1
|
Li YJ, Wu ZL, Gu QS, Fan T, Duan MH, Wu L, Wang YT, Wu JP, Fu FL, Sang F, Peng AT, Jiang Y, Liu XY, Lin JS. Catalytic Intermolecular Asymmetric [2π + 2σ] Cycloadditions of Bicyclo[1.1.0]butanes: Practical Synthesis of Enantioenriched Highly Substituted Bicyclo[2.1.1]hexanes. J Am Chem Soc 2024; 146:34427-34441. [PMID: 39626122 DOI: 10.1021/jacs.4c10968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The high percentage of sp3-hybridized carbons and the presence of chiral carbon centers could contribute to increased molecular complexity, enhancing the likelihood of clinical success of drug candidates. Three-dimensional (3D) bridged motifs have recently garnered significant interest in medicinal chemistry. Bicyclo[2.1.1]hexanes (BCHs) are emerging 3D benzene bioisosteres, but the synthesis of chiral, highly substituted BCHs has been underexplored. Herein, we disclose the Lewis acid-catalyzed asymmetric intermolecular [2π + 2σ] cycloaddition of bicyclo[1.1.0]butanes with coumarins, 2-pyrone, or chromenes to access diverse enantioenriched 1,2,3,4-tetrasubstituted BCHs bearing vicinal tertiary-quaternary stereocenters. The key to success is the introduction of chiral bisoxazoline ligands to effectively suppress the side reactions, inhibit significant racemic background reactions, and fine-tune the reactivity and regio-, enantio-, and diastereoselectivities of the reactions. The resulting BCHs hold significant potential as benzene bioisosteres in the synthesis of chiral BCHex-Sonidegib and BCHex-BMS-202, mimicking the anticancer drug Sonidegib and the PD-1/PD-L1 inhibitor BMS-202, respectively. The outcome highlights the positive impact of bioisosteric replacement on physicochemical properties, while maintaining comparable antitumor activity to their aryl-containing counterparts.
Collapse
Affiliation(s)
- Ying-Jie Li
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Zhi-Long Wu
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Qiang-Shuai Gu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tingting Fan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Ming-Hao Duan
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Lihong Wu
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Yu-Tao Wang
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Ji-Peng Wu
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Fang-Lei Fu
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Fan Sang
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Ai-Ting Peng
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jin-Shun Lin
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| |
Collapse
|
2
|
Wu S, Yang Y, Lian X, Zhang F, Hu C, Tsien J, Chen Z, Sun Y, Vaidya A, Kim M, Sung YC, Xiao Y, Bian X, Wang X, Tian Z, Guerrero E, Robinson J, Basak P, Qin T, Siegwart DJ. Isosteric 3D Bicyclo[1.1.1]Pentane (BCP) Core-Based Lipids for mRNA Delivery and CRISPR/Cas Gene Editing. J Am Chem Soc 2024; 146:34733-34742. [PMID: 39655603 DOI: 10.1021/jacs.4c13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Lipid nanoparticles (LNPs) are an essential component of messenger RNA (mRNA) vaccines and genome editing therapeutics. Ionizable amino lipids, which play the most crucial role in enabling mRNA to overcome delivery barriers, have, to date, been restricted to two-dimensional (2D) architectures. Inspired by improved physicochemical properties resulting from the incorporation of three-dimensionality (3D) into small-molecule drugs, we report the creation of 3D ionizable lipid designs through the introduction of bicyclo[1.1.1]pentane (BCP) core motifs. BCP-based lipids enabled efficient in vivo mRNA delivery to the liver and spleen with significantly greater performance over 2D benzene- and cyclohexane-based analogues. Notably, lead BCP-NC2-C12 LNPs mediated ∼90% reduction in the PCSK9 serum protein level via CRISPR/Cas9 gene knockout, outperforming 2D controls and clinically used DLin-MC3-DMA LNPs at the same dose. Here, we introduce BCP-based designs with superior in vivo activity, thereby expanding the chemical scope of ionizable amino lipids from 2D to 3D and offering a promising avenue to improve mRNA and gene editing efficiency for the continued development of genetic medicines.
Collapse
Affiliation(s)
- Shiying Wu
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Yangyang Yang
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Xizhen Lian
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Fangyu Zhang
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Chao Hu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Zexiang Chen
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Yehui Sun
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Amogh Vaidya
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Minjeong Kim
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Yun-Chieh Sung
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Yufen Xiao
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Xiaoyan Bian
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Xu Wang
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Zeru Tian
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Erick Guerrero
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Joshua Robinson
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Pratima Basak
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Daniel J Siegwart
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| |
Collapse
|
3
|
Lee YC, Chen YC, Wu CF, Yoo WJ. Synthesis of 1-Substituted Bicyclo[2.1.1]hexan-2-ones via a Sequential SmI 2-Mediated Pinacol Coupling and Acid-Catalyzed Pinacol Rearrangement Reaction. Org Lett 2024; 26:9352-9356. [PMID: 39436356 PMCID: PMC11536404 DOI: 10.1021/acs.orglett.4c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
A two-step procedure, combining a SmI2-mediated transannular pinacol coupling reaction with an acid-catalyzed pinacol rearrangement process, was employed to prepare a diverse range of 1-substituted bicyclo[2.1.1]hexan-5-ones from cyclobutanedione derivatives. To underscore the significance of these bicyclic ketones in drug synthesis, an sp3-rich analog of nitazoxanide, a well-known antiparasitic and antiviral agent, was synthesized.
Collapse
Affiliation(s)
- Yung-Chi Lee
- Department
of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yi-Chen Chen
- Department
of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chun-Fu Wu
- Department
of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Woo-Jin Yoo
- Department
of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Center
for Emerging Materials and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Bourbon P, Vitse K, Martin-Mingot A, Geindre H, Guégan F, Michelet B, Thibaudeau S. Leveraging long-lived arenium ions in superacid for meta-selective methylation. Nat Commun 2024; 15:7435. [PMID: 39198397 PMCID: PMC11358458 DOI: 10.1038/s41467-024-49421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/31/2024] [Indexed: 09/01/2024] Open
Abstract
Electrophilic aromatic substitution is one of the most mechanistically studied reactions in organic chemistry. However, precluded by innate substituent effects, the access to certain substitution patterns remains elusive. While selective C-H alkylation of biorelevant molecules is eagerly awaited, especially for the insertion of a methyl group whose magic effect can boost lead molecules potency, one of the most obvious strategies would rely on electrophilic aromatic substitution. Yet, the historical Friedel-Crafts methylation remains to date poorly selective and limited to activated simple aromatics. Here, we report the development of a selective electrophilic methylation enabling the direct access to highly desirable 1,3-disubstituted arenes. This study demonstrates that this reaction is driven by the generation of long-lived arenium intermediates generated by protonation in superacid and can be applied to a large variety of functionalized (hetero)aromatics going from standard building blocks to active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Paul Bourbon
- Université de Poitiers, CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 86073, Poitiers, Cedex 9, France
| | - Kassandra Vitse
- Université de Poitiers, CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 86073, Poitiers, Cedex 9, France
| | - Agnès Martin-Mingot
- Université de Poitiers, CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 86073, Poitiers, Cedex 9, France
| | - Hugo Geindre
- Université de Poitiers, CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 86073, Poitiers, Cedex 9, France
| | - Frédéric Guégan
- Université de Poitiers, CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 86073, Poitiers, Cedex 9, France
| | - Bastien Michelet
- Université de Poitiers, CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 86073, Poitiers, Cedex 9, France.
