.1002/wcms.1656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Markus Reiher
- Laboratorium für Physikalische Chemie ETH Zürich Zürich Switzerland
| |
Collapse
|
19
|
Song C. State averaged CASSCF in AMOEBA polarizable water model for simulating nonadiabatic molecular dynamics with nonequilibrium solvation effects. J Chem Phys 2023; 158:014101. [PMID: 36610973 DOI: 10.1063/5.0131689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This paper presents a state-averaged complete active space self-consistent field (SA-CASSCF) in the atomic multipole optimized energetics for biomolecular application (AMOEBA) polarizable water model, which enables rigorous simulation of non-adiabatic molecular dynamics with nonequilibrium solvation effects. The molecular orbital and configuration interaction coefficients of the solute wavefunction, and the induced dipoles on solvent atoms, are solved by minimizing the state averaged energy variationally. In particular, by formulating AMOEBA water models and the polarizable continuum model (PCM) in a unified way, the algorithms developed for computing SA-CASSCF/PCM energies, analytical gradients, and non-adiabatic couplings in our previous work can be generalized to SA-CASSCF/AMOEBA by properly substituting a specific list of variables. Implementation of this method will be discussed with the emphasis on how the calculations of different terms are partitioned between the quantum chemistry and molecular mechanics codes. We will present and discuss results that demonstrate the accuracy and performance of the implementation. Next, we will discuss results that compare three solvent models that work with SA-CASSCF, i.e., PCM, fixed-charge force fields, and the newly implemented AMOEBA. Finally, the new SA-CASSCF/AMOEBA method has been interfaced with the ab initio multiple spawning method to carry out non-adiabatic molecular dynamics simulations. This method is demonstrated by simulating the photodynamics of the model retinal protonated Schiff base molecule in water.
Collapse
Affiliation(s)
- Chenchen Song
- Department of Chemistry, University of California Davis, Davis, California 95616, USA
| |
Collapse
|
20
|
Alfonso Hernandez L, Freixas VM, Rodriguez-Hernandez B, Tretiak S, Fernandez-Alberti S, Oldani N. Exciton-vibrational dynamics induces efficient self-trapping in a substituted nanoring. Phys Chem Chem Phys 2022; 24:24095-24104. [PMID: 36178044 DOI: 10.1039/d2cp03162k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cycloparaphenylenes, being the smallest segments of carbon nanotubes, have emerged as prototypes of the simplest carbon nanohoops. Their unique structure-dynamics-optical properties relationships have motivated a wide variety of synthesis of new related nanohoop species. Studies of how chemical changes, introduced in these new materials, lead to systems with new structural, dynamics and optical properties, expand their functionalities for optoelectronics applications. Herein, we study the effect that conjugation extension of a cycloparaphenylene through the introduction of a satellite tetraphenyl substitution has on its structural and dynamical properties. Our non-adiabatic excited state molecular dynamics simulations suggest that this substitution accelerates the electronic relaxation from the high-energy band to the lowest excited state. This is partially due to efficient conjugation achieved between specific phenyl units as introduced by the tetraphenyl substitution. We observe a particular exciton redistribution during relaxation, in which the tetraphenyl substitution plays a significant role. As a result, an efficient inter-band energy transfer takes place. Besides, the observed phonon-exciton interplay induces a significant exciton self-trapping. Our results encourage and guide the future studies of new phenyl substitutions in carbon nanorings with desired optoelectronic properties.
Collapse
Affiliation(s)
- Laura Alfonso Hernandez
- Departamento de Ciencia Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina.
| | - Victor M Freixas
- Departamento de Ciencia Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina.
| | | | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | - Nicolas Oldani
- Departamento de Ciencia Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina.
| |
Collapse
|
21
|
Freixas VM, Tretiak S, Fernandez-Alberti S. Infinitene: Computational Insights from Nonadiabatic Excited State Dynamics. J Phys Chem Lett 2022; 13:8495-8501. [PMID: 36066077 DOI: 10.1021/acs.jpclett.2c02296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Progress in organic synthesis opens exploration of a rich diversity of molecules with interesting new structural topologies. This is the case of a recently synthesized helically twisted figure-eight molecule coined infinitene. The molecule belongs to a numerous family of looped polyarenes, where the degree of π-conjugation is controlled by high strain energies and steric hindrances. A particular balance of these ingredients leads to unusual optoelectronic properties potentially suitable for a range of applications in nanoelectronics and photonics. Due to its recent discovery, the photophysical properties of infinitene remain unexplored. In this Letter, atomistic nonadiabatic excited state molecular dynamics modeling unveils unique features of intramolecular electronic and vibrational energy relaxation and redistribution that take place after molecular photoexcitation. Our results detail relationships between optical and electronic properties providing useful knowledge for future molecular designs related to infinitene.
