1
|
Li Z, Hernández FJ, Salguero C, Lopez SA, Crespo-Otero R, Li J. Machine learning photodynamics decode multiple singlet fission channels in pentacene crystal. Nat Commun 2025; 16:1194. [PMID: 39885157 PMCID: PMC11782655 DOI: 10.1038/s41467-025-56480-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
Crystalline pentacene is a model solid-state light-harvesting material because its quantum efficiencies exceed 100% via ultrafast singlet fission. The singlet fission mechanism in pentacene crystals is disputed due to insufficient electronic information in time-resolved experiments and intractable quantum mechanical calculations for simulating realistic crystal dynamics. Here we combine a multiscale multiconfigurational approach and machine learning photodynamics to understand competing singlet fission mechanisms in crystalline pentacene. Our simulations reveal coexisting charge-transfer-mediated and coherent mechanisms via the competing channels in the herringbone and parallel dimers. The predicted singlet fission time constants (61 and 33 fs) are in excellent agreement with experiments (78 and 35 fs). The trajectories highlight the essential role of intermolecular stretching between monomers in generating the multi-exciton state and explain the anisotropic phenomenon. The machine-learning-photodynamics resolved the elusive interplay between electronic structure and vibrational relations, enabling fully atomistic excited-state dynamics with multiconfigurational quantum mechanical quality for crystalline pentacene.
Collapse
Affiliation(s)
- Zhendong Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, People's Republic of China
| | | | - Christian Salguero
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Steven A Lopez
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA.
| | | | - Jingbai Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
2
|
Pinheiro M, de Oliveira Bispo M, Mattos RS, Telles do Casal M, Chandra Garain B, Toldo JM, Mukherjee S, Barbatti M. ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning. DIGITAL DISCOVERY 2025:d4dd00374h. [PMID: 39885946 PMCID: PMC11774233 DOI: 10.1039/d4dd00374h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025]
Abstract
The analysis of nonadiabatic molecular dynamics (NAMD) data presents significant challenges due to its high dimensionality and complexity. To address these issues, we introduce ULaMDyn, a Python-based, open-source package designed to automate the unsupervised analysis of large datasets generated by NAMD simulations. ULaMDyn integrates seamlessly with the Newton-X platform and employs advanced dimensionality reduction and clustering techniques to uncover hidden patterns in molecular trajectories, enabling a more intuitive understanding of excited-state processes. Using the photochemical dynamics of fulvene as a test case, we demonstrate how ULaMDyn efficiently identifies critical molecular geometries and critical nonadiabatic transitions. The package offers a streamlined, scalable solution for interpreting large NAMD datasets. It is poised to facilitate advances in the study of excited-state dynamics across a wide range of molecular systems.
Collapse
Affiliation(s)
- Max Pinheiro
- Aix Marseille University, CNRS, ICR 13397 Marseille France
| | | | | | - Mariana Telles do Casal
- Aix Marseille University, CNRS, ICR 13397 Marseille France
- Department of Chemistry, Physical Chemistry and Quantum Chemistry Division, KU Leuven 3001 Leuven Belgium
| | | | - Josene M Toldo
- Aix Marseille University, CNRS, ICR 13397 Marseille France
- UCBL, ENS de Lyon, CNRS, LCH UMR 5182 69342 Lyon Cedex 07 France
| | - Saikat Mukherjee
- Aix Marseille University, CNRS, ICR 13397 Marseille France
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń Gagarina 7 87-100 Toruń Poland
| | - Mario Barbatti
- Aix Marseille University, CNRS, ICR 13397 Marseille France
- Institut Universitaire de France 75231 Paris France https://barbatti.org/
| |
Collapse
|
3
|
Hennefarth MR, Truhlar DG, Gagliardi L. Semiclassical Nonadiabatic Molecular Dynamics Using Linearized Pair-Density Functional Theory. J Chem Theory Comput 2024; 20:8741-8748. [PMID: 39383493 DOI: 10.1021/acs.jctc.4c01061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Nonadiabatic molecular dynamics is an effective method for modeling nonradiative decay in electronically excited molecules. Its accuracy depends strongly on the quality of the potential energy surfaces, and its affordability for long direct-dynamic simulations with adequate ensemble averaging depends strongly on the cost of the required electronic structure calculations. Linearized pair-density functional theory (L-PDFT) is a recently developed post-self-consistent-field multireference method that can model potential energy surfaces with an accuracy similar to expensive multireference perturbation theories but at a computational cost similar to the underlying multiconfiguration self-consistent field method. Here, we integrate the SHARC dynamics and PySCF electronic structure code to utilize L-PDFT for electronically nonadiabatic calculations and use the combined programs to study the photoisomerization reaction of cis-azomethane. We show that L-PDFT is able to successfully simulate the photoisomerization without crashes, and it yields results similar to the more expensive extended multistate complete active space second-order perturbation theory. This shows that L-PDFT can model internal conversion, and it demonstrates its promise for broader photodynamics applications.
Collapse
Affiliation(s)
- Matthew R Hennefarth
- Department of Chemistry and Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute, and Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
4
|
S Mattos R, Mukherjee S, Barbatti M. Quantum Dynamics from Classical Trajectories. J Chem Theory Comput 2024. [PMID: 39235064 DOI: 10.1021/acs.jctc.4c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Nonadiabatic molecular dynamics plays an essential role in exploring the time evolution of molecular systems. Various methods have been developed for this study, with varying accuracy and computational cost. One very successful among them is trajectory surface hopping, which propagates nuclei as classical trajectories using forces from a quantum description of the electrons and incorporates nonadiabatic effects through stochastic state changes during each trajectory propagation. A statistical analysis of an ensemble of the independent trajectories recovers the simulated system's behavior. This approach can give good results, but it is known to overlook nuclear quantum effects, leading to inaccurate predictions. Here, we present quantum dynamics from classical trajectories (QDCT), a new protocol to recover the quantum wavepacket from the classical trajectories generated by surface hopping. In this first QDCT implementation, we apply it to recover results at the multiple spawning level from postprocessing surface hopping precomputed trajectories. With a series of examples, we demonstrate QDCT's potential to improve the accuracy of the dynamics, correct decoherence effects, and diagnose problems or increase confidence in surface hopping results. All that comes at virtually no computational cost since no new electronic calculation is required.