| | - Sébastien Thibaudeau
- Université de Poitiers, CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 86073, Poitiers, Cedex 9, France.
| |
Collapse
|
5
|
Tsien J, Hu C, Merchant RR, Qin T. Three-dimensional saturated C(sp 3)-rich bioisosteres for benzene. Nat Rev Chem 2024; 8:605-627. [PMID: 38982260 DOI: 10.1038/s41570-024-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 07/11/2024]
Abstract
Benzenes, the most ubiquitous structural moiety in marketed small-molecule drugs, are frequently associated with poor 'drug-like' properties, including metabolic instability, and poor aqueous solubility. In an effort to overcome these limitations, recent developments in medicinal chemistry have demonstrated the improved physicochemical profiles of C(sp3)-rich bioisosteric scaffolds relative to arenes. In the past two decades, we have witnessed an exponential increase in synthetic methods for accessing saturated bioisosteres of monosubstituted and para-substituted benzenes. However, until recent discoveries, analogous three-dimensional ortho-substituted and meta-substituted biososteres have remained underexplored, owing to their ring strain and increased s-character hybridization. This Review summarizes the emerging synthetic methodologies to access such saturated motifs and their impact on the application of bioisosteres for ortho-substituted, meta-substituted and multi-substituted benzene rings. It concludes with a perspective on the development of next-generation bioisosteres, including those within novel chemical space.
Collapse
Affiliation(s)
- Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Hu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rohan R Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Ma KX, Hong CM, Yan JM, Li QH, Liu TL. Synthesis of 1,2,4,5-tetra-substituted benzenes via copper-catalyzed dimerization of γ,δ-unsaturated ketones. Chem Commun (Camb) 2024; 60:7753-7756. [PMID: 38973629 DOI: 10.1039/d4cc02458c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
An efficient cyclization for the synthesis of 1,2,4,5-tetra-substituted benzenes via copper catalyzed dimerization of γ,δ-unsaturated ketones has been described. This one-pot procedure employs the γ,δ-unsaturated ketones as the sole substrate with multiple C-C bond formation. This protocol features broad substrate scope and provides a facile and robust method to construct polysubstituted benzene derivatives under mild conditions.
Collapse
Affiliation(s)
- Kai-Xian Ma
- Chongqing Key Laboratory of Soft-Matter Materials Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Chuan-Ming Hong
- Chongqing Key Laboratory of Soft-Matter Materials Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Jiang-Min Yan
- Chongqing Key Laboratory of Soft-Matter Materials Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Qing-Hua Li
- Chongqing Key Laboratory of Soft-Matter Materials Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Tang-Lin Liu
- Chongqing Key Laboratory of Soft-Matter Materials Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Dupommier D, Vuagnat M, Rzayev J, Roy S, Jubault P, Besset T. Site-Selective Ortho/Ipso C-H Difunctionalizations of Arenes using Thianthrene as a Leaving Group. Angew Chem Int Ed Engl 2024; 63:e202403950. [PMID: 38712851 DOI: 10.1002/anie.202403950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
Site-selective ortho/ipso C-H difunctionalizations of aromatic compounds were designed to afford polyfunctionalized arenes including challenging 1,2,3,4-tetrasubstituted ones (62 examples, up to 97 % yields). To ensure the excellent regioselectivity of the process while keeping high efficiency, an original strategy based on a "C-H thianthenation/Catellani-type reaction" sequence was developed starting from simple arenes. Non-prefunctionalized arenes were first regioselectively converted into the corresponding thianthrenium salts. Then, a palladium-catalyzed, norbornene (NBE)-mediated process allowed the synthesis of ipso-olefinated/ortho-alkylated polyfunctionalized arenes using a thianthrene as a leaving group (revisited Catellani reaction). Pleasingly, using a commercially available norbornene (NBE) and a unique catalytic system, synthetic challenges known for the Catellani reaction with aryl iodides were smoothly and successfully tackled with the "thianthrenium" approach. The protocol was robust (gram-scale reaction) and was widely applied to the two-fold functionalization of various arenes including bio-active compounds. Moreover, a panel of olefins and alkyl halides as coupling partners was suitable. Pleasingly, the "thianthrenium" strategy was successfully further applied to the incorporation of other groups at the ipso (CN/alkyl/H, aryl) and ortho (alkyl, aryl, amine, thiol) positions, showcasing the generality of the process.
Collapse
Affiliation(s)
- Dorian Dupommier
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| | - Martin Vuagnat
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| | - Javid Rzayev
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| | - Sourav Roy
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| | - Philippe Jubault
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| | - Tatiana Besset
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| |
Collapse
|
8
|
Zhang K, Tian S, Li W, Yang X, Duan XH, Guo LN, Li P. Lewis Acid-Catalyzed Formal [2π+2σ] Cycloaddition of Bicyclobutanes with Quinoxalin-2(1 H)-ones: Access to Quinoxaline-Fused Aza-Bicyclo[2.1.1]hexanes. Org Lett 2024; 26:5482-5487. [PMID: 38913035 DOI: 10.1021/acs.orglett.4c01775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
An efficient synthesis of quinoxaline-fused aza-bicyclo[2.1.1]hexanes bearing multiple quaternary carbon centers via the intermolecular [2π+2σ] cycloaddition of bicyclo[1.1.0]butanes and quinoxalin-2(1H)-ones, facilitated by Lewis acid catalysis, is presented. This reaction is carried out under mild conditions and exhibits a broad substrate scope and excellent functional group tolerance.
