1
|
Zheng H, Wang K, Ji D, Liu X, Wang C, Jiang Y, Jia Z, Xiong B, Ling Y, Miao J. Novel tris-bipyridine based Ru(II) complexes as type-I/-II photosensitizers for antitumor photodynamic therapy through ferroptosis and immunogenic cell death. Eur J Med Chem 2024; 279:116909. [PMID: 39357314 DOI: 10.1016/j.ejmech.2024.116909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Ru(II) complexes have attracted attention as photosensitizers for their promising photodynamic properties. Herein, novel tris-bipyridine based Ru(II) complexes (6a-e) were synthesized by introducing saturated heterocycles to improve photodynamic properties and lipid-water partition coefficients. Among them, 6d demonstrated significant phototoxicity towards three cancer cells, with IC50 values of 5.66-7.17 μM, exceeding values in dark (IC50s > 100 μM). Under hypoxic conditions, 6d maintained excellent photodynamic activity in A549 cells, with PI values exceeding 24, highlighting its potential for highly effective type-I/-II photodynamic therapy by inducing ROS generation, oxidative stress, and mitochondrial damage. Additionally, it induced ferroptosis and immunogenic cell death of A549 cells by regulating the expression of relevant markers. Finally, 6d remarkably inhibited the growth of A549 transplanted tumor growth by 95.4 %. This Ru(II) complex shows great potential for cancer treatment with its potent photodynamic activity and diverse mechanisms of tumor cell death.
Collapse
Affiliation(s)
- Hongwei Zheng
- Department of Oncology, Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Kai Wang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Dongliang Ji
- Department of Oncology, Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Xiao Liu
- Department of Oncology, Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Chen Wang
- Department of Oncology, Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Yangyang Jiang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Zihan Jia
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Biao Xiong
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China.
| | - Yong Ling
- Department of Oncology, Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China.
| | - Jiefei Miao
- Department of Oncology, Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China.
| |
Collapse
|
2
|
Xue SS, Zhu W, Li Y, Pan W, Li N, Tang B. Dual-stimuli responsive theranostic agents based on small molecules. Chem Commun (Camb) 2024; 60:9860-9870. [PMID: 39157895 DOI: 10.1039/d4cc02565b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Stimuli-responsive theranostic agents represent a class of molecules that integrate therapeutic and diagnostic functions, offering the capability to respond to disease-associated biomarkers. Dual-stimuli responsive agents, particularly those based on small molecules, have shown considerable promise for precise imaging-guided therapeutic applications. In this Highlight, we summarize the progress of dual-stimuli responsive theranostic agents based on small molecules, for diagnostic and therapeutic studies in biological systems. The Highlight focuses on comparing different responsive groups and chemical structures of these dual-stimuli responsive theranostic agents towards different biomarkers. The potential future directions of the agents for further applications in biological systems are also discussed.
Collapse
Affiliation(s)
- Shan-Shan Xue
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wanqi Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yuanyuan Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
3
|
Lu Z, Yan J, Xu M, Liu J, Zeng J, Ren Y, Sun L, Zhang Y, Cao Y, Pei R. A "Dual-Key-and-Lock" MRI Contrast Agent with T 1-T 2 Switchable Function for Accurate Diagnosis of Tumors. NANO LETTERS 2024. [PMID: 39036992 DOI: 10.1021/acs.nanolett.4c02669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Extremely small iron oxide nanoparticle (ESIONP)-based stimuli-responsive switchable MRI contrast agents (CAs) show great promise for accurate detection of tumors due to their outstanding advantages of high specificity and low background signal. However, currently developed ESIONP-based switchable CAs often suffer single-biomarker-induced responses, which lack absolute specificity to pathological tissues, potentially diminishing diagnostic accuracy. In this study, weak acidity and hypoxia, two of the most remarkable characteristics of tumors, are introduced as dual biomarker stimuli to construct an ESIONP-based switchable MRI CA (DKL-CA), with its signal switch controlled by a "dual-key-and-lock" strategy. Only when DKL-CA is exposed to a coexisting weakly acidic and hypoxic environment can monodispersed ESIONPs form nanoclusters, thereby realizing a switch from the T1 to T2 contrast. Moreover, DKL-CA exhibits favorable biosafety and the capacity for precise tumor diagnosis in tumor-bearing mice. Overall, DKL-CA paves the way for designing highly accurate ESIONP-based MRI CAs for tumor diagnosis.