Collapse
Affiliation(s)
- Rafael S Mattos
- Aix Marseille University, CNRS, ICR, 13397 Marseille, France
| | - Saikat Mukherjee
- Aix Marseille University, CNRS, ICR, 13397 Marseille, France
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87100 Torun, Poland
| | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, 13397 Marseille, France
- Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
5
|
Huang KY, Li GY, Liang X, Li K, Li L, Cui G, Liu XY. "On-the-Fly" Nonadiabatic Dynamics Simulation on the Ultrafast Photoisomerization of a Molecular Photoswitch Iminothioindoxyl: An RMS-CASPT2 Investigation. J Phys Chem A 2024; 128:7145-7157. [PMID: 39145596 DOI: 10.1021/acs.jpca.4c03685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Iminothioindoxyl (ITI) is a new class of photoswitch that exhibits many excellent properties including well-separated absorption bands in the visible region for both conformers, ultrafast Z to E photoisomerization as well as the millisecond reisomerization at room temperature for the E isomer, and switchable ability in both solids and various solvents. However, the underlying ultrafast photoisomerization mechanism at the atomic level remains unclear. In this work, we have employed a combination of high-level RMS-CASPT2-based static electronic structure calculations and nonadiabatic dynamics simulations to investigate the ultrafast photoisomerization dynamics of ITI. Based on the minimum-energy structures, minimum-energy conical intersections, linear interpolation internal coordinate paths, and nonadiabatic dynamics simulations, the overall photoisomerization scenario of ITI upon excitation is established. Upon excitation around 416 nm, the molecule will be excited to the S2 state considering its close energy to the experimentally measured absorption maximum and larger oscillator strength, from which ultrafast decay of S2 to S1 state can take place efficiently with a time constant of 62 fs. However, the photoisomerization is not likely to complete in the S2 state since the dihedral associated with the Z to E isomerization changes little during the relaxation. Upon relaxing to the S1 state, the molecule will decay to the S0 state ultrafast with a time constant of 232 fs. In contrast, the decay of the S1 state is important for the isomerization considering that the dihedral related to the isomerization of the hopping structures is close to 90°. Therefore, the S1/S0 intersection region should be important for the isomerization of ITI. Arriving at the S0 state, the molecule can either go back to the original Z reactant or isomerize to the E products. At the end of the 500 fs simulation time, the E configuration accounts for nearly 37% of the final structures. Moreover, the photoisomerization mechanism is different from the isomerization mechanism in the ground state; i.e., instead of the inversion mechanism in the ground state, the photoisomerization prefers the rotation mechanism. Our results not only agree well with previous experimental studies but also provide some novel insights that could be helpful for future improvements in the performance of the ITI photoswitches.
Collapse
Affiliation(s)
- Kai-Yue Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Gao-Yi Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiaoqin Liang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Kai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
6
|
Shu Y, Varga Z, Parameswaran AM, Truhlar DG. Fitting of Coupled Potential Energy Surfaces via Discovery of Companion Matrices by Machine Intelligence. J Chem Theory Comput 2024. [PMID: 39106186 DOI: 10.1021/acs.jctc.4c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Fitting coupled potential energy surfaces is a critical step in simulating electronically nonadiabatic chemical reactions and energy transfer processes. Analytic representation of coupled potential energy surfaces enables one to perform detailed dynamics calculations. Traditionally, fitting is performed in a diabatic representation to avoid fitting the cuspidal ridges of coupled adiabatic potential energy surfaces at conical intersection seams. In this work, we provide an alternative approach by carrying out fitting in the adiabatic representation using a modified version of the Frobenius companion matrices, whose usage was first proposed by Opalka and Domcke. Their work involved minimizing the errors in fits of the characteristic polynomial coefficients (CPCs) and diagonalizing the resulting companion matrix, whose eigenvalues are adiabatic potential energies. We show, however, that this may lead to complex eigenvalues and spurious discontinuities. To alleviate this problem, we provide a new procedure for the automatic discovery of CPCs and the diagonalization of a companion matrix by using a special neural network architecture. The method effectively allows analytic representation of global coupled adiabatic potential energy surfaces and their gradients with only adiabatic energy input and without experience-based selection of a diabatization scheme. We demonstrate that the new procedure, called the companion matrix neural network (CMNN), is successful by showing applications to LiH, H3, phenol, and thiophenol.
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Zoltan Varga
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Aiswarya M Parameswaran
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
7
|
Salazar E, Menger MFS, Faraji S. Ultrafast Photoinduced Dynamics in 1,3-Cyclohexadiene: A Comparison of Trajectory Surface Hopping Schemes†. J Chem Theory Comput 2024; 20:5796-5806. [PMID: 38949625 PMCID: PMC11270829 DOI: 10.1021/acs.jctc.4c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Photoinduced nonadiabatic processes play a crucial role in a wide range of disciplines, from fundamental steps in biology to modern applications in advanced materials science. A theoretical understanding of these processes is highly desirable, and trajectory surface hopping (TSH) has proven to be a well-suited framework for a wide range of systems. In this work, we present a comprehensive comparison between two TSH algorithms, the conventional Tully's fewest switches surface hopping (FSSH) scheme and the Landau-Zener surface hopping (LZSH), to study the photoinduced ring-opening of 1,3-cyclohexadiene (CHD) to 1,3,5-hexatriene at the spin-flip time-dependent density functional theory (SF-TDDFT) level of theory. Additionally, we compare our results with a literature study at the extended multistate complete active space second-order perturbation theory method (XMS-CASPT2) level of theory. Our results show that the average population and lifetimes estimated with LZSH using SF-TDDFT are closer to the literature (using multireference methods) than those estimated with FSSH using SF-TDDFT. The latter speaks in favor of applying LZSH in combination with the SF-TDDFT method to study larger and more complex systems such as molecular photoswitches where the CHD molecule acts as a backbone. In addition, we present an implementation of Tully's FSSH algorithm as an extension to the PySurf software package.
Collapse
Affiliation(s)
- Edison
X. Salazar
- Instituut-Lorentz, Universiteit Leiden, 2300 RA Leiden, The Netherlands
- Theoretical
Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Maximilian F. S.
J. Menger
- Theoretical
Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Theoretische
Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Shirin Faraji
- Theoretical
Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Institute
of Theoretical and Computational Chemistry, Faculty of Mathematics
and Natural Sciences, Heinrich Heine University
Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
8
|
Zhang L, Pios SV, Martyka M, Ge F, Hou YF, Chen Y, Chen L, Jankowska J, Barbatti M, Dral PO. MLatom Software Ecosystem for Surface Hopping Dynamics in Python with Quantum Mechanical and Machine Learning Methods. J Chem Theory Comput 2024; 20:5043-5057. [PMID: 38836623 DOI: 10.1021/acs.jctc.4c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
We present an open-source MLatom@XACS software ecosystem for on-the-fly surface hopping nonadiabatic dynamics based on the Landau-Zener-Belyaev-Lebedev algorithm. The dynamics can be performed via Python API with a wide range of quantum mechanical (QM) and machine learning (ML) methods, including ab initio QM (CASSCF and ADC(2)), semiempirical QM methods (e.g., AM1, PM3, OMx, and ODMx), and many types of ML potentials (e.g., KREG, ANI, and MACE). Combinations of QM and ML methods can also be used. While the user can build their own combinations, we provide AIQM1, which is based on Δ-learning and can be used out-of-the-box. We showcase how AIQM1 reproduces the isomerization quantum yield of trans-azobenzene at a low cost. We provide example scripts that, in dozens of lines, enable the user to obtain the final population plots by simply providing the initial geometry of a molecule. Thus, those scripts perform geometry optimization, normal mode calculations, initial condition sampling, parallel trajectories propagation, population analysis, and final result plotting. Given the capabilities of MLatom to be used for training different ML models, this ecosystem can be seamlessly integrated into the protocols building ML models for nonadiabatic dynamics. In the future, a deeper and more efficient integration of MLatom with Newton-X will enable a vast range of functionalities for surface hopping dynamics, such as fewest-switches surface hopping, to facilitate similar workflows via the Python API.