Collapse
Affiliation(s)
- Kuan Zhang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shanghui Tian
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenke Li
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xu Yang
- School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pengfei Li
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
9
|
Edelmann S, Lumb JP. A para- to meta-isomerization of phenols. Nat Chem 2024; 16:1193-1199. [PMID: 38632366 DOI: 10.1038/s41557-024-01512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Phenols and their derivatives are ubiquitous in nature and critically important industrial chemicals. Their properties are intimately linked to the relative substitution pattern of the aromatic ring, reflecting well-known electronic effects of the OH group. Because of these ortho-, para-directing effects, meta-substituted phenols have historically been more difficult to synthesize. Here we describe a procedure to transpose phenols that hinges on a regioselective diazotization of the corresponding ortho-quinone. The procedure affords the meta-substituted phenol directly from its more common and accessible para-substituted isomer, and demonstrates good chemoselectivity that enables its application in late-stage settings. By changing the electronic effect of the OH group and its trajectory of hydrogen bonding, our transposition can be used to diversify natural products and existing chemical libraries, and potentially shorten the length and cost of producing underrepresented arene isomers.
Collapse
Affiliation(s)
- Simon Edelmann
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Tavakoli A, Dudley GB. Regioselective [2 + 2 + 2] Alkyne Cyclotrimerizations to Hexasubstituted Benzenes: Syntheses of Fomajorin D and Fomajorin S. J Org Chem 2024; 89:6847-6852. [PMID: 38683747 PMCID: PMC11110065 DOI: 10.1021/acs.joc.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Hexasubstituted benzenoids are prepared by regioselective bimolecular [2 + 2 + 2] alkyne cyclotrimerizations of diynes with alkynes. These convergent and efficient benzannulations are directed toward and lead to the first total syntheses of the illudalane sequiterpenes fomajorin D and S, in 10 and 7 steps, respectively, from commercially available dimedone. Control experiments suggest that hydrogen bonding may play a role in preorganizing the diyne and alkyne coupling partners for establishing the desired regioselectivity, but other factors are likely involved in the selective formation of other regioisomers.
Collapse
Affiliation(s)
- Amir Tavakoli
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Gregory B. Dudley
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| |
Collapse
|
11
|
Cheng Q, Bhattacharya D, Haring M, Cao H, Mück-Lichtenfeld C, Studer A. Skeletal editing of pyridines through atom-pair swap from CN to CC. Nat Chem 2024; 16:741-748. [PMID: 38238464 PMCID: PMC11087273 DOI: 10.1038/s41557-023-01428-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/15/2023] [Indexed: 05/12/2024]
Abstract
Skeletal editing is a straightforward synthetic strategy for precise substitution or rearrangement of atoms in core ring structures of complex molecules; it enables quick diversification of compounds that is not possible by applying peripheral editing strategies. Previously reported skeletal editing of common arenes mainly relies on carbene- or nitrene-type insertion reactions or rearrangements. Although powerful, efficient and applicable to late-stage heteroarene core structure modification, these strategies cannot be used for skeletal editing of pyridines. Here we report the direct skeletal editing of pyridines through atom-pair swap from CN to CC to generate benzenes and naphthalenes in a modular fashion. Specifically, we use sequential dearomatization, cycloaddition and rearomatizing retrocycloaddition reactions in a one-pot sequence to transform the parent pyridines into benzenes and naphthalenes bearing diversified substituents at specific sites, as defined by the cycloaddition reaction components. Applications to late-stage skeletal diversification of pyridine cores in several drugs are demonstrated.
Collapse
Affiliation(s)
- Qiang Cheng
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | | | - Malte Haring
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Hui Cao
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | | | - Armido Studer
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany.
| |
Collapse
|
12
|
Dethe DH, Uike A, Beeralingappa NC. Ru(II)-Catalyzed Deoxygenative Formal [3 + 1 + 2] Benzannulation of Allyl Alcohols and Acetylenediesters via C-H Activation and Selective Carbon-Carbon Triple Bond Cleavage. Org Lett 2024; 26:2013-2017. [PMID: 38437734 DOI: 10.1021/acs.orglett.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
An unprecedented Ru(II)-catalyzed deoxygenative, site-selective formal [3 + 1 + 2] benzannulation reaction for the efficient synthesis of highly substituted benzene molecules is reported. This reaction between allyl alcohols and acetylenedicarboxylate esters proceeds via cascade C-H activation, consecutive double migratory insertion with alkynes, and cycloaromatization followed by an unusual specific C-C triple bond cleavage.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Amar Uike
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | | |
Collapse
|
13
|
Vuagnat M, Jubault P, Besset T. Sequential ortho-/ meta-C-H functionalizations of N-tosyl-benzamides for the synthesis of polyfunctionalized arenes. Chem Commun (Camb) 2024; 60:2244-2247. [PMID: 38317563 DOI: 10.1039/d3cc05919g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Selective one-pot sequential ortho-/meta-C-H functionalizations provided highly desirable polyfunctionalized arenes. Starting from readily available carboxylic acid derivatives, the concomitant formation of C-O and C-halogen bonds was achieved under mild reaction conditions (12 examples, up to 75% yield). The utility of the products was illustrated with post-functionalization reactions and Metiglinid synthesis.
Collapse
Affiliation(s)
- Martin Vuagnat
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, Rouen F-76000, France.
| | - Philippe Jubault
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, Rouen F-76000, France.
| | - Tatiana Besset
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, Rouen F-76000, France.
| |
Collapse
|
14
|
Masand VH, Al-Hussain S, Alzahrani AY, El-Sayed NNE, Yeo CI, Tan YS, Zaki MEA. Leveraging nitrogen occurrence in approved drugs to identify structural patterns. Expert Opin Drug Discov 2024; 19:111-124. [PMID: 37811790 DOI: 10.1080/17460441.2023.2266990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND The process of drug development and discovery is costly and slow. Although an understanding of molecular design principles and biochemical processes has progressed, it is essential to minimize synthesis-testing cycles. An effective approach is to analyze key heteroatoms, including oxygen and nitrogen. Herein, we present an analysis focusing on the utilization of nitrogen atoms in approved drugs. RESEARCH DESIGN AND METHODS The present work examines the frequency, distribution, prevalence, and diversity of nitrogen atoms in a dataset comprising 2,049 small molecules approved by different regulatory agencies (FDA and others). Various types of nitrogen atoms, such as sp3-, sp2-, sp-hybridized, planar, ring, and non-ring are included in this investigation. RESULTS The results unveil both previously reported and newly discovered patterns of nitrogen atom distribution around the center of mass in the majority of drug molecules. CONCLUSIONS This study has highlighted intriguing trends in the role of nitrogen atoms in drug design and development. The majority of drugs contain 1-3 nitrogen atoms within 5Å from the center of mass (COM) of a molecule, with a higher preference for the ring and planar nitrogen atoms. The results offer invaluable guidance for the multiparameter optimization process, thus significantly contributing toward the conversion of lead compounds into potential drug candidates.