Collapse
Affiliation(s)
- Zhongzhong Lu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jincong Yan
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Mingsheng Xu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jihuan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jianxian Zeng
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yuxin Ren
- Department of Cardiology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Lina Sun
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ye Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
4
|
Xie X, Sun T, Pan H, Ji D, Xu Z, Gao G, Miao J, Wang L, Zhang Y, Liu J, Ling Y, Su X. Development of Novel β-Carboline/Furylmalononitrile Hybrids as Type I/II Photosensitizers with Chemo-Photodynamic Therapy and Minimal Toxicity. Mol Pharm 2024; 21:3553-3565. [PMID: 38816926 DOI: 10.1021/acs.molpharmaceut.4c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Chemo-photodynamic therapy is a treatment method that combines chemotherapy and photodynamic therapy and has demonstrated significant potential in cancer treatment. However, the development of chemo-photodynamic therapeutic agents with fewer side effects still poses a challenge. Herein, we designed and synthesized a novel series of β-carboline/furylmalononitrile hybrids 10a-i and evaluated their chemo-photodynamic therapeutic effects. Most of the compounds were photodynamically active and exhibited cytotoxic effects in four cancer cells. In particular, 10f possessed type-I/II photodynamic characteristics, and its 1O2 quantum yield increased by 3-fold from pH 7.4 to 4.5. Most interestingly, 10f exhibited robust antiproliferative effects by tumor-selective cytotoxicities and hypoxic-overcoming phototoxicities. In addition, 10f generated intracellular ROS and induced hepatocellular apoptosis, mitochondrial damage, and autophagy. Finally, 10f demonstrated extremely low acute toxicity (LD50 = 1415 mg/kg) and a high tumor-inhibitory rate of 80.5% through chemo-photodynamic dual therapy. Our findings may provide a promising framework for the design of new photosensitizers for chemo-photodynamic therapy.
Collapse
Affiliation(s)
- Xudong Xie
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Tiantian Sun
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Heyu Pan
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Dongliang Ji
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Zhongyuan Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Ge Gao
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Jiefei Miao
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Lei Wang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Yanan Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Ji Liu
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Yong Ling
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Xing Su
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| |
Collapse
|
5
|
Zhao J, Li X, Ma T, Chang B, Zhang B, Fang J. Glutathione-triggered prodrugs: Design strategies, potential applications, and perspectives. Med Res Rev 2024; 44:1013-1054. [PMID: 38140851 DOI: 10.1002/med.22007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
The burgeoning prodrug strategy offers a promising avenue toward improving the efficacy and specificity of cytotoxic drugs. Elevated intracellular levels of glutathione (GSH) have been regarded as a hallmark of tumor cells and characteristic feature of the tumor microenvironment. Considering the pivotal involvement of elevated GSH in the tumorigenic process, a diverse repertoire of GSH-triggered prodrugs has been developed for cancer therapy, facilitating the attenuation of deleterious side effects associated with conventional chemotherapeutic agents and/or the attainment of more efficacious therapeutic outcomes. These prodrug formulations encompass a spectrum of architectures, spanning from small molecules to polymer-based and organic-inorganic nanomaterial constructs. Although the GSH-triggered prodrugs have been gaining increasing interests, a comprehensive review of the advancements made in the field is still lacking. To fill the existing lacuna, this review undertakes a retrospective analysis of noteworthy research endeavors, based on a categorization of these molecules by their diverse recognition units (i.e., disulfides, diselenides, Michael acceptors, and sulfonamides/sulfonates). This review also focuses on explaining the distinct benefits of employing various chemical architecture strategies in the design of these prodrug agents. Furthermore, we highlight the potential for synergistic functionality by incorporating multiple-targeting conjugates, theranostic entities, and combinational treatment modalities, all of which rely on the GSH-triggering. Overall, an extensive overview of the emerging field is presented in this review, highlighting the obstacles and opportunities that lie ahead. Our overarching goal is to furnish methodological guidance for the development of more efficacious GSH-triggered prodrugs in the future. By assessing the pros and cons of current GSH-triggered prodrugs, we expect that this review will be a handful reference for prodrug design, and would provide a guidance for improving the properties of prodrugs and discovering novel trigger scaffolds for constructing GSH-triggered prodrugs.