Collapse
Affiliation(s)
- Lina Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Sebastian V Pios
- Zhejiang Laboratory, Hangzhou, Zhejiang 311100, People's Republic of China
| | - Mikołaj Martyka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Fuchun Ge
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yi-Fan Hou
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuxinxin Chen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Lipeng Chen
- Zhejiang Laboratory, Hangzhou, Zhejiang 311100, People's Republic of China
| | - Joanna Jankowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, Marseille 13397, France
- Institut Universitaire de France, Paris 75231, France
| | - Pavlo O Dral
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China
| |
Collapse
|
9
|
Shu Y, Truhlar DG. Generalized Semiclassical Ehrenfest Method: A Route to Wave Function-Free Photochemistry and Nonadiabatic Dynamics with Only Potential Energies and Gradients. J Chem Theory Comput 2024; 20:4396-4426. [PMID: 38819014 DOI: 10.1021/acs.jctc.4c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We reconsider recent methods by which direct dynamics calculations of electronically nonadiabatic processes can be carried out while requiring only adiabatic potential energies and their gradients. We show that these methods can be understood in terms of a new generalization of the well-known semiclassical Ehrenfest method. This is convenient because it eliminates the need to evaluate electronic wave functions and their matrix elements along the mixed quantum-classical trajectories. The new approximations and procedures enabling this advance are the curvature-driven approximation to the time-derivative coupling, the generalized semiclassical Ehrenfest method, and a new gradient correction scheme called the time-derivative matrix (TDM) scheme. When spin-orbit coupling is present, one can carry out dynamics calculations in the fully adiabatic basis using potential energies and gradients calculated without spin-orbit coupling plus the spin-orbit coupling matrix elements. Even when spin-orbit coupling is neglected, the method is useful because it allows calculations by electronic structure methods for which nonadiabatic coupling vectors are unavailable. In order to place the new considerations in context, the article starts out with a review of background material on trajectory surface hopping, the semiclassical Ehrenfest scheme, and methods for incorporating decoherence. We consider both internal conversion and intersystem crossing. We also review several examples from our group of successful applications of the curvature-driven approximation.
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
10
|
Mukherjee S, Mattos RS, Toldo JM, Lischka H, Barbatti M. Prediction Challenge: Simulating Rydberg photoexcited cyclobutanone with surface hopping dynamics based on different electronic structure methods. J Chem Phys 2024; 160:154306. [PMID: 38624122 DOI: 10.1063/5.0203636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
This research examines the nonadiabatic dynamics of cyclobutanone after excitation into the n → 3s Rydberg S2 state. It stems from our contribution to the Special Topic of the Journal of Chemical Physics to test the predictive capability of computational chemistry against unseen experimental data. Decoherence-corrected fewest-switches surface hopping was used to simulate nonadiabatic dynamics with full and approximated nonadiabatic couplings. Several simulation sets were computed with different electronic structure methods, including a multiconfigurational wavefunction [multiconfigurational self-consistent field (MCSCF)] specially built to describe dissociative channels, multireference semiempirical approach, time-dependent density functional theory, algebraic diagrammatic construction, and coupled cluster. MCSCF dynamics predicts a slow deactivation of the S2 state (10 ps), followed by an ultrafast population transfer from S1 to S0 (<100 fs). CO elimination (C3 channel) dominates over C2H4 formation (C2 channel). These findings radically differ from the other methods, which predicted S2 lifetimes 10-250 times shorter and C2 channel predominance. These results suggest that routine electronic structure methods may hold low predictive power for the outcome of nonadiabatic dynamics.
Collapse
Affiliation(s)
| | - Rafael S Mattos
- Aix Marseille University, CNRS, ICR, Marseille 13397, France
| | - Josene M Toldo
- Aix Marseille University, CNRS, ICR, Marseille 13397, France
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA
| | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, Marseille 13397, France
- Institut Universitaire de France, Paris 75231, France
| |
Collapse
|
11
|
Shu Y, Akher FB, Guo H, Truhlar DG. Parametrically Managed Activation Functions for Improved Global Potential Energy Surfaces for Six Coupled 5A' States and Fourteen Coupled 3A' States of O + O 2. J Phys Chem A 2024; 128:1207-1217. [PMID: 38349764 DOI: 10.1021/acs.jpca.3c06823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
We report new potential energy surfaces for six coupled 5A' states and 14 coupled 3A' states of O3. The new surfaces are created by parametrically managed diabatization by deep neural network (PM-DDNN). The PM-DDNN method uses calculated adiabatic potential energy surfaces to discover and fit an underlying adiabatic-equivalent set of diabatic surfaces and their couplings and obtains the fit to the adiabatic surfaces by diagonalization of the diabatic potential energy matrix (DPEM). The procedure yields the adiabatic surfaces and their gradients, as well as the DPEM and its gradient. If desired one can also compute the nonadiabatic coupling due to the transformation. The present work improves on previous work by using a new coordinate to guide the decay of the neural network contribution to the many-body fit to the whole DPEM. The main objective was to obtain smoother potentials than the previous ones with better suitability for dynamics calculations, and this was achieved. Furthermore, we obtained suitably small deviations from the input reference data. For the six coupled 5A' surfaces, the 60,366 data below 10 eV are fit with a mean unsigned error (MUE) of 49 meV, and for the 14 coupled 3A' surfaces, the 76,733 data below 10 eV are fit with an MUE of 28 meV. The data below 5 eV fit even more accurately with MUEs of 37 meV (5A') and 20 meV (3A').
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Farideh Badichi Akher
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
12
|
Ramos P, Friedman H, Li BY, Garcia C, Sletten E, Caram JR, Jang SJ. Nonadiabatic Derivative Couplings through Multiple Franck-Condon Modes Dictate the Energy Gap Law for Near and Short-Wave Infrared Dye Molecules. J Phys Chem Lett 2024; 15:1802-1810. [PMID: 38329913 DOI: 10.1021/acs.jpclett.3c02629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Near infrared (NIR, 700-1000 nm) and short-wave infrared (SWIR, 1000-2000 nm) dye molecules exhibit significant nonradiative decay rates from the first singlet excited state to the ground state. While these trends can be empirically explained by a simple energy gap law, detailed mechanisms of nearly universal behavior have remained unsettled for many cases. Theoretical and experimental results for two representative NIR/SWIR dye molecules reported here clarify the key mechanism for the observed energy gap law behavior. It is shown that the first derivative nonadiabatic coupling terms serve as major coupling pathways for nonadiabatic decay processes from the first excited singlet state to the ground state for these NIR and SWIR dye molecules and that vibrational modes other than the highest frequency modes also make significant contributions to the rate. This assessment is corroborated by further theoretical comparison with possible alternative mechanisms of intersystem crossing to triplet states and also by comparison with experimental data for deuterated molecules.
Collapse
Affiliation(s)
- Pablo Ramos
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Boulevard, New York, New York 11367, United States
| | - Hannah Friedman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Barry Y Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Cesar Garcia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ellen Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Justin R Caram
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Boulevard, New York, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| |
Collapse
|
13
|
Pengmei Z, Liu J, Shu Y. Beyond MD17: the reactive xxMD dataset. Sci Data 2024; 11:222. [PMID: 38378670 PMCID: PMC10879526 DOI: 10.1038/s41597-024-03019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
System specific neural force fields (NFFs) have gained popularity in computational chemistry. One of the most popular datasets as a bencharmk to develop NFF models is the MD17 dataset and its subsequent extension. These datasets comprise geometries from the equilibrium region of the ground electronic state potential energy surface, sampled from direct adiabatic dynamics. However, many chemical reactions involve significant molecular geometrical deformations, for example, bond breaking. Therefore, MD17 is inadequate to represent a chemical reaction. To address this limitation in MD17, we introduce a new dataset, called Extended Excited-state Molecular Dynamics (xxMD) dataset. The xxMD dataset involves geometries sampled from direct nonadiabatic dynamics, and the energies are computed at both multireference wavefunction theory and density functional theory. We show that the xxMD dataset involves diverse geometries which represent chemical reactions. Assessment of NFF models on xxMD dataset reveals significantly higher predictive errors than those reported for MD17 and its variants. This work underscores the challenges faced in crafting a generalizable NFF model with extrapolation capability.