Collapse
Affiliation(s)
- Vijay H Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati, India
| | - Sami Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Abdullah Y Alzahrani
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail Assir, Saudi Arabia
| | - Nahed N E El-Sayed
- National Organization for Drug Control and Research, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Chien Ing Yeo
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Yee Seng Tan
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Davas DS, Gopalakrishnan DK, Bar K, Kumar S, Karmakar T, Vaitla J. Divergent Approach to Highly Substituted Arenes via [3 + 3] Annulation of Vinyl Sulfoxonium Ylides with Ynones. Org Lett 2023; 25:8992-8996. [PMID: 38084931 DOI: 10.1021/acs.orglett.3c03570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Herein, we report the divergent benzannulation for highly substituted arenes using vinyl sulfoxonium ylides and ynones. The addition of ynone at the γ-position of vinyl sulfoxonium ylides leads to dienyl sulfoxonium ylide that can undergo selective annulation under different conditions to give m-terphenyls and parabens. Moreover, control experiments and quantum chemical calculations reveal two distinct reaction mechanisms for both annulations.
Collapse
Affiliation(s)
- Daksh Singh Davas
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | | | - Krishnendu Bar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sandeep Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Janakiram Vaitla
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
16
|
Li B, Ruffoni A, Leonori D. A Photochemical Strategy for ortho-Aminophenol Synthesis via Dearomative-Rearomative Coupling Between Aryl Azides and Alcohols. Angew Chem Int Ed Engl 2023; 62:e202310540. [PMID: 37926921 DOI: 10.1002/anie.202310540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
ortho-Aminophenols are aromatic derivatives featuring vicinal N- and O-based functionalities commonly found in the structures of many high-value materials. These molecules are generally prepared using multistep strategies that follow the rules of electrophilic aromatic substitution (SE Ar) chemistry. Despite their high fidelity, such approaches cannot target substrates featuring a "contra-SE Ar" arrangement of N- and O-groups. Here we report an alternative strategy for the preparation of such ortho-aminophenols using aryl azides as the precursors. The process utilizes low-energy photoexcitation to trigger the decomposition of aryl azides into singlet nitrenes that undergo a dearomative-rearomative sequence. This allows the incorporation of alcoholic nucleophiles into a seven-membered ring azepine intermediate via temporary disruption of aromaticity, followed by electrophile-induced re-aromatization. The net retrosynthetic logic is that the alcohol displaces the azide, which, in turn, moves to its ortho position and furthermore is converted into an amide. The synthetic value and complementarity of this strategy has been demonstrated by the coupling of aryl azides with complex, drug-like alcohols and phenols as well as amines, thiols and thiophenols, which provides a general platform for the fast and selective heterofunctionalization of aromatics.
Collapse
Affiliation(s)
- Bo Li
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
| | - Alessandro Ruffoni
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
| |
Collapse
|
17
|
Roque JB, Shimozono AM, Pabst TP, Hierlmeier G, Peterson PO, Chirik PJ. Kinetic and thermodynamic control of C(sp 2)-H activation enables site-selective borylation. Science 2023; 382:1165-1170. [PMID: 38060669 PMCID: PMC10898344 DOI: 10.1126/science.adj6527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/10/2023] [Indexed: 02/29/2024]
Abstract
Catalysts that distinguish between electronically distinct carbon-hydrogen (C-H) bonds without relying on steric effects or directing groups are challenging to design. In this work, cobalt precatalysts supported by N-alkyl-imidazole-substituted pyridine dicarbene (ACNC) pincer ligands are described that enable undirected, remote borylation of fluoroaromatics and expansion of scope to include electron-rich arenes, pyridines, and tri- and difluoromethoxylated arenes, thereby addressing one of the major limitations of first-row transition metal C-H functionalization catalysts. Mechanistic studies established a kinetic preference for C-H bond activation at the meta-position despite cobalt-aryl complexes resulting from ortho C-H activation being thermodynamically preferred. Switchable site selectivity in C-H borylation as a function of the boron reagent was thereby preliminarily demonstrated using a single precatalyst.
Collapse
Affiliation(s)
- Jose B. Roque
- Department of Chemistry, Princeton University, Princeton, New Jersey, 08544, U.S.A
| | - Alex M. Shimozono
- Department of Chemistry, Princeton University, Princeton, New Jersey, 08544, U.S.A
| | - Tyler P. Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey, 08544, U.S.A
| | - Gabriele Hierlmeier
- Department of Chemistry, Princeton University, Princeton, New Jersey, 08544, U.S.A
| | - Paul O. Peterson
- Department of Chemistry, Princeton University, Princeton, New Jersey, 08544, U.S.A
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey, 08544, U.S.A
| |
Collapse
|
18
|
Bai Z, Lansbergen B, Ritter T. Bicyclopentylation of Alcohols with Thianthrenium Reagents. J Am Chem Soc 2023; 145:25954-25961. [PMID: 38010346 PMCID: PMC10704608 DOI: 10.1021/jacs.3c10024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Herein we present the first method for the synthesis of bicyclo[1.1.1]pentyl (BCP) alkyl ethers from alcohols. The reaction uses BCP-thianthrenium reagents and is catalyzed by a dual copper/photoredox catalyst system. Unlike known alkylations of tertiary alcohols via carbocation intermediates, our Cu-mediated radical process circumvents the labile BCP carbocations. The approach demonstrates a broad tolerance for functional groups when applied to primary, secondary, and even tertiary alcohols. In addition, we highlight the utility of this method in late-stage functionalizations of both natural products and pharmaceuticals as well as in the rapid construction of BCP analogs of known pharmaceuticals that would otherwise be difficult to access.
Collapse
Affiliation(s)
- Zibo Bai
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Beatrice Lansbergen
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Tobias Ritter
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
19
|
Nguyen TVT, Bossonnet A, Wodrich MD, Waser J. Photocatalyzed [2σ + 2σ] and [2σ + 2π] Cycloadditions for the Synthesis of Bicyclo[3.1.1]heptanes and 5- or 6-Membered Carbocycles. J Am Chem Soc 2023; 145:25411-25421. [PMID: 37934629 DOI: 10.1021/jacs.3c09789] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
We report the use of photocatalysis for the homolytic ring-opening of carbonyl cyclopropanes. In contrast to previous studies, our approach does not require a metal cocatalyst or a strong reductant. The carbonyl cyclopropanes can be employed for both [2σ + 2σ] and [2σ + 2π] annulation with either alkenes/alkynes or bicyclo[1.1.0]butanes, yielding cyclopent-anes/-enes and bicyclo[3.1.1]heptanes (BCHs), respectively. BCHs are promising bioisosteres for 1,2,4,5 tetra-substituted aromatic rings. Mechanistic studies, including density functional theory computation and a trapping experiment with DMPO, support a 1,3-biradical generated from cyclopropane as a key intermediate for these transformations.