Collapse
Affiliation(s)
- Jintao Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Xinming Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Bingbing Chang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Stojkovic Lalosevic M, Coric V, Pekmezovic T, Simic T, Pavlovic Markovic A, Pljesa Ercegovac M. GSTM1 and GSTP1 Polymorphisms Affect Outcome in Colorectal Adenocarcinoma. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:553. [PMID: 38674199 PMCID: PMC11052438 DOI: 10.3390/medicina60040553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: Despite improvements in screening programs, a large number of patients with colorectal cancer (CRC) are diagnosed in an advanced disease stage. Previous investigations imply that glutathione transferases (GSTs) might be associated with the development and progression of CRC. Moreover, the detoxification mechanism of oxaliplatin, which represents the first line of treatment for advanced CRC, is mediated via certain GSTs. The aim of this study was to evaluate the significance of certain GST genetic variants on CRC prognosis and the efficacy of oxaliplatin-based treatment. Materials and Methods: This prospective study included 523 patients diagnosed with CRC in the period between 2014 and 2016, at the Digestive Surgery Clinic, University Clinical Center of Serbia, Belgrade. Patients were followed for a median of 43.47 ± 17.01 months (minimum 1-63 months). Additionally, 109 patients with advanced disease, after surgical treatment, received FOLFOX6 treatment as a first-line therapy between 2014 and 2020. The Kaplan-Meier method was used to analyze cumulative survival, and the Cox proportional hazard regression model was used to study the effects of different GST genotypes on overall survival. Results: Individuals with the GSTM1-null genotype and the GSTP1 IleVal+ValVal (variant) genotype had significantly shorter survival when compared to referent genotypes (GSTM1-active and GSTP1 IleIle) (log-rank: p = 0.001). Moreover, individuals with the GSTM1-null genotype who received 5-FU-based treatment had statistically significantly shorter survival when compared to individuals with the GSTM1-active genotype (log-rank: p = 0.05). Conclusions: Both GSTM1-null and GSTP1 IleVal+ValVal (variant) genotypes are associated with significantly shorter survival in CRC patients. What is more, the GSTM1-null genotype is associated with shorter survival in patients receiving FOLOFOX6 treatment.
Collapse
Affiliation(s)
- Milica Stojkovic Lalosevic
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (V.C.); (T.P.); (T.S.)
| | - Vesna Coric
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (V.C.); (T.P.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
| | - Tatjana Pekmezovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (V.C.); (T.P.); (T.S.)
- Institute of Epidemiology, 11000 Belgrade, Serbia
| | - Tatjana Simic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (V.C.); (T.P.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
| | - Aleksandra Pavlovic Markovic
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (V.C.); (T.P.); (T.S.)
| | - Marija Pljesa Ercegovac
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (V.C.); (T.P.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
| |
Collapse
|
7
|
Gong Y, Wang P, Zhai H, Xiao Y, Wang Q, Ma N, Zhang G, Zhang H. Equivalent Response Strategy for Sensing Total Biothiols in Human Serums and Living Cells Using a Hemicyanine-Based Self-Immolative Probe. Anal Chem 2024; 96:1009-1018. [PMID: 38181328 DOI: 10.1021/acs.analchem.3c02793] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Biothiols including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH) are crucial in maintaining the redox balance in the body, and the metabolism and transportation of biothiols rely on the coreaction of diverse proteins and enzymes. The abnormal concentrations and metabolism of biothiols are closely associated with many diseases. However, due to the same active reaction site of the sulfydryl group in biothiols, it is inevitable to bear a confused signal of mutual influence on both nonselective detection and discriminate detection, which presents a serious challenge of accurately sensing or imaging the three biothiols. By assigning an α,β-unsaturated ketone moiety as a Michael acceptor to trigger thiols to complete the irreversible equivalent domino response processes of nucleophilic addition, olefinic bond migration, and self-immolation, a targeted strategy was rationally pointed out, and herein, a hemicyanine-based probe CyOCy was prepared as a proof of strategy demonstration. The new probe could be equivalently lit up by Cys, Hcy, GSH, and even biothiol combinations (Cys/Hcy, Cys/GSH, Hcy/GSH, or Cys/Hcy/GSH) with unified linear ranges, detection limits, and response times. The probe CyOCy has been successfully used for the accurate quantification of total biothiols in the serum samples of healthy persons and coronary heart disease patients. In addition, the probe has been applied for cell screening, exogenous biothiol imaging, and monitoring drug-induced biothiol fluctuations. The purposive thinking of this work may provide an effective avenue for the accurate sensing of multicomponent samples.