Collapse
Affiliation(s)
- Zihan Pengmei
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Junyu Liu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
- Department of Computer Science, The University of Chicago, Chicago, IL, 60637, USA
- Kadanoff Center for Theoretical Physics, The University of Chicago, Chicago, IL, 60637, USA
- qBraid Co., Chicago, IL, 60615, USA
- SeQure, Chicago, IL, 60615, USA
| | - Yinan Shu
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55414, USA.
| |
Collapse
|
14
|
Toldo JM, Mattos RS, Pinheiro M, Mukherjee S, Barbatti M. Recommendations for Velocity Adjustment in Surface Hopping. J Chem Theory Comput 2024; 20:614-624. [PMID: 38207213 DOI: 10.1021/acs.jctc.3c01159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
This study investigates velocity adjustment directions after hopping in surface hopping dynamics. Using fulvene and a protonated Schiff base (PSB4) as case studies, we investigate the population decay and reaction yields of different sets of dynamics with the velocity adjusted in either the nonadiabatic coupling, gradient difference, or momentum directions. For the latter, in addition to the conventional algorithm, we investigated the performance of a reduced kinetic energy reservoir approach recently proposed. Our evaluation also considered velocity adjustment in the directions of approximate nonadiabatic coupling vectors. While results for fulvene are susceptible to the adjustment approach, PSB4 is not. We correlated this dependence to the topography near the conical intersections. When nonadiabatic coupling vectors are unavailable, the gradient difference direction is the best adjustment option. If the gradient difference is also unavailable, a semiempirical vector direction or the momentum direction with a reduced kinetic energy reservoir becomes an excellent option to prevent an artificial excess of back hoppings. The precise velocity adjustment direction is less crucial for describing the nonadiabatic dynamics than the kinetic energy reservoir's size.
Collapse
Affiliation(s)
- Josene M Toldo
- Aix-Marseille University, CNRS, ICR, Marseille 13397, France
| | - Rafael S Mattos
- Aix-Marseille University, CNRS, ICR, Marseille 13397, France
| | - Max Pinheiro
- Aix-Marseille University, CNRS, ICR, Marseille 13397, France
| | | | - Mario Barbatti
- Aix-Marseille University, CNRS, ICR, Marseille 13397, France
- Institut Universitaire de France, Paris 75231, France
| |
Collapse
|
15
|
Li Manni G, Fdez. Galván I, Alavi A, Aleotti F, Aquilante F, Autschbach J, Avagliano D, Baiardi A, Bao JJ, Battaglia S, Birnoschi L, Blanco-González A, Bokarev SI, Broer R, Cacciari R, Calio PB, Carlson RK, Carvalho Couto R, Cerdán L, Chibotaru LF, Chilton NF, Church JR, Conti I, Coriani S, Cuéllar-Zuquin J, Daoud RE, Dattani N, Decleva P, de Graaf C, Delcey M, De Vico L, Dobrautz W, Dong SS, Feng R, Ferré N, Filatov(Gulak) M, Gagliardi L, Garavelli M, González L, Guan Y, Guo M, Hennefarth MR, Hermes MR, Hoyer CE, Huix-Rotllant M, Jaiswal VK, Kaiser A, Kaliakin DS, Khamesian M, King DS, Kochetov V, Krośnicki M, Kumaar AA, Larsson ED, Lehtola S, Lepetit MB, Lischka H, López Ríos P, Lundberg M, Ma D, Mai S, Marquetand P, Merritt ICD, Montorsi F, Mörchen M, Nenov A, Nguyen VHA, Nishimoto Y, Oakley MS, Olivucci M, Oppel M, Padula D, Pandharkar R, Phung QM, Plasser F, Raggi G, Rebolini E, Reiher M, Rivalta I, Roca-Sanjuán D, Romig T, Safari AA, Sánchez-Mansilla A, Sand AM, Schapiro I, Scott TR, Segarra-Martí J, Segatta F, Sergentu DC, Sharma P, Shepard R, Shu Y, Staab JK, Straatsma TP, Sørensen LK, Tenorio BNC, Truhlar DG, Ungur L, Vacher M, Veryazov V, Voß TA, Weser O, Wu D, Yang X, Yarkony D, Zhou C, Zobel JP, Lindh R. The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry. J Chem Theory Comput 2023; 19:6933-6991. [PMID: 37216210 PMCID: PMC10601490 DOI: 10.1021/acs.jctc.3c00182] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Indexed: 05/24/2023]
Abstract
The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations.
Collapse
Affiliation(s)
- Giovanni Li Manni
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Ignacio Fdez. Galván
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Ali Alavi
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Yusuf Hamied
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Flavia Aleotti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Francesco Aquilante
- Theory and
Simulation of Materials (THEOS) and National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jochen Autschbach
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
| | - Davide Avagliano
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Alberto Baiardi
- ETH Zurich, Laboratory for Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Jie J. Bao
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Stefano Battaglia
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Letitia Birnoschi
- The Department
of Chemistry, The University of Manchester, M13 9PL, Manchester, U.K.
| | - Alejandro Blanco-González
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
| | - Sergey I. Bokarev
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
- Chemistry
Department, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Ria Broer
- Theoretical
Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Roberto Cacciari
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Paul B. Calio
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Rebecca K. Carlson
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Rafael Carvalho Couto
- Division
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Luis Cerdán
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
- Instituto
de Óptica (IO−CSIC), Consejo
Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Liviu F. Chibotaru
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Nicholas F. Chilton
- The Department
of Chemistry, The University of Manchester, M13 9PL, Manchester, U.K.
| | | | - Irene Conti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Sonia Coriani
- Department
of Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, 2800 Kongens Lyngby, Denmark
| | - Juliana Cuéllar-Zuquin
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
| | - Razan E. Daoud
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Nike Dattani
- HPQC Labs, Waterloo, N2T 2K9 Ontario Canada
- HPQC College, Waterloo, N2T 2K9 Ontario Canada
| | - Piero Decleva
- Istituto
Officina dei Materiali IOM-CNR and Dipartimento di Scienze Chimiche
e Farmaceutiche, Università degli
Studi di Trieste, I-34121 Trieste, Italy
| | - Coen de Graaf
- Department
of Physical and Inorganic Chemistry, Universitat
Rovira i Virgili, Tarragona 43007, Spain
- ICREA, Pg. Lluís
Companys 23, 08010 Barcelona, Spain
| | - Mickaël
G. Delcey
- Division
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Luca De Vico
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Werner Dobrautz
- Chalmers
University of Technology, Department of Chemistry
and Chemical Engineering, 41296 Gothenburg, Sweden
| | - Sijia S. Dong
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry and Chemical Biology, Department of Physics, and Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Rulin Feng
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
- Department
of Chemistry, Fudan University, Shanghai 200433, China
| | - Nicolas Ferré
- Institut
de Chimie Radicalaire (UMR-7273), Aix-Marseille
Univ, CNRS, ICR 13013 Marseille, France
| | | | - Laura Gagliardi
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Marco Garavelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Yafu Guan
- State Key
Laboratory of Molecular Reaction Dynamics and Center for Theoretical
Computational Chemistry, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Meiyuan Guo
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Matthew R. Hennefarth
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew R. Hermes
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Chad E. Hoyer
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Miquel Huix-Rotllant
- Institut
de Chimie Radicalaire (UMR-7273), Aix-Marseille
Univ, CNRS, ICR 13013 Marseille, France
| | - Vishal Kumar Jaiswal
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Andy Kaiser
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Danil S. Kaliakin
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
| | - Marjan Khamesian
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Daniel S. King
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Vladislav Kochetov
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Marek Krośnicki
- Institute
of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics
and Informatics, University of Gdańsk, ul Wita Stwosza 57, 80-952, Gdańsk, Poland
| | | | - Ernst D. Larsson
- Division
of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
| | - Susi Lehtola
- Molecular
Sciences Software Institute, Blacksburg, Virginia 24061, United States
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 University of Helsinki, Finland
| | - Marie-Bernadette Lepetit
- Condensed
Matter Theory Group, Institut Néel, CNRS UPR 2940, 38042 Grenoble, France
- Theory
Group, Institut Laue Langevin, 38042 Grenoble, France
| | - Hans Lischka
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409-1061, United States
| | - Pablo López Ríos
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Marcus Lundberg
- Department
of Chemistry − Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Dongxia Ma
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Sebastian Mai
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Philipp Marquetand
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | | | - Francesco Montorsi
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Maximilian Mörchen
- ETH Zurich, Laboratory for Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Artur Nenov
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Vu Ha Anh Nguyen
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Yoshio Nishimoto
- Graduate
School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Meagan S. Oakley
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Massimo Olivucci
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Markus Oppel
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Daniele Padula
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Riddhish Pandharkar
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Quan Manh Phung
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Felix Plasser
- Department
of Chemistry, Loughborough University, Loughborough, LE11 3TU, U.K.