Collapse
Affiliation(s)
- Victor Manuel Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | |
Collapse
|
22
|
Tracy DA, Fernandez-Alberti S, Tretiak S, Roitberg AE. Adiabatic Excited-State Molecular Dynamics with an Explicit Solvent: NEXMD-SANDER Implementation. J Chem Theory Comput 2022; 18:5213-5220. [PMID: 36044726 DOI: 10.1021/acs.jctc.2c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a method to link the Nonadiabatic EXcited-state Molecular Dynamics (NEXMD) package to the SANDER package supplied by AMBERTOOLS to provide excited-state adiabatic quantum mechanics/molecular mechanics (QM/MM) simulations. NEXMD is a computational package particularly developed to perform simulations of the photoexcitation and subsequent nonadiabatic electronic and vibrational energy relaxation in large multichromophoric conjugated molecules involving several coupled electronic excited states. The NEXMD-SANDER exchange has been optimized in order to achieve excited-state adiabatic dynamics simulations of large conjugated materials in a QM/MM environment, such as an explicit solvent. Dynamics of a substituted polyphenylene vinylene oligomer (PPV3-NO2) in vacuum and different explicit solvents has been used as a test case by performing comparative analysis of changes in its optical spectrum, state-dependent conformational changes, and quantum bond orderings. The method has been tested and compared with respect to previous implicit solvent implementations. Also, the impact on the expansion of the QM region by including a variable number of solvent molecules has been analyzed. Altogether, these results encourage future implementations of NEXMD simulations using the same combination of methods.
Collapse
Affiliation(s)
- Dustin A Tracy
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | | | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS) and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Adrian E Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
23
|
Cofer-Shabica DV, Menger MFSJ, Ou Q, Shao Y, Subotnik JE, Faraji S. INAQS, a Generic Interface for Nonadiabatic QM/MM Dynamics: Design, Implementation, and Validation for GROMACS/Q-CHEM simulations. J Chem Theory Comput 2022; 18:4601-4614. [PMID: 35901266 DOI: 10.1021/acs.jctc.2c00204] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The accurate description of large molecular systems in complex environments remains an ongoing challenge for the field of computational chemistry. This problem is even more pronounced for photoinduced processes, as multiple excited electronic states and their corresponding nonadiabatic couplings must be taken into account. Multiscale approaches such as hybrid quantum mechanics/molecular mechanics (QM/MM) offer a balanced compromise between accuracy and computational burden. Here, we introduce an open-source software package (INAQS) for nonadiabatic QM/MM simulations that bridges the sampling capabilities of the GROMACS MD package and the excited-state infrastructure of the Q-CHEM electronic structure software. The interface is simple and can be adapted easily to other MD codes. The code supports a variety of different trajectory-based molecular dynamics, ranging from Born-Oppenheimer to surface hopping dynamics. To illustrate the power of this combination, we simulate electronic absorption spectra, free-energy surfaces along a reaction coordinate, and the excited-state dynamics of 1,3-cyclohexadiene in solution.