Collapse
Affiliation(s)
- Yijun Gong
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Panpan Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Hongchen Zhai
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yang Xiao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Qian Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Nana Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
8
|
Xu Z, Tao W, Qian J, Zhao H, Peng Y, Sun T, Gao G, Ling C, Li P, Chen J, Ling Y. Dual Tumor-Selective β-Carboline-Based Fluorescent Probe for High-Contrast/Rapid Diagnosis of Clinical Tumor Tissues. Mol Pharm 2024; 21:152-163. [PMID: 38113058 DOI: 10.1021/acs.molpharmaceut.3c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Given that precise/rapid intraoperative tumor margin identification is still challenging, novel fluorescent probes HY and HYM, based on acidic tumor microenvironment (TME) activation and organic anion transporting polypeptide (OATPs)-mediated selective uptake, were constructed and synthesized. Both of them possessed acidic pH-activatable and reversible fluorescence as well as large Stokes shift. Compared with HY, HYM had a higher (over 9-fold) enhancement in fluorescence with pH ranging from 7.6 to 4.0, and the fluorescence quantum yield of HYM (ΦF = 0.49) at pH = 4.0 was 8-fold stronger than that (ΦF = 0.06) at pH = 7.4. Mechanism research demonstrated that acidic TME-induced protonation of the pyridine N atom on β-carbolines accounted for the pH-sensitive fluorescence by influencing the intramolecular charge transfer (ICT) effect. Furthermore, HYM selectively lit up cancer cells and tumor tissues not only by "off-on" fluorescence but also by OATPs (overexpressed on cancer cells)-mediated cancer cellular internalization, offering dual tumor selectivity for precise visualization of tumor mass and intraoperative guidance upon in situ spraying. Most importantly, HYM enabled rapid and high-contrast (tumor-to-normal tissue ratios > 6) human tumor margin identification in clinical tumor tissues by simple spraying within 6 min, being promising for aiding in clinical surgical resection.
Collapse
Affiliation(s)
- Zhongyuan Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001 Nantong, Jiangsu, P. R. China
- Department of Hepatobiliary Surgery, Nantong Third People's Hospital and the Third Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, P. R. China
| | - Weizhi Tao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001 Nantong, Jiangsu, P. R. China
| | - Jianqiang Qian
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001 Nantong, Jiangsu, P. R. China
| | - Huimin Zhao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001 Nantong, Jiangsu, P. R. China
| | - Yiqian Peng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001 Nantong, Jiangsu, P. R. China
| | - Tiantian Sun
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001 Nantong, Jiangsu, P. R. China
| | - Ge Gao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001 Nantong, Jiangsu, P. R. China
| | - Changchun Ling
- Department of General Surgery, Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, P. R. China
| | - Peng Li
- Department of General Surgery, Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, P. R. China
| | - Jun Chen
- Department of Hepatobiliary Surgery, Nantong Third People's Hospital and the Third Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, P. R. China
| | - Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001 Nantong, Jiangsu, P. R. China
| |
Collapse
|
9
|
Xu Z, Zhao H, Zhu J, Qian J, Tao W, Xie X, Ji D, Chen S, Gao G, Li P, Yang Y, Ling Y. Rational design of β-carboline as an efficient type I/II photosensitizer to enable hypoxia-tolerant chemo-photodynamic therapy. Bioorg Chem 2023; 141:106875. [PMID: 37757670 DOI: 10.1016/j.bioorg.2023.106875] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Photodynamic therapy (PDT) is a clinically approved treatment for cancer due to its high spatiotemporal selectivity and non-invasive modality. However, its therapeutic outcomes are always limited to the severe hypoxia environment of the solid tumor. Herein, two novel photosensitizers HY and HYM based on naturally antitumor alkaloids β-carboline were designed and synthesized. Through a series of experiments, we found HY and HYM can produce type II ROS (singlet oxygen) after light irradiation. HYM had higher singlet oxygen quantum yield and molar extinction coefficient than HY, as well as type I PDT behavior, which further let us find that HYM could exhibit robust phototoxicity activities in both normoxia and hypoxia. Meanwhile, HYM showed tumor-selective cytotoxicity with minimal toxicity toward normal cells. Notably, thanks to HYM's hypoxia-tolerant type I/II PDT and tumor selective chemotherapy, HYM showed synergistic inhibitory effect on tumor growth (inhibition rate > 91%). Our research provides a promising photosensitizer for hypoxia-tolerant chemo-photodynamic therapy, and may also give a novel molecular skeleton for photosensitizer design.