| | - Gerardo Raggi
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
- Quantum
Materials and Software LTD, 128 City Road, London, EC1V 2NX, United Kingdom
| | - Elisa Rebolini
- Scientific
Computing Group, Institut Laue Langevin, 38042 Grenoble, France
| | - Markus Reiher
- ETH Zurich, Laboratory for Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Ivan Rivalta
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Daniel Roca-Sanjuán
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
| | - Thies Romig
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Arta Anushirwan Safari
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Aitor Sánchez-Mansilla
- Department
of Physical and Inorganic Chemistry, Universitat
Rovira i Virgili, Tarragona 43007, Spain
| | - Andrew M. Sand
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Igor Schapiro
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Thais R. Scott
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Javier Segarra-Martí
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
| | - Francesco Segatta
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Dumitru-Claudiu Sergentu
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
- Laboratory
RA-03, RECENT AIR, A. I. Cuza University of Iaşi, RA-03 Laboratory (RECENT AIR), Iaşi 700506, Romania
| | - Prachi Sharma
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Ron Shepard
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, USA
| | - Yinan Shu
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Jakob K. Staab
- The Department
of Chemistry, The University of Manchester, M13 9PL, Manchester, U.K.
| | - Tjerk P. Straatsma
- National
Center for Computational Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831-6373, United States
- Department
of Chemistry and Biochemistry, University
of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | | | - Bruno Nunes Cabral Tenorio
- Department
of Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, 2800 Kongens Lyngby, Denmark
| | - Donald G. Truhlar
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Liviu Ungur
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Morgane Vacher
- Nantes
Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Valera Veryazov
- Division
of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
| | - Torben Arne Voß
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Oskar Weser
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Dihua Wu
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Xuchun Yang
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
| | - David Yarkony
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chen Zhou
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - J. Patrick Zobel
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Roland Lindh
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
- Uppsala
Center for Computational Chemistry (UC3), Uppsala University, PO Box 576, SE-751 23 Uppsala. Sweden
| |
Collapse
|
16
|
Zhao X, Merritt ICD, Lei R, Shu Y, Jacquemin D, Zhang L, Xu X, Vacher M, Truhlar DG. Nonadiabatic Coupling in Trajectory Surface Hopping: Accurate Time Derivative Couplings by the Curvature-Driven Approximation. J Chem Theory Comput 2023; 19:6577-6588. [PMID: 37772732 DOI: 10.1021/acs.jctc.3c00813] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Trajectory surface hopping (TSH) is a widely used mixed quantum-classical dynamics method that is used to simulate molecular dynamics with multiple electronic states. In TSH, time-derivative coupling is employed to propagate the electronic coefficients and in that way to determine when the electronic state on which the nuclear trajectory is propagated switches. In this work, we discuss nonadiabatic TSH dynamics algorithms employing the curvature-driven approximation and overlap-based time derivative couplings, and we report test calculations on six photochemical reactions where we compare the results to one another and to calculations employing analytic nonadiabatic coupling vectors. We correct previous published results thanks to a bug found in the software. We also provide additional, more detailed studies of the time-derivative couplings. Our results show good agreement between curvature-driven algorithms and overlap-based algorithms.
Collapse
Affiliation(s)
- Xiaorui Zhao
- Center for Combustion Energy, Tsinghua University, Beijing 100084, P. R. China
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, P. R. China
| | | | - Ruiqing Lei
- Center for Combustion Energy, Tsinghua University, Beijing 100084, P. R. China
| | - Yinan Shu
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, Nantes F-44000, France
- Institut Universitaire de France (IUF), Paris 75005, France
| | - Linyao Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xuefei Xu
- Center for Combustion Energy, Tsinghua University, Beijing 100084, P. R. China
- Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, P. R. China
| | - Morgane Vacher
- Nantes Université, CNRS, CEISAM UMR 6230, Nantes F-44000, France
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
17
|
Mandal A, Taylor MA, Weight BM, Koessler ER, Li X, Huo P. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics. Chem Rev 2023; 123:9786-9879. [PMID: 37552606 PMCID: PMC10450711 DOI: 10.1021/acs.chemrev.2c00855] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 08/10/2023]
Abstract
When molecules are coupled to an optical cavity, new light-matter hybrid states, so-called polaritons, are formed due to quantum light-matter interactions. With the experimental demonstrations of modifying chemical reactivities by forming polaritons under strong light-matter interactions, theorists have been encouraged to develop new methods to simulate these systems and discover new strategies to tune and control reactions. This review summarizes some of these exciting theoretical advances in polariton chemistry, in methods ranging from the fundamental framework to computational techniques and applications spanning from photochemistry to vibrational strong coupling. Even though the theory of quantum light-matter interactions goes back to the midtwentieth century, the gaps in the knowledge of molecular quantum electrodynamics (QED) have only recently been filled. We review recent advances made in resolving gauge ambiguities, the correct form of different QED Hamiltonians under different gauges, and their connections to various quantum optics models. Then, we review recently developed ab initio QED approaches which can accurately describe polariton states in a realistic molecule-cavity hybrid system. We then discuss applications using these method advancements. We review advancements in polariton photochemistry where the cavity is made resonant to electronic transitions to control molecular nonadiabatic excited state dynamics and enable new photochemical reactivities. When the cavity resonance is tuned to the molecular vibrations instead, ground-state chemical reaction modifications have been demonstrated experimentally, though its mechanistic principle remains unclear. We present some recent theoretical progress in resolving this mystery. Finally, we review the recent advances in understanding the collective coupling regime between light and matter, where many molecules can collectively couple to a single cavity mode or many cavity modes. We also lay out the current challenges in theory to explain the observed experimental results. We hope that this review will serve as a useful document for anyone who wants to become familiar with the context of polariton chemistry and molecular cavity QED and thus significantly benefit the entire community.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Michael A.D. Taylor
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Braden M. Weight
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United
States
| | - Eric R. Koessler
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Xinyang Li
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Pengfei Huo
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
18
|
Akher FB, Shu Y, Varga Z, Truhlar DG. Semiclassical Multistate Dynamics for Six Coupled 5A' States of O + O 2. J Chem Theory Comput 2023. [PMID: 37441750 DOI: 10.1021/acs.jctc.3c00517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Dynamics simulations of high-energy O2-O collisions play an important role in simulating thermal energy content and heat flux in flows around hypersonic vehicles. To carry out such dynamics simulations efficiently requires accurate global potential energy surfaces and (in most algorithms) state couplings for many energetically accessible electronic states. The ability to treat collisions involving many coupled electronic states has been a challenge for decades. Very recently, a new diabatization method, the parametrically managed diabatization by deep neural network (PM-DDNN), has been developed. The PM-DDNN method uses a deep neural network architecture with an activation function parametrically dependent on input data to discover and fit the diabatic potential energy matrix (DPEM) as a function of geometry, and the adiabatic potential energy surfaces are obtained by diagonalization of a small matrix with analytic matrix elements. Here, we applied the PM-DDNN method to the six lowest-energy potential energy surfaces in the 5A' manifold of O3 to perform simultaneous diabatization and fitting; the data are obtained by extended multistate complete-active-space second-order perturbation theory. We then used the adiabatic surfaces for dynamics calculations with three methods: coherent switching with decay of mixing (CSDM), curvature-driven CSDM (κCSDM), and electronically curvature-driven CSDM (eκCSDM). The κCSDM calculations require only adiabatic potential energies and gradients. The three dynamical methods are in good agreement. We then calculated electronically nonadiabatic, electronically inelastic, and dissociative cross sections for seven initial collision energies, five initial vibrational levels, and four initial rotational levels. Trends in the electronically inelastic cross sections as functions of the initial collision energy and vibrational level were rationalized in terms of the coordinate ranges where the gaps between the second and third potential energy surfaces are small.