Collapse
Affiliation(s)
- Tin V T Nguyen
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemistry and Chemical Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne Ch-1015, Switzerland
| | - André Bossonnet
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemistry and Chemical Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne Ch-1015, Switzerland
| | - Matthew D Wodrich
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemistry and Chemical Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne Ch-1015, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemistry and Chemical Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne Ch-1015, Switzerland
| |
Collapse
|
20
|
Yan H, Liu Y, Feng X, Shi L. Hantzsch Esters Enabled [2π+2σ] Cycloadditions of Bicyclo [1.1.0] butanes and Alkenes under Photo Conditions. Org Lett 2023; 25:8116-8120. [PMID: 37939017 DOI: 10.1021/acs.orglett.3c03222] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Hantzsch esters (HEs) are widely recognized as sources of hydride ions (H-) and sacrificial electron donors in their ground state. Here, we report the application of HE as a mediator in [2π+2σ] cycloaddition of bicyclo[1.1.0]butanes (BCBs) with alkenes under photo conditions. Through this strategy, various substituted bicyclo[2.1.1]hexanes can be efficiently prepared.
Collapse
Affiliation(s)
- Huaipu Yan
- School of Chemistry, Dalian University of Technology, 116024 Dalian, China
| | | | - Xiao Feng
- School of Chemistry, Dalian University of Technology, 116024 Dalian, China
| | - Lei Shi
- School of Chemistry, Dalian University of Technology, 116024 Dalian, China
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007 Xinxiang, China
| |
Collapse
|
21
|
Liu X, Fu Y, Chen Z, Liu P, Dong G. Ortho-C-H methoxylation of aryl halides enabled by a polarity-reversed N-O reagent. Nat Chem 2023; 15:1391-1399. [PMID: 37653231 PMCID: PMC10973943 DOI: 10.1038/s41557-023-01312-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 08/01/2023] [Indexed: 09/02/2023]
Abstract
Oxygen-substituted arenes widely exist in biologically important molecules and can serve as versatile handles to install other functional groups. However, direct and site-selective installation of oxygen groups to common aromatic compounds remains challenging, especially when additional arene functionalization is simultaneously required. Current arene C-H oxidation strategies generally require directing groups or precisely prefunctionalized substrates to control site-selectivity. While palladium/norbornene cooperative catalysis is promising for site-specific arene vicinal difunctionalization through simultaneous reactions with an electrophile and a nucleophile, the electrophile scope has been limited to species based on relatively 'soft' elements, such as carbon, nitrogen and sulfur. Here we report the development of an ortho oxygenation reaction with common aryl halides to rapidly deliver diverse aryl ethers. The coupling of the 'hard' oxygen electrophile is enabled by a stable, polarity-reversed, conformationally predistorted N-O reagent and facilitated by a C7-bromo-substituted norbornene mediator. Mechanistic studies reveal a unique SN2-type pathway between the N-O reagent as the oxygen electrophile and an electron-rich Pd(II) nucleophile.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Yue Fu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhijie Chen
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
22
|
Reinhold M, Steinebach J, Golz C, Walker JCL. Synthesis of polysubstituted bicyclo[2.1.1]hexanes enabling access to new chemical space. Chem Sci 2023; 14:9885-9891. [PMID: 37736652 PMCID: PMC10510755 DOI: 10.1039/d3sc03083k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
Saturated bridged-bicyclic compounds are currently under intense investigation as building blocks for pharmaceutical drug design. However, the most common methods for their preparation only provide access to bridgehead-substituted structures. The synthesis of bridge-functionalised species is highly challenging but would open up many new opportunities for molecular design. We describe a photocatalytic cycloaddition reaction that provides unified access to bicyclo[2.1.1]hexanes with 11 distinct substitution patterns. Bridge-substituted structures that represent ortho-, meta-, and polysubstituted benzene bioisosteres, as well as those that enable the investigation of chemical space inaccessible to aromatic motifs can all be prepared using this operationally simple protocol. Proof-of-concept examples of the application of the method to the synthesis of saturated analogues of biorelevant trisubstituted benzenes are also presented.
Collapse
Affiliation(s)
- Marius Reinhold
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| | - Justin Steinebach
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| | - Johannes C L Walker
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| |
Collapse
|
23
|
Smyrnov OK, Melnykov KP, Rusanov EB, Suikov SY, Pashenko OE, Fokin AA, Volochnyuk DM, Ryabukhin SV. Multigram Synthesis of Dimethyl Stellane-1,5-Dicarboxylate as a Key Precursor for ortho-Benzene Mimics. Chemistry 2023:e202302454. [PMID: 37731162 DOI: 10.1002/chem.202302454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
Herein, we present previously unavailable C(sp3 )-rich polycyclic hydrocarbon scaffolds that have the potential to become valuable tools in medicinal chemistry and crop science as saturated bioisosteres of benzenoids. We have developed a scalable protocol (up to 50 g from a single synthetic run) for the synthesis of tricyclo[3.3.0.03,7 ]octane (bisnoradamantane or stellane) 1,5-dicarboxylic acid derivatives. X-ray crystallographic analysis of the stellane 1,5-dicarboxylic acid dimethyl ester has revealed that this scaffold is an optimal saturated isostere for ortho-disubstituted benzene where substituents exhibit in-plane topology. The synthetic protocol is based on the oxidative cyclization of dimethyl octahydropentalene-2,5-dicarboxylate (DMOD) through lithiation followed by I2 oxidation. The reaction outcome is determined by the stereochemistry of the substrate. While the endo,endo cis-DMOD, exclusively gives the "unwanted" Claisen cyclization product, the exo,endo cis- and exo,exo cis- stereoisomers afford the desired stellane 1,5-dicarboxylic acid dimethyl ester quantitatively. DFT computations have revealed that the reaction proceeds via the dianion of dimethyl octahydropentalene-2,5-dicarboxylate, which undergoes SET oxidation by I2 to form a radical anion. The subsequent cyclization followed by a second SET oxidation gives the desired stellane derivative.