Collapse
Affiliation(s)
- Zhongyuan Xu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Huimin Zhao
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Jian Zhu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Jianqiang Qian
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Weizhi Tao
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Xudong Xie
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Dongliang Ji
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China; Department of General Surgery, Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Shuyue Chen
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Ge Gao
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Peng Li
- Department of General Surgery, Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, PR China.
| | - Yumin Yang
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, Jiangsu, PR China.
| | - Yong Ling
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China.
| |
Collapse
|
10
|
Grussy K, Łaska M, Moczurad W, Król-Kulikowska M, Ściskalska M. The importance of polymorphisms in the genes encoding glutathione S-transferase isoenzymes in development of selected cancers and cardiovascular diseases. Mol Biol Rep 2023; 50:9649-9661. [PMID: 37819495 PMCID: PMC10635984 DOI: 10.1007/s11033-023-08894-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Glutathione S-transferases are a family of enzymes, whose main role is to detoxify cells from many exogenous factors, such as xenobiotics or carcinogens. It has also been proven that changes in the genes encoding these enzymes may affect the incidence of selected cancers and cardiovascular diseases. The aim of this study was to review the most important reports related to the role of glutathione S-transferases in the pathophysiology of two of the most common diseases in modern society - cancers and cardiovascular diseases. It was shown that polymorphisms in the genes encoding glutathione S-transferases are associated with the development of these diseases. However, depending on the ethnic group, the researchers obtained divergent results related to this field. In the case of the GSTP1 A/G gene polymorphism was shown an increased incidence of breast cancer in Asian women, while this relationship in European and African women was not found. Similarly. In the case of cardiovascular diseases, the differences in the influence of GSTM1, GSTT1, GSTP1 and GSTA1 polymorphisms on their development or lack of it depending on the continent were shown. These examples show that the development of the above-mentioned diseases is not only influenced by genetic changes, but their pathophysiology is more complex. The mere presence of a specific genotype within a studied polymorphism may not predispose to cancer, but in combination with environmental factors, which often depend on the place of residence, it may elevate the chance of developing the selected disease.
Collapse
Affiliation(s)
- Katarzyna Grussy
- Student Society of Laboratory Diagnosticians, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556, Wroclaw, Poland
| | - Magdalena Łaska
- Student Society of Laboratory Diagnosticians, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556, Wroclaw, Poland
| | - Wiktoria Moczurad
- Student Society of Laboratory Diagnosticians, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556, Wroclaw, Poland
| | - Magdalena Król-Kulikowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556, Wroclaw, Poland.
| | - Milena Ściskalska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556, Wroclaw, Poland
| |
Collapse
|
11
|
Zhang R, Hao L, Chen P, Zhang G, Liu N. Multifunctional small-molecule theranostic agents for tumor-specific imaging and targeted chemotherapy. Bioorg Chem 2023; 137:106576. [PMID: 37182421 DOI: 10.1016/j.bioorg.2023.106576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
Cancer is one of the leading causes of death worldwide. Although great progress has been achieved in cancer diagnosis and treatment, novel therapies are still urgently needed to increase the efficacy and reduce the side effects of conventional therapies. Personalized medicine involves administering patients drugs that are specific to the characteristics of their tumors, and has significantly reduced side effects and increased overall survival rates. Multifunctional theranostic drugs are designed to combine diagnostic and therapeutic functions into a single molecule, which reduces the number of drugs administered to patients and increases patient compliance, and have shown great potential in propelling personalized medicine. This review focuses on multifunctional small-molecule theranostic agents for tumor-specific imaging and targeted chemotherapy, with a particular emphasis placed on highlighting design strategies and application in vitro or in vivo. The challenges and future perspectives of multifunctional small molecules are also discussed.