Collapse
Affiliation(s)
- Farideh Badichi Akher
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Yinan Shu
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Zoltan Varga
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
19
|
Shu Y, Zhang L, Wu D, Chen X, Sun S, Truhlar DG. New Gradient Correction Scheme for Electronically Nonadiabatic Dynamics Involving Multiple Spin States. J Chem Theory Comput 2023; 19:2419-2429. [PMID: 37079755 DOI: 10.1021/acs.jctc.2c01173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
It has been recommended that the best representation to use for trajectory surface hopping (TSH) calculations is the fully adiabatic basis in which the Hamiltonian is diagonal. Simulations of intersystem crossing processes with conventional TSH methods require an explicit computation of nonadiabatic coupling vectors (NACs) in the molecular-Coulomb-Hamiltonian (MCH) basis, also called the spin-orbit-free basis, in order to compute the gradient in the fully adiabatic basis (also called the diagonal representation). This explicit requirement destroys some of the advantages of the overlap-based algorithms and curvature-driven algorithms that can be used for the most efficient TSH calculations. Therefore, although these algorithms allow one to perform NAC-free simulations for internal conversion processes, one still requires NACs for intersystem crossing. Here, we show that how the NAC requirement is circumvented by a new computation scheme called the time-derivative-matrix scheme.
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Linyao Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Dihua Wu
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Xiye Chen
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Shaozeng Sun
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Donald G Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
20
|
Weight BM, Sifain AE, Gifford BJ, Htoon H, Tretiak S. On-the-Fly Nonadiabatic Dynamics Simulations of Single-Walled Carbon Nanotubes with Covalent Defects. ACS NANO 2023; 17:6208-6219. [PMID: 36972076 DOI: 10.1021/acsnano.2c08579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) with covalent surface defects have been explored recently due to their promise for use in single-photon telecommunication emission and in spintronic applications. The all-atom dynamic evolution of electrostatically bound excitons (the primary electronic excitations) in these systems has only been loosely explored from a theoretical perspective due to the size limitations of these large systems (>500 atoms). In this work, we present computational modeling of nonradiative relaxation in a variety of SWCNT chiralities with single-defect functionalizations. Our excited-state dynamics modeling uses a trajectory surface hopping algorithm accounting for excitonic effects with a configuration interaction approach. We find a strong chirality and defect-composition dependence on the population relaxation (varying over 50-500 fs) between the primary nanotube band gap excitation E11 and the defect-associated, single-photon-emitting E11* state. These simulations give direct insight into the relaxation between the band-edge states and the localized excitonic state, in competition with dynamic trapping/detrapping processes observed in experiment. Engineering fast population decay into the quasi-two-level subsystem with weak coupling to higher-energy states increases the effectiveness and controllability of these quantum light emitters.
Collapse
Affiliation(s)
- Braden M Weight
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, United States
- Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew E Sifain
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540 United States
| | - Brendan J Gifford
- Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Han Htoon
- Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
21
|
Merritt ICD, Jacquemin D, Vacher M. Nonadiabatic Coupling in Trajectory Surface Hopping: How Approximations Impact Excited-State Reaction Dynamics. J Chem Theory Comput 2023; 19:1827-1842. [PMID: 36897995 DOI: 10.1021/acs.jctc.2c00968] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Photochemical reactions are widely modeled using the popular trajectory surface hopping (TSH) method, an affordable mixed quantum-classical approximation to the full quantum dynamics of the system. TSH is able to account for nonadiabatic effects using an ensemble of trajectories, which are propagated on a single potential energy surface at a time and which can hop from one electronic state to another. The occurrences and locations of these hops are typically determined using the nonadiabatic coupling between electronic states, which can be assessed in a number of ways. In this work, we benchmark the impact of some approximations to the coupling term on the TSH dynamics for several typical isomerization and ring-opening reactions. We have identified that two of the schemes tested, the popular local diabatization scheme and a scheme based on biorthonormal wave function overlap implemented in the OpenMOLCAS code as part of this work, reproduce at a much reduced cost the dynamics obtained using the explicitly calculated nonadiabatic coupling vectors. The other two schemes tested can give different results, and in some cases, even entirely incorrect dynamics. Of these two, the scheme based on configuration interaction vectors gives unpredictable failures, while the other scheme based on the Baeck-An approximation systematically overestimates hopping to the ground state as compared to the reference approaches.
Collapse
Affiliation(s)
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Morgane Vacher
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
22
|
Zhao X, Shu Y, Zhang L, Xu X, Truhlar DG. Direct Nonadiabatic Dynamics of Ammonia with Curvature-Driven Coherent Switching with Decay of Mixing and with Fewest Switches with Time Uncertainty: An Illustration of Population Leaking in Trajectory Surface Hopping Due to Frustrated Hops. J Chem Theory Comput 2023; 19:1672-1685. [PMID: 36877830 DOI: 10.1021/acs.jctc.2c01260] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Mixed quantum-classical nonadiabatic dynamics is a widely used approach to simulate molecular dynamics involving multiple electronic states. There are two main categories of mixed quantum-classical nonadiabatic dynamics algorithms, namely, trajectory surface hopping (TSH) in which the trajectory propagates on a single potential energy surface, interrupted by hops, and self-consistent-potential (SCP) methods, such as semiclassical Ehrenfest, in which propagation occurs on a mean-field surface without hops. In this work, we will illustrate an example of severe population leaking in TSH. We emphasize that such leaking is a combined effect of frustrated hops and long-time simulations that drive the final excited-state population toward zero as a function of time. We further show that such leaking can be alleviated-but not eliminated-by the fewest switches with time uncertainty TSH algorithm (here implemented in the SHARC program); the time uncertainty algorithm slows down the leaking process by a factor of 4.1. The population leaking is not present in coherent switching with decay of mixing (CSDM), which is an SCP method with non-Markovian decoherence included. Another result in this paper is that we find very similar results with the original CSDM algorithm, with time-derivative CSDM (tCSDM), and with curvature-driven CSDM (κCSDM). Not only do we find good agreement for electronically nonadiabatic transition probabilities but also we find good agreement of the norms of the effective nonadiabatic couplings (NACs) that are derived from the curvature-driven time-derivative couplings as implemented in κCSDM with the time-dependent norms of the nonadiabatic coupling vectors computed by state-averaged complete-active-space self-consistent field theory.