Collapse
Affiliation(s)
- Oleh K Smyrnov
- Enamine Ltd, 78 Winston Churchill Street, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, Kyiv, Ukraine
| | - Kostiantyn P Melnykov
- Enamine Ltd, 78 Winston Churchill Street, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, Kyiv, Ukraine
| | - Eduard B Rusanov
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Academik Kukhar Street 5, Kyiv, Ukraine
| | - Sergey Yu Suikov
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Academik Kukhar Street 5, Kyiv, Ukraine
| | - Olexandr E Pashenko
- Enamine Ltd, 78 Winston Churchill Street, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Academik Kukhar Street 5, Kyiv, Ukraine
| | - Andrey A Fokin
- Igor Sikorsky Kyiv Polytechnic Institute, 37 Beresteiskyi Avenue, Kyiv, 03056, Ukraine
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Dmytro M Volochnyuk
- Enamine Ltd, 78 Winston Churchill Street, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Academik Kukhar Street 5, Kyiv, Ukraine
| | - Serhiy V Ryabukhin
- Enamine Ltd, 78 Winston Churchill Street, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Academik Kukhar Street 5, Kyiv, Ukraine
| |
Collapse
|
24
|
Hu M, Liang Y, Ru L, Ye S, Zhang L, Huang X, Bao M, Kong L, Peng B. Defluorinative Multi-Functionalization of Fluoroaryl Sulfoxides Enabled by Fluorine-Assisted Temporary Dearomatization. Angew Chem Int Ed Engl 2023; 62:e202306914. [PMID: 37455262 DOI: 10.1002/anie.202306914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Owing to its unique physical properties, fluorine is often used to open up new reaction channels. In this report, we establish a cooperation of [5,5]-rearrangement and fluorine-assisted temporary dearomatization for arene multi-functionalization. Specifically, the [5,5]-rearrangement of fluoroaryl sulfoxides with β,γ-unsaturated nitriles generates an intriguing dearomatized sulfonium species which is short-lived but exhibits unusually high electrophilicity and thus can be instantly trapped by nucleophiles and dienes at a remarkably low temperature (-95 °C) to produce four types of valuable multi-functionalized benzenes, respectively, involving appealing processes of defluorination, desulfurization, and sulfur shift. Mechanistic studies indicate that the use of fluorine on arenes not only circumvents the generally inevitable [3,3]-rearrangement but also impedes the undesired rearomatization process, thus provides a precious space for constructing and elaborating the temporarily dearomatized fluorinated sulfonium species.
Collapse
Affiliation(s)
- Mengjie Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
| | - Yuchen Liang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| | - Liying Ru
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| | - Sheng Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| | - Lei Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| | - Xin Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
| | - Lichun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| | - Bo Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
25
|
Radhoff N, Daniliuc CG, Studer A. Lewis Acid Catalyzed Formal (3+2)-Cycloaddition of Bicyclo[1.1.0]butanes with Ketenes. Angew Chem Int Ed Engl 2023; 62:e202304771. [PMID: 37166141 DOI: 10.1002/anie.202304771] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/12/2023]
Abstract
Design, synthesis and application of benzene bioisosteres have attracted a lot of attention in the past 20 years. Recently, bicyclo[2.1.1]hexanes have emerged as highly attractive bioisosteres for ortho- and meta-substituted benzenes. Herein we report a mild, scalable and transition-metal-free protocol for the construction of highly substituted bicyclo[2.1.1]hexan-2-ones through Lewis acid catalyzed (3+2)-cycloaddition of bicyclo[1.1.0]-butane ketones with disubstituted ketenes. The reaction shows high functional group tolerance as documented by the successful preparation of various 3-alkyl-3-aryl as well as 3,3-bisalkyl bicyclo[2.1.1]hexan-2-ones (26 examples, up to 89 % yield). Postfunctionalization of the exocyclic ketone moiety is also demonstrated.
Collapse
Affiliation(s)
- Niklas Radhoff
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
26
|
Smith E, Jones KD, O'Brien L, Argent SP, Salome C, Lefebvre Q, Valery A, Böcü M, Newton GN, Lam HW. Silver(I)-Catalyzed Synthesis of Cuneanes from Cubanes and their Investigation as Isosteres. J Am Chem Soc 2023. [PMID: 37478562 PMCID: PMC10401713 DOI: 10.1021/jacs.3c03207] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Bridged or caged polycyclic hydrocarbons have rigid structures that project substituents into precise regions of 3D space, making them attractive as linking groups in materials science and as building blocks for medicinal chemistry. The efficient synthesis of new or underexplored classes of such compounds is, therefore, an important objective. Herein, we describe the silver(I)-catalyzed rearrangement of 1,4-disubstituted cubanes to cuneanes, which are strained hydrocarbons that have not received much attention since they were first described in 1970. The synthesis of 2,6-disubstituted or 1,3-disubstituted cuneanes can be achieved with high regioselectivities, with the regioselectivity being dependent on the electronic character of the cubane substituents. A preliminary assessment of cuneanes as scaffolds for medicinal chemistry suggests cuneanes could serve as isosteric replacements of trans-1,4-disubstituted cyclohexanes and 1,3-disubstituted benzenes. An analogue of the anticancer drug sonidegib was synthesized, in which the 1,2,3-trisubstituted benzene was replaced with a 1,3-disubstituted cuneane.
Collapse
Affiliation(s)
- Elliot Smith
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Kieran D Jones
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Luke O'Brien
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Stephen P Argent
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | | | | | | | - Mina Böcü
- SpiroChem AG, 4058 Basel, Switzerland
| | - Graham N Newton
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Hon Wai Lam
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
27
|
Li X, Wang X, Zhang J. Ruthenium-catalysed decarboxylative unsymmetric dual ortho-/ meta-C-H bond functionalization of arenecarboxylic acids. Chem Sci 2023; 14:5470-5476. [PMID: 37234909 PMCID: PMC10208063 DOI: 10.1039/d3sc01226c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 05/28/2023] Open
Abstract
Here, we describe a ruthenium-catalysed decarboxylative unsymmetric ortho-C-H azaarylation/meta-C-H alkylation via a traceless directing group relay strategy. The installation of a 2-pyridyl functionality via carboxyl directed ortho-C-H activation is critical to promote decarboxylation and enable meta-C-H bond alkylation to streamline the synthesis of 4-azaaryl-benzo-fused five-membered heterocycles. This protocol is characterized by high regio- and chemoselectivity, broad substrate scopes, and good functional group tolerance under redox-neutral conditions.