Collapse
Affiliation(s)
- Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Li Hao
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 528051, China
| | - Pengwei Chen
- Hainan Key Laboratory for ReseCarch and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Gang Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Ning Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
12
|
Liu J, Xu Z, Meng C, Wusiman S, Xie X, Wang Y, Xiao F, Gu C, Chen J, Ling CC, Li P, Yuan Z, Ling Y. Acidic tumor microenvironment-activatable fluorescent diagnostic probe for the rapid identification and resection of human tumors via spraying. Biosens Bioelectron 2023; 234:115343. [PMID: 37167656 DOI: 10.1016/j.bios.2023.115343] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023]
Abstract
A fluorescent diagnostic probe for real-time intraoperative image-guided tumor resection can significantly improve the efficiency and quality of oncological therapy, but their development is challenging. Herein, a novel fluorescent diagnostic probe called HLTC based on β-carboline was designed and synthesized. HLTC was found to show a ∼10-fold enhancement of fluorescence quantum field with pH from 7.4 to 4.0, indicating its imaging potential in acid environment which is a typical hallmark of the tumor microenvironment (TME). Following fluorescence microscopy imaging showed HLTC could emit specific signals in cancer cells and sections, by both one-photon excitation and two-photon excitation. Importantly, HLTC enabled the precise and rapid delineation of both transplanted tumor and clinical tumor tissues within several minutes of simple topical spray. The tumor-to-background ratio (TBR) was up to 10.2 ± 1.0 at clinical liver cancer tissues and 9.9 ± 0.3 at clinical colon cancer tissues, allowing precise tumor margin identification and the effective guidance of surgical tumor resection. Furthermore, CCK8 assay, pharmacokinetic evaluation, blood analysis and H&E staining were performed, which verified high biocompatibility and biosafety of HLTC at working concentration. These results reveal the exciting potential of this small-molecule fluorescent diagnostic probe for real-time fluorescence-based navigation during surgical tumor resection.
Collapse
Affiliation(s)
- Ji Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China; Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Zhongyuan Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Sainaiwaiergul Wusiman
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Xudong Xie
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Yichen Wang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Feng Xiao
- Department of Pathology, Nantong Third People's Hospital and the Third Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Chunyan Gu
- Department of Pathology, Nantong Third People's Hospital and the Third Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jun Chen
- Department of Hepatobiliary Surgery, Nantong Third People's Hospital and the Third Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Chang-Chun Ling
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Peng Li
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China.
| | - Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China.
| |
Collapse
|
13
|
Liu C, Zhang Y, Sun W, Zhu H, Su M, Wang X, Rong X, Wang K, Yu M, Sheng W, Zhu B. A novel GSH-activable theranostic probe containing kinase inhibitor for synergistic treatment and selective imaging of tumor cells. Talanta 2023; 260:124567. [PMID: 37121140 DOI: 10.1016/j.talanta.2023.124567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 05/02/2023]
Abstract
Theranostic probe is becoming a powerful tool for diagnosis and treatment of cancer. Although some theranostic probes have been successfully developed, there is still a great room for improvement in sensitive diagnosis and efficient treatment. Herein, we developed a novel GSH-activable theranostic probe NC-G, which uses 1,8-naphthalimide-4-sulfonamide as a fluorescence imaging group and crizotinib as a highly toxic kinase inhibitor to tumor cells. The probe not only has high sensitivity (DL = 74 nM) and specificity, but also can detect GSH sensitively in cells and zebrafish. In addition, probe NC-G can not only show more obvious fluorescence in tumor cells to achieve sensitive diagnosis of tumor cells, but also release the inhibitor crizotinib to achieve high toxicity to tumor cells. It is worth noting that the consumption of GSH can cause oxidative stress response of cells and the release of SO2 can induce cell apoptosis during the recognition process of the probe and GSH. Thus, the synergistic effect of crizotinib, GSH depletion, and SO2 release provides a highly effective therapeutic feature for tumor cells. Therefore, probe NC-G can serve as an excellent theranostic probe for sensitive imaging and highly effective treatment of tumor cells.