Collapse
Affiliation(s)
- D Vale Cofer-Shabica
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Cret Wing 141D, Philadelphia, Pennsylvania 19104-6243, United States
| | - Maximilian F S J Menger
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Qi Ou
- AI for Science Institute, Beijing 100080, China
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Cret Wing 141D, Philadelphia, Pennsylvania 19104-6243, United States
| | - Shirin Faraji
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| |
Collapse
|
24
|
Valverde D, Mai S, Canuto S, Borin AC, González L. Ultrafast Intersystem Crossing Dynamics of 6-Selenoguanine in Water. JACS AU 2022; 2:1699-1711. [PMID: 35911449 PMCID: PMC9327080 DOI: 10.1021/jacsau.2c00250] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Rationalizing the photochemistry of nucleobases where an oxygen is replaced by a heavier atom is essential for applications that exploit near-unity triplet quantum yields. Herein, we report on the ultrafast excited-state deactivation mechanism of 6-selenoguanine (6SeGua) in water by combining nonadiabatic trajectory surface-hopping dynamics with an electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) scheme. We find that the predominant relaxation mechanism after irradiation starts on the bright singlet S2 state that converts internally to the dark S1 state, from which the population is transferred to the triplet T2 state via intersystem crossing and finally to the lowest T1 state. This S2 → S1 → T2 → T1 deactivation pathway is similar to that observed for the lighter 6-thioguanine (6tGua) analogue, but counterintuitively, the T1 lifetime of the heavier 6SeGua is shorter than that of 6tGua. This fact is explained by the smaller activation barrier to reach the T1/S0 crossing point and the larger spin-orbit couplings of 6SeGua compared to 6tGua. From the dynamical simulations, we also calculate transient absorption spectra (TAS), which provide two time constants (τ1 = 131 fs and τ2 = 191 fs) that are in excellent agreement with the experimentally reported value (τexp = 130 ± 50 fs) (Farrel et al. J. Am. Chem. Soc. 2018, 140, 11214). Intersystem crossing itself is calculated to occur with a time scale of 452 ± 38 fs, highlighting that the TAS is the result of a complex average of signals coming from different nonradiative processes and not intersystem crossing alone.
Collapse
Affiliation(s)
- Danillo Valverde
- Department
of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo, São Paulo CEP 05508-000, Brazil
- Institute
of Physics, University of São Paulo, Rua do Matão 1371, São Paulo, São Paulo CEP 05508-090, Brazil
| | - Sebastian Mai
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, Vienna 1090, Austria
| | - Sylvio Canuto
- Institute
of Physics, University of São Paulo, Rua do Matão 1371, São Paulo, São Paulo CEP 05508-090, Brazil
| | - Antonio Carlos Borin
- Department
of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo, São Paulo CEP 05508-000, Brazil
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, Vienna 1090, Austria
| |
Collapse
|
25
|
Avagliano D, Bonfanti M, Nenov A, Garavelli M. Automatized protocol and interface to simulate QM/MM time-resolved transient absorption at TD-DFT level with COBRAMM. J Comput Chem 2022; 43:1641-1655. [PMID: 35815854 PMCID: PMC9544370 DOI: 10.1002/jcc.26966] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022]
Abstract
We present a series of new implementations that we recently introduced in COBRAMM, the open-source academic software developed in our group. The goal of these implementations is to offer an automatized workflow and interface to simulate time-resolved transient absorption (TA) spectra of medium-to-big chromophore embedded in a complex environment. Therefore, the excited states absorption and the stimulated emission are simulated along nonadiabatic dynamics performed with trajectory surface hopping. The possibility of treating systems from medium to big size is given by the use of time-dependent density functional theory (TD-DFT) and the presence of the environment is taken into account employing a hybrid quantum mechanics/molecular mechanics (QM/MM) scheme. The full implementation includes a series of auxiliary scripts to properly setup the QM/MM system, the calculation of the wavefunction overlap along the dynamics for the propagation, the evaluation of the transition dipole moment at linear response TD-DFT level, and scripts to setup, run and analyze the TA from an ensemble of trajectories. Altogether, we believe that our implementation will open the door to the easily simulate the time-resolved TA of systems so far computationally inaccessible.
Collapse
Affiliation(s)
- Davide Avagliano
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Bologna, Italy
| | - Matteo Bonfanti
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Bologna, Italy.,Fondazione Human Technopole - Viale Rita Levi-Montalcini, 1 - Area MIND - Cargo 6 - 20157, Milano, Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Bologna, Italy
| |
Collapse
|
26
|
Avagliano D, Lorini E, González L. Sampling effects in quantum mechanical/molecular mechanics trajectory surface hopping non-adiabatic dynamics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200381. [PMID: 35341304 PMCID: PMC8958275 DOI: 10.1098/rsta.2020.0381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/01/2021] [Indexed: 05/29/2023]
Abstract
The impact of different initial conditions in non-adiabatic trajectory surface hopping dynamics within a hybrid quantum mechanical/molecular mechanics scheme is investigated. The influence of a quantum sampling, based on a Wigner distribution, a fully thermal sampling, based on classical molecular dynamics, and a quantum sampled system, but thermally equilibrated with the environment, is investigated on the relaxation dynamics of solvated fulvene after light irradiation. We find that the decay from the first singlet excited state to the ground state shows high dependency on the initial condition and simulation parameters. The three sampling methods lead to different distributions of initial geometries and momenta, which then affect the fate of the excited state dynamics. We evaluated both the effect of sampling geometries and momenta, analysing how the ultrafast decay of fulvene changes accordingly. The results are expected to be of interest to decide how to initialize non-adiabatic dynamics in the presence of the environment. This article is part of the theme issue 'Chemistry without the Born-Oppenheimer approximation'.