Collapse
Affiliation(s)
- Xiaorui Zhao
- Center for Combustion Energy, Tsinghua University, Beijing 100084, P. R. China.,School of Aerospace Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yinan Shu
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Linyao Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xuefei Xu
- Center for Combustion Energy, Tsinghua University, Beijing 100084, P. R. China
| | - Donald G Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
23
|
Shu Y, Truhlar DG. Decoherence and Its Role in Electronically Nonadiabatic Dynamics. J Chem Theory Comput 2023; 19:380-395. [PMID: 36622843 PMCID: PMC9878713 DOI: 10.1021/acs.jctc.2c00988] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 01/10/2023]
Abstract
Decoherence is the tendency of a time-evolved reduced density matrix for a subsystem to assume a form corresponding to a statistical ensemble of states rather than a coherent combination of pure-state wave functions. When a molecular process involves changes in the electronic state and the coordinates of the nuclei, as in ultraviolet or visible light photochemistry or electronically inelastic collisions, the reduced density matrix of the electronic subsystem suffers decoherence, due to its interaction with the nuclear subsystem. We present the background necessary to conceptualize this decoherence; in particular, we discuss the density matrix description of pure states and mixed states, and we discuss pointer states and decoherence time. We then discuss how decoherence is treated in the coherent switching with decay of mixing algorithm and the trajectory surface hopping method for semiclassical calculations of electronically nonadiabatic processes.
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry,
Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota55455-0431, United States
| | - Donald G. Truhlar
- Department of Chemistry,
Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota55455-0431, United States
| |
Collapse
|
24
|
Ariyageadsakul P, Baeck KK. Nuclear wave-packet-propagation-based study of the electron-coupled, proton-transfer process in the charge-transfer state of FHCl exhibiting three electronic states in full-dimensional space. J Chem Phys 2023; 158:014302. [PMID: 36610955 DOI: 10.1063/5.0131104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The charge-transfer (CT) excited state of FHCl (F+H-Cl-), generated by the photodetachment of an electron from its precursor anion (FHCl-) by a photon energy of ∼9.5 eV, is a realistic prototype of two bidirectional-coupled reaction pathways, namely the proton-transfer (PT) and electron-transfer (ET) channels, that produce F + HCl and FH + Cl combinations, respectively. The early-time dynamics of the CT was studied via the time-dependent propagations of nuclear wave packets comprising three nonadiabatically coupled electronic states defined within a three-dimensional space. The detailed analyses of the early-time dynamics revealed an interesting phenomenon in which the onset of PT was ∼80 fs earlier than that of ET, indicating that PT dominated ET in this case. A more significant finding was that the proper adjustment of the electronic-charge distribution for the onset of ET was obtained ∼80 fs after the onset of PT; this adjustment was mediated by the initial movement of the H atom, i.e., the F-H vibration mode. To avail experimental observables, the branching ratio, χ = PT/(PT + ET), and absorption spectrum generating the neutral FHCl molecule from its precursor anion were also simulated. The results further demonstrated the dependences of the χs and spectrum on the change in the initial vibration level of the precursor anion, as well as the isotopic substitution of the connecting H atom with deuterium, tritium, and muonium.
Collapse
Affiliation(s)
- Pinit Ariyageadsakul
- Department of Chemistry, Gangneung-Wonju National University, Gangneung, Gangwon-do 25457, Republic of Korea
| | - Kyoung Koo Baeck
- Department of Chemistry, Gangneung-Wonju National University, Gangneung, Gangwon-do 25457, Republic of Korea
| |
Collapse
|
25
|
Zhang L, Shu Y, Bhaumik S, Chen X, Sun S, Huang Y, Truhlar DG. Nonadiabatic Dynamics of 1,3-Cyclohexadiene by Curvature-Driven Coherent Switching with Decay of Mixing. J Chem Theory Comput 2022; 18:7073-7081. [PMID: 36350795 DOI: 10.1021/acs.jctc.2c00801] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The photoinduced ring-opening reaction of 1,3-cyclohexadiene to produce 1,3,5-hexatriene is a classic electrocyclic reaction and is also a prototype for many reactions of biological and synthetic importance. Here, we simulate the ultrafast nonadiabatic dynamics of the reaction in the manifold of the three lowest valence electronic states by using extended multistate complete-active-space second-order perturbation theory (XMS-CASPT2) combined with the curvature-driven coherent switching with decay of mixing (κCSDM) dynamical method. We obtain an excited-state lifetime of 79 fs, and a product quantum yield of 40% from the 500 trajectories initiated in the S1 excited state. The obtained lifetime and quantum yield values are very close to previously reported experimental and computed values, showing the capability of performing a reasonable nonadiabatic ring-opening dynamics with the κCSDM method that does not require nonadiabatic coupling vectors, time derivatives, or diabatization. In addition, we study the ring-opening reaction by initiating the trajectories in the dark state S2. We also optimize the S0/S1 and S1/S2 minimum-energy conical intersections (MECIs) by XMS-CASPT2; for S1/S2, we optimized both an inner and an outer local-minimum-energy conical intersections (LMECIs). We provide the potential energy profile along the ring-opening coordinate by joining selected critical points via linear synchronous transit paths. We find the inner S1/S2 LMECI to be more crucial than the outer one.
Collapse
Affiliation(s)
- Linyao Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yinan Shu
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Suman Bhaumik
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Xiye Chen
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Shaozeng Sun
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yudong Huang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Donald G Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
26
|
Barbatti M, Bondanza M, Crespo-Otero R, Demoulin B, Dral PO, Granucci G, Kossoski F, Lischka H, Mennucci B, Mukherjee S, Pederzoli M, Persico M, Pinheiro Jr M, Pittner J, Plasser F, Sangiogo Gil E, Stojanovic L. Newton-X Platform: New Software Developments for Surface Hopping and Nuclear Ensembles. J Chem Theory Comput 2022; 18:6851-6865. [PMID: 36194696 PMCID: PMC9648185 DOI: 10.1021/acs.jctc.2c00804] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 12/01/2022]
Abstract
Newton-X is an open-source computational platform to perform nonadiabatic molecular dynamics based on surface hopping and spectrum simulations using the nuclear ensemble approach. Both are among the most common methodologies in computational chemistry for photophysical and photochemical investigations. This paper describes the main features of these methods and how they are implemented in Newton-X. It emphasizes the newest developments, including zero-point-energy leakage correction, dynamics on complex-valued potential energy surfaces, dynamics induced by incoherent light, dynamics based on machine-learning potentials, exciton dynamics of multiple chromophores, and supervised and unsupervised machine learning techniques. Newton-X is interfaced with several third-party quantum-chemistry programs, spanning a broad spectrum of electronic structure methods.