Collapse
Affiliation(s)
- Xiankai Li
- The Institute for Advanced Studies, Wuhan University Wuhan Hubei Province 430072 China
| | - Xiaofei Wang
- The Institute for Advanced Studies, Wuhan University Wuhan Hubei Province 430072 China
| | - Jing Zhang
- The Institute for Advanced Studies, Wuhan University Wuhan Hubei Province 430072 China
| |
Collapse
|
28
|
Yu YZ, Bai J, Peng JM, Yao JS, Zhuo CX. Modular Access to meta-Substituted Benzenes via Mo-Catalyzed Intermolecular Deoxygenative Benzene Formation. J Am Chem Soc 2023; 145:8781-8787. [PMID: 36929879 DOI: 10.1021/jacs.3c01330] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The substituted benzene derivatives are essential to organic synthesis, medicinal chemistry, and material science. However, the 1,3-di- and 1,3,5-trisubstituted benzenes are far less prevalent in small-molecule drugs than other substitution patterns, likely due to the lack of robust, efficient, and convenient synthetic methods. Here, we report a Mo-catalyzed intermolecular deoxygenative benzene-forming reaction of readily available ynones and allylic amines. A wide range of unsymmetric and unfunctionalized 1,3-di- and 1,3,5-trisubstituted benzenes were obtained in up to 88% yield by using a commercially available molybdenum catalyst. The synthetic potential of the method was further illustrated by synthetic transformations, a scale-up synthesis, and derivatization of bioactive molecules. Preliminary mechanistic studies suggested that this benzene-forming process might proceed through a Mo-catalyzed aza-Michael addition/[1,5]-hydride shift/cyclization/aromatization cascade. This strategy not only provided a facile, robust, and modular approach to various meta-substituted benzene derivatives but also demonstrated the potential of molybdenum catalysis in the challenging intermolecular deoxygenative cross-coupling reactions.
Collapse
Affiliation(s)
- Yi-Zhe Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jin Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jia-Min Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jia-Sheng Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chun-Xiang Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.,Shenzhen Research Institute of Xiamen University, Shenzhen 518057, People's Republic of China
| |
Collapse
|
29
|
Senior A, Ruffell K, Ball LT. meta-Selective C-H arylation of phenols via regiodiversion of electrophilic aromatic substitution. Nat Chem 2023; 15:386-394. [PMID: 36509853 DOI: 10.1038/s41557-022-01101-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/27/2022] [Indexed: 12/14/2022]
Abstract
Electrophilic aromatic substitution is among the most widely used mechanistic manifolds in organic chemistry. Access to certain substitution patterns is, however, precluded by intrinsic and immutable substituent effects that ultimately restrict the diversity of the benzenoid chemical space. Here we demonstrate that the established regioselectivity of electrophilic aromatic substitution can be overcome simply by diverting the key σ-complex intermediate towards otherwise inaccessible substitution products. This 'regiodiversion' strategy is realized through the development of a general and concise method for the meta-selective C-H arylation of sterically congested phenols. Consisting of a Bi(V)-mediated electrophilic arylation and a subsequent aryl migration/rearomatization, our process is orthogonal to conventional C-H activation and cross-coupling approaches, and does not require prefunctionalization of the substrate. Mechanistically informed applications in synthesis showcase its utility as a versatile and enabling route to highly functionalized, contiguously substituted aromatic building blocks that defy synthesis via existing methods.
Collapse
Affiliation(s)
- Aaron Senior
- School of Chemistry, University of Nottingham, Nottingham, UK
| | - Katie Ruffell
- School of Chemistry, University of Nottingham, Nottingham, UK
| | - Liam T Ball
- School of Chemistry, University of Nottingham, Nottingham, UK.
| |
Collapse
|
30
|
Roberts RA, Metze BE, Nilova A, Stuart DR. Synthesis of Arynes via Formal Dehydrogenation of Arenes. J Am Chem Soc 2023; 145:3306-3311. [PMID: 36728842 DOI: 10.1021/jacs.2c13007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Arynes offer immense potential for diversification of benzenoid rings, which occur in pharmaceuticals, agrochemicals, and liquid crystals. However, accessing these high-energy intermediates requires synthetic precursors, which involve either harsh conditions or multistep syntheses. The development of alternative methods to access arynes using simpler substrates and milder conditions is necessary for a more streamlined approach. Here, we describe a two-step formal dehydrogenation of simple arenes to generate arynes at a remote position relative to traditionally reactive groups, e.g., halides. This approach is enabled by regioselective installation and ejection of an "onium" leaving group, and we demonstrate the compatibility of simple arenes (20 examples) and arynophiles (8 examples). Moreover, through direct comparison, we show that our formal dehydrogenation method is both more functional group tolerant and efficient in generating arynes than the current state-of-the-art aryne precursors. Finally, we show that aryne intermediates offer opportunities for regioselective C-H amination that are distinct from other methods.
Collapse
Affiliation(s)
- Riley A Roberts
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Bryan E Metze
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Aleksandra Nilova
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - David R Stuart
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| |
Collapse
|
31
|
Agasti S, Beltran F, Pye E, Kaltsoyannis N, Crisenza GEM, Procter DJ. A catalytic alkene insertion approach to bicyclo[2.1.1]hexane bioisosteres. Nat Chem 2023; 15:535-541. [PMID: 36781910 DOI: 10.1038/s41557-023-01135-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 01/12/2023] [Indexed: 02/15/2023]
Abstract
C(sp3)-rich bicyclic hydrocarbon scaffolds, as exemplified by bicyclo[1.1.1]pentanes, play an increasingly high-profile role as saturated bioisosteres of benzenoids in medicinal chemistry and crop science. Substituted bicyclo[2.1.1]hexanes (BCHs) are emerging bicyclic hydrocarbon bioisosteres for ortho- and meta-substituted benzenes, but are difficult to access. Therefore, a general synthetic route to BCHs is needed if their potential as bioisosteres is to be realized. Here we describe a broadly applicable catalytic approach that delivers substituted BCHs by intermolecular coupling between olefins and bicyclo[1.1.0]butyl (BCB) ketones. The SmI2-catalysed process works for a wide range of electron-deficient alkenes and substituted BCB ketones, operates with SmI2 loadings as low as 5 mol% and is underpinned by a radical relay mechanism that is supported by density functional theory calculations. The product BCH ketones have been shown to be versatile synthetic intermediates through selective downstream manipulation and the expedient synthesis of a saturated hydrocarbon analogue of the broad-spectrum antimicrobial, phthalylsulfathiazole.