Collapse
Affiliation(s)
- Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Yan Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Weimin Sun
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Meijun Su
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xin Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Miaohui Yu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
14
|
Recent advances in small-molecule fluorescent probes for diagnosis of cancer cells/tissues. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Chen J, Yan M, Huang K, Xue J. Novel molecular photosensitizer with simultaneously GSH depletion, aggregation inhibition and accelerated elimination for improved and safe photodynamic therapy. Eur J Med Chem 2022; 245:114938. [DOI: 10.1016/j.ejmech.2022.114938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022]
|
16
|
Liu W, Yin SY, Hu Y, Deng T, Li J. Microemulsion-Confined Assembly of Magnetic Nanoclusters for pH/H 2O 2 Dual-Responsive T 2-T 1 Switchable MRI. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2629-2637. [PMID: 35000378 DOI: 10.1021/acsami.1c22747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, a T2-T1 switchable superparamagnetic iron oxide nanoprobe with a pH/H2O2 dual response was obtained using a microemulsion method. This novel method for the controllable assembly of small iron clusters followed by their independent modification was reported, which could not be prepared by common synthetic methods. The size of the assembled nanoprobe was uniform and controllable, with a stable T2 magnetic resonance imaging (MRI) signal under a single condition. When the nanoprobe was exposed to the tumor environment, the higher H+ and H2O2 concentrations at the tumor site could dissociate the nanoprobe and redisperse into small iron clusters. When this occurred, the T2 MRI signal was converted into a T1 MRI signal, achieving specific detection of tumors by a pH/H2O2 dual-response T2-T1 MRI.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Sheng-Yan Yin
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yingcai Hu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ting Deng
- Institute of Applied Chemistry, School of Science, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Jishan Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
17
|
Luo J, Guan Z, Gao W, Wang C, Xu Z, Meng C, Liu Y, Zhang Y, Guo Q, Ling Y. A "Double-Locked" and Enzyme/pH-Activated Theranostic Agent for Accurate Tumor Imaging and Therapy. Molecules 2022; 27:425. [PMID: 35056740 PMCID: PMC8779152 DOI: 10.3390/molecules27020425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 12/24/2022] Open
Abstract
Theranostic agents for concurrent cancer therapy and diagnosis have begun attracting attention as a promising modality. However, accurate imaging and identification remains a great challenge for theranostic agents. Here, we designed and synthesized a novel theranostic agent H6M based on the "double-locked" strategy by introducing an electron-withdrawing nitro group into 1-position of a pH-responsive 3-amino-β-carboline and further covalently linking the hydroxamic acid group, a zinc-binding group (ZBG), to the 3-position of β-carboline to obtain histone deacetylase (HDAC) inhibitory effect for combined HDAC-targeted therapy. We found that H6M can be specifically reduced under overexpressed nitroreductase (NTR) to produce H6AQ, which emits bright fluorescence at low pH. Notably, H6M demonstrated a selective fluorescence imaging via successive reactions with NTR (first "key") and pH (second "key"), and precisely identified tumor margins with a high S/N ratio to guide tumor resection. Finally, H6M exerted robust HDAC1/cancer cell inhibitory activities compared with a known HDAC inhibitor SAHA. Therefore, the NTR/pH-activated theranostic agent provided a novel tool for precise diagnosis and efficient tumor therapy.
Collapse
Affiliation(s)
- Jia Luo
- Department of Pharmacy, The Affiliated Hospital of Nantong University, Nantong 226001, China;
- School of Pharmacy, Nantong University, Nantong 226001, China; (W.G.); (C.W.); (Z.X.); (C.M.); (Y.L.)
| | - Zongyu Guan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Nantong University, Nantong 226001, China;
| | - Weijie Gao
- School of Pharmacy, Nantong University, Nantong 226001, China; (W.G.); (C.W.); (Z.X.); (C.M.); (Y.L.)
| | - Chen Wang
- School of Pharmacy, Nantong University, Nantong 226001, China; (W.G.); (C.W.); (Z.X.); (C.M.); (Y.L.)
| | - Zhongyuan Xu
- School of Pharmacy, Nantong University, Nantong 226001, China; (W.G.); (C.W.); (Z.X.); (C.M.); (Y.L.)