Collapse
Affiliation(s)
- Mario Barbatti
- Aix
Marseille University, CNRS, ICR, 13013Marseille, France
- Institut
Universitaire de France, 75231Paris, France
| | - Mattia Bondanza
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, via Moruzzi
13, 56124Pisa, Italy
| | - Rachel Crespo-Otero
- Department
of Chemistry, Queen Mary University of London, Mile End Road, E1 4NSLondon, U.K.
| | | | - Pavlo O. Dral
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial
Key Laboratory of Theoretical and Computational Chemistry, Department
of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, 361005Xiamen, China
| | - Giovanni Granucci
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, via Moruzzi
13, 56124Pisa, Italy
| | - Fábris Kossoski
- Laboratoire
de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31000Toulouse, France
| | - Hans Lischka
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas79409, United States
| | - Benedetta Mennucci
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, via Moruzzi
13, 56124Pisa, Italy
| | | | - Marek Pederzoli
- J.
Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223Prague 8, Czech Republic
| | - Maurizio Persico
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, via Moruzzi
13, 56124Pisa, Italy
| | | | - Jiří Pittner
- J.
Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223Prague 8, Czech Republic
| | - Felix Plasser
- Department
of Chemistry, Loughborough University, LE11 3TULoughborough, U.K.
| | - Eduarda Sangiogo Gil
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, via Moruzzi
13, 56124Pisa, Italy
| | - Ljiljana Stojanovic
- Department
of Physics and Astronomy, University College
London, Gower Street, WC1E 6BTLondon, U.K.
| |
Collapse
|
27
|
Schmerwitz YLA, Ivanov AV, Jónsson EÖ, Jónsson H, Levi G. Variational Density Functional Calculations of Excited States: Conical Intersection and Avoided Crossing in Ethylene Bond Twisting. J Phys Chem Lett 2022; 13:3990-3999. [PMID: 35481754 DOI: 10.1021/acs.jpclett.2c00741] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Theoretical studies of photochemical processes require a description of the energy surfaces of excited electronic states, especially near degeneracies, where transitions between states are most likely. Systems relevant to photochemical applications are typically too large for high-level multireference methods, and while time-dependent density functional theory (TDDFT) is efficient, it can fail to provide the required accuracy. A variational, time-independent density functional approach is applied to the twisting of the double bond and pyramidal distortion in ethylene, the quintessential model for photochemical studies. By allowing for symmetry breaking, the calculated energy surfaces exhibit the correct topology around the twisted-pyramidalized conical intersection even when using a semilocal functional approximation, and by including explicit self-interaction correction, the torsional energy curves are in close agreement with published multireference results. The findings of the present work point to the possibility of using a single determinant time-independent density functional approach to simulate nonadiabatic dynamics, even for large systems where multireference methods are impractical and TDDFT is often not accurate enough.
Collapse
Affiliation(s)
| | - Aleksei V Ivanov
- Science Institute of the University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Elvar Ö Jónsson
- Science Institute of the University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Hannes Jónsson
- Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
- Department of Applied Physics, Aalto University, FI-00076 Espoo, Finland
| | - Gianluca Levi
- Science Institute of the University of Iceland, VR-III, 107 Reykjavík, Iceland
| |
Collapse
|
28
|
Shu Y, Varga Z, Kanchanakungwankul S, Zhang L, Truhlar DG. Diabatic States of Molecules. J Phys Chem A 2022; 126:992-1018. [PMID: 35138102 DOI: 10.1021/acs.jpca.1c10583] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quantitative simulations of electronically nonadiabatic molecular processes require both accurate dynamics algorithms and accurate electronic structure information. Direct semiclassical nonadiabatic dynamics is expensive due to the high cost of electronic structure calculations, and hence it is limited to small systems, limited ensemble averaging, ultrafast processes, and/or electronic structure methods that are only semiquantitatively accurate. The cost of dynamics calculations can be made manageable if analytic fits are made to the electronic structure data, and such fits are most conveniently carried out in a diabatic representation because the surfaces are smooth and the couplings between states are smooth scalar functions. Diabatic representations, unlike the adiabatic ones produced by most electronic structure methods, are not unique, and finding suitable diabatic representations often involves time-consuming nonsystematic diabatization steps. The biggest drawback of using diabatic bases is that it can require large amounts of effort to perform a globally consistent diabatization, and one of our goals has been to develop methods to do this efficiently and automatically. In this Feature Article, we introduce the mathematical framework of diabatic representations, and we discuss diabatization methods, including adiabatic-to-diabatic transformations and recent progress toward the goal of automatization.
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Zoltan Varga
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Siriluk Kanchanakungwankul
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Linyao Zhang
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States.,School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
29
|
Zhou C, Hermes MR, Wu D, Bao JJ, Pandharkar R, King DS, Zhang D, Scott TR, Lykhin AO, Gagliardi L, Truhlar DG. Electronic structure of strongly correlated systems: recent developments in multiconfiguration pair-density functional theory and multiconfiguration nonclassical-energy functional theory. Chem Sci 2022; 13:7685-7706. [PMID: 35865899 PMCID: PMC9261488 DOI: 10.1039/d2sc01022d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022] Open
Abstract
Strong electron correlation plays an important role in transition-metal and heavy-metal chemistry, magnetic molecules, bond breaking, biradicals, excited states, and many functional materials, but it provides a significant challenge for modern electronic structure theory. The treatment of strongly correlated systems usually requires a multireference method to adequately describe spin densities and near-degeneracy correlation. However, quantitative computation of dynamic correlation with multireference wave functions is often difficult or impractical. Multiconfiguration pair-density functional theory (MC-PDFT) provides a way to blend multiconfiguration wave function theory and density functional theory to quantitatively treat both near-degeneracy correlation and dynamic correlation in strongly correlated systems; it is more affordable than multireference perturbation theory, multireference configuration interaction, or multireference coupled cluster theory and more accurate for many properties than Kohn–Sham density functional theory. This perspective article provides a brief introduction to strongly correlated systems and previously reviewed progress on MC-PDFT followed by a discussion of several recent developments and applications of MC-PDFT and related methods, including localized-active-space MC-PDFT, generalized active-space MC-PDFT, density-matrix-renormalization-group MC-PDFT, hybrid MC-PDFT, multistate MC-PDFT, spin–orbit coupling, analytic gradients, and dipole moments. We also review the more recently introduced multiconfiguration nonclassical-energy functional theory (MC-NEFT), which is like MC-PDFT but allows for other ingredients in the nonclassical-energy functional. We discuss two new kinds of MC-NEFT methods, namely multiconfiguration density coherence functional theory and machine-learned functionals. This feature article overviews recent work on active spaces, matrix product reference states, treatment of quasidegeneracy, hybrid theory, density-coherence functionals, machine-learned functionals, spin–orbit coupling, gradients, and dipole moments.![]()
Collapse
Affiliation(s)
- Chen Zhou
- Department of Chemistry, Chemical Theory Center, Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455-0431, USA
| | - Matthew R. Hermes
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Dihua Wu
- Department of Chemistry, Chemical Theory Center, Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455-0431, USA
| | - Jie J. Bao
- Department of Chemistry, Chemical Theory Center, Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455-0431, USA
| | - Riddhish Pandharkar
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Daniel S. King
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Dayou Zhang
- Department of Chemistry, Chemical Theory Center, Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455-0431, USA
| | - Thais R. Scott
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Aleksandr O. Lykhin
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455-0431, USA
| |
Collapse
|