Collapse
Affiliation(s)
- Soumitra Agasti
- Department of Chemistry, The University of Manchester, Manchester, UK
| | - Frédéric Beltran
- Department of Chemistry, The University of Manchester, Manchester, UK
| | - Emma Pye
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | | | - David J Procter
- Department of Chemistry, The University of Manchester, Manchester, UK.
| |
Collapse
|
32
|
Han D, Sun J, Jin J. Picolinamide Ligands: Nickel-Catalyzed Reductive Cross-Coupling of Aryl Bromides with Bromocyclopropane and Beyond. Chem Asian J 2023; 18:e202201132. [PMID: 36479828 DOI: 10.1002/asia.202201132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
The arylcyclopropane motif as the combination of aryl and cyclopropyl ring systems can be found in an increasing amount of approved and investigational drugs. Herein, we have developed a mild, efficient nickel-catalyzed reductive cross-coupling protocol, featuring a simple Ni(II) precatalyst and a novel picolinamide NN2 pincer ligand. A variety of (hetero)aryl bromides could successfully couple with cyclopropyl bromide to furnish the valued arylcyclopropanes in good to excellent yields. This method is applicable to other alkyl bromides as well. Notably, the reaction is tolerant of a broad range of functionalities including free amines. Furthermore, the synthesis of several significant intermediates of bioactive molecules was achieved in grams, proving the practicability of this method.
Collapse
Affiliation(s)
- Dongyang Han
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jie Sun
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jian Jin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
33
|
Rigotti T, Bach T. Bicyclo[2.1.1]hexanes by Visible Light-Driven Intramolecular Crossed [2 + 2] Photocycloadditions. Org Lett 2022; 24:8821-8825. [PMID: 36414533 DOI: 10.1021/acs.orglett.2c03606] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bicyclo[2.1.1]hexanes have become increasingly popular building blocks in medicinal chemistry as bridged scaffolds that provide unexplored chemical space. We herein report a visible light-driven approach to these compounds that relies on an intramolecular crossed [2 + 2] photocycloaddition of styrene derivatives enabled by triplet energy transfer. Bicyclo[2.1.1]hexanes were obtained in good to high yields (19 examples, 61%-quantitative yield) and allowed for further functionalizations by consecutive reactions, thereby opening different pathways to decorate the aliphatic core structure.
Collapse
Affiliation(s)
- Thomas Rigotti
- Technical University of Munich, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, 85747Garching, Germany
| | - Thorsten Bach
- Technical University of Munich, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, 85747Garching, Germany
| |
Collapse
|
34
|
Tavakoli A, Dudley GB. Synthesis of Coprinol and Several Alcyopterosin Sesquiterpenes by Regioselective [2 + 2 + 2] Alkyne Cyclotrimerization. J Org Chem 2022; 87:14909-14914. [PMID: 36215202 DOI: 10.1021/acs.joc.2c01741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alkyne [2 + 2 + 2] cyclotrimerization is a strategically attractive but tactically challenging approach to the synthesis of highly substituted benzene rings. Here, a bimolecular regioselective cyclotrimerization is applied to the total synthesis of the natural product coprinol and several related alcyopterosins from the illudalane family of sesquiterpenes. The synthesis of coprinol from dimedone was completed in six steps and a 57% overall yield. Alternative functional group manipulations lead to alcyopterosins A, B, and O and two additional congeners, all within six steps.
Collapse
Affiliation(s)
- Amir Tavakoli
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Gregory B Dudley
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| |
Collapse
|
35
|
Frank N, Nugent J, Shire BR, Pickford HD, Rabe P, Sterling AJ, Zarganes-Tzitzikas T, Grimes T, Thompson AL, Smith RC, Schofield CJ, Brennan PE, Duarte F, Anderson EA. Synthesis of meta-substituted arene bioisosteres from [3.1.1]propellane. Nature 2022; 611:721-726. [PMID: 36108675 DOI: 10.1038/s41586-022-05290-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022]
Abstract
Small-ring cage hydrocarbons are popular bioisosteres (molecular replacements) for commonly found para-substituted benzene rings in drug design1. The utility of these cage structures derives from their superior pharmacokinetic properties compared with their parent aromatics, including improved solubility and reduced susceptibility to metabolism2,3. A prime example is the bicyclo[1.1.1]pentane motif, which is mainly synthesized by ring-opening of the interbridgehead bond of the strained hydrocarbon [1.1.1]propellane with radicals or anions4. By contrast, scaffolds mimicking meta-substituted arenes are lacking because of the challenge of synthesizing saturated isosteres that accurately reproduce substituent vectors5. Here we show that bicyclo[3.1.1]heptanes (BCHeps), which are hydrocarbons for which the bridgehead substituents map precisely onto the geometry of meta-substituted benzenes, can be conveniently accessed from [3.1.1]propellane. We found that [3.1.1]propellane can be synthesized on a multigram scale, and readily undergoes a range of radical-based transformations to generate medicinally relevant carbon- and heteroatom-substituted BCHeps, including pharmaceutical analogues. Comparison of the absorption, distribution, metabolism and excretion (ADME) properties of these analogues reveals enhanced metabolic stability relative to their parent arene-containing drugs, validating the potential of this meta-arene analogue as an sp3-rich motif in drug design. Collectively, our results show that BCHeps can be prepared on useful scales using a variety of methods, offering a new surrogate for meta-substituted benzene rings for implementation in drug discovery programmes.
Collapse
Affiliation(s)
- Nils Frank
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Jeremy Nugent
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Bethany R Shire
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Helena D Pickford
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Patrick Rabe
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Alistair J Sterling
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Tryfon Zarganes-Tzitzikas
- Alzheimer's Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, Oxford, UK
| | - Thomas Grimes
- Alzheimer's Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, Oxford, UK
| | - Amber L Thompson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Russell C Smith
- Abbvie Drug Discovery Science & Technology (DDST), North Chicago, IL, USA
| | | | - Paul E Brennan
- Alzheimer's Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, Oxford, UK
| | - Fernanda Duarte
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Edward A Anderson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
36
|
Mao S, Yuan B, Wang X, Zhao Y, Wang L, Yang XY, Chen YM, Zhang SQ, Li P. Triazene as the Directing Group Achieving Highly Ortho-Selective Diborylation and Sequential Functionalization. Org Lett 2022; 24:3594-3598. [PMID: 35549279 DOI: 10.1021/acs.orglett.2c00994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study describes a regioselective ortho,ortho'-diborylation of aromatic triazenes catalyzed by [Ir(OMe)(cod)]2 in near-quantitative yields without an additional ligand. Aromatic triazenes act as both substrates and ligands. The X-ray structures of 2a and 2p indicate that the monoborylation products could promote the occurrence of diborylation. The synthesized triazene-substituted diboronate esters could undergo a variety of transformations including directing group removal. One-pot sequential modification provides a short entry to densely functionalized arenes.
Collapse
Affiliation(s)
- Shuai Mao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Bo Yuan
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Xinyu