Collapse
Affiliation(s)
- Davide Avagliano
- Faculty of Chemistry, Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
| | - Emilio Lorini
- Faculty of Chemistry, Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
| | - Leticia González
- Faculty of Chemistry, Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
- Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
| |
Collapse
|
27
|
Shu Y, Zhang L, Chen X, Sun S, Huang Y, Truhlar DG. Nonadiabatic Dynamics Algorithms with Only Potential Energies and Gradients: Curvature-Driven Coherent Switching with Decay of Mixing and Curvature-Driven Trajectory Surface Hopping. J Chem Theory Comput 2022; 18:1320-1328. [PMID: 35104136 DOI: 10.1021/acs.jctc.1c01080] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Direct dynamics by mixed quantum-classical nonadiabatic methods is an important tool for understanding processes involving multiple electronic states. Very often, the computational bottleneck of such direct simulation comes from electronic structure theory. For example, at every time step of a trajectory, nonadiabatic dynamics requires potential energy surfaces, their gradients, and the matrix elements coupling the surfaces. The need for the couplings can be alleviated by employing the time derivatives of the wave functions, which can be evaluated from overlaps of electronic wave functions at successive time steps. However, evaluation of overlap integrals is still expensive for large systems. In addition, for electronic structure methods for which the wave functions or the coupling matrix elements are not available, nonadiabatic dynamics algorithms become inapplicable. In this work, building on recent work by Baeck and An, we propose new nonadiabatic dynamics algorithms that only require adiabatic potential energies and their gradients. The new methods are named curvature-driven coherent switching with decay of mixing (κCSDM) and curvature-driven trajectory surface hopping (κTSH). We show how powerful these new methods are in terms of computation time and accuracy as compared to previous mixed quantum-classical nonadiabatic dynamics algorithms. The lowering of the computational cost will allow longer nonadiabatic trajectories and greater ensemble averaging to be affordable, and the ability to calculate the dynamics without electronic structure coupling matrix elements extends the dynamics capability to new classes of electronic structure methods.
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Linyao Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xiye Chen
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Shaozeng Sun
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yudong Huang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Donald G Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| |
Collapse
|
28
|
Uratani H, Nakai H. Scalable Ehrenfest Molecular Dynamics Exploiting the Locality of Density-Functional Tight-Binding Hamiltonian. J Chem Theory Comput 2021; 17:7384-7396. [PMID: 34860019 DOI: 10.1021/acs.jctc.1c00950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To explore the science behind excited-state dynamics in high-complexity chemical systems, a scalable nonadiabatic molecular dynamics (MD) technique is indispensable. In this study, by treating the electronic degrees of freedom at the density-functional tight-binding level, we developed and implemented a reduced scaling and multinode-parallelizable Ehrenfest MD method. To achieve this goal, we introduced a concept called patchwork approximation (PA), where the effective Hamiltonian for real-time propagation of the electronic density matrix is partitioned into a set of local parts. Numerical results for giant icosahedral fullerenes, which comprise up to 6000 atoms, suggest that the scaling of the present PA-based method is less than quadratic, which yields a significant advantage over the conventional cubic scaling method in terms of computational time. The acceleration by the parallelization on multiple nodes was also assessed. Furthermore, the electronic and structural dynamics resulting from the perturbation by the external electric field were accurately reproduced with the PA, even when the electronic excitation was spatially delocalized.
Collapse
Affiliation(s)
- Hiroki Uratani
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Waseda Research Institute for Science and Engineering (WISE), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8245, Japan
| |
Collapse
|