| | - Chi Meng
- School of Pharmacy, Nantong University, Nantong 226001, China; (W.G.); (C.W.); (Z.X.); (C.M.); (Y.L.)
| | - Yun Liu
- School of Pharmacy, Nantong University, Nantong 226001, China; (W.G.); (C.W.); (Z.X.); (C.M.); (Y.L.)
| | - Yuquan Zhang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Nantong University, Nantong 226001, China;
| | - Qingsong Guo
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yong Ling
- Department of Pharmacy, The Affiliated Hospital of Nantong University, Nantong 226001, China;
- School of Pharmacy, Nantong University, Nantong 226001, China; (W.G.); (C.W.); (Z.X.); (C.M.); (Y.L.)
| |
Collapse
|
18
|
Han HH, Tian H, Zang Y, Sedgwick AC, Li J, Sessler JL, He XP, James TD. Small-molecule fluorescence-based probes for interrogating major organ diseases. Chem Soc Rev 2021; 50:9391-9429. [PMID: 34232230 DOI: 10.1039/d0cs01183e] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chemical tools that allow the real-time monitoring of organ function and the visualisation of organ-related processes at the cellular level are of great importance in biological research. The upregulation/downregulation of specific biomarkers is often associated with the development of organ related diseases. Small-molecule fluorescent probes have the potential to create advances in our understanding of these disorders. Viable probes should be endowed with a number of key features that include high biomarker sensitivity, low limit of detection, fast response times and appropriate in vitro and in vivo biocompatibility. In this tutorial review, we discuss the development of probes that allow the targeting of organ related processes in vitro and in vivo. We highlight the design strategy that underlies the preparation of various promising probes, their optical response to key biomarkers, and proof-of-concept biological studies. The inherent drawbacks and limitations are discussed as are the current challenges and opportunities in the field. The hope is that this tutorial review will inspire the further development of small-molecule fluorescent probes that could aid the study of pathogenic conditions that contribute to organ-related diseases.
Collapse
Affiliation(s)
- Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
A comprehensive overview of β-carbolines and its derivatives as anticancer agents. Eur J Med Chem 2021; 224:113688. [PMID: 34332400 DOI: 10.1016/j.ejmech.2021.113688] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/05/2021] [Accepted: 07/04/2021] [Indexed: 01/13/2023]
Abstract
β-Carboline alkaloids are a family of natural and synthetic products with structural diversity and outstanding antitumor activities. This review summarizes research developments of β-carboline and its derivatives as anticancer agents, which focused on both natural and synthetic monomers as well as dimers. In addition, the structure-activity relationship (SAR) analysis of β-carboline monomers and dimers are summarized and mechanism of action of β-carboline and its derivatives are also presented. A few possible research directions, suggestions and clues for future work on the development of novel β-carboline-based anticancer agents with improved expected activities and lesser toxicity are also provided.
Collapse
|
20
|
Wu D, Xu Z, Li Z, Yuan W, Wang HQ, Xie X. Reduction and temperature dually-triggered size-shrinkage and drug release of micelles for synergistic photothermal-chemotherapy of cancer. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Zhu G, Wu Z, Lui S, Hu N, Wu M. Advances in Imaging Modalities and Contrast Agents for the Early Diagnosis of Colorectal Cancer. J Biomed Nanotechnol 2021; 17:558-581. [PMID: 35057884 DOI: 10.1166/jbn.2021.3064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Colorectal cancer is one of the most common gastrointestinal cancers worldwide. The mortality rate of colorectal cancer has declined by more than 20% due to the rapid development of early diagnostic techniques and effective treatment. At present, there are many diagnostic modalities
available for the evaluation of colorectal cancer, such as the carcinoembryonic antigen test, the fecal occult blood test, endoscopy, X-ray barium meal, computed tomography, magnetic resonance imaging, and radionuclide examination. Sensitive and specific imaging modalities have played an increasingly
important role in the diagnosis of colorectal cancer following the rapid development of novel contrast agents. This review discusses the applications and challenges of different imaging techniques and contrast agents applied to detect colorectal cancer, for the purpose of the early diagnosis
and treatment of patients with colorectal cancer.
Collapse
Affiliation(s)
- Guannan Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zijun Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Na Hu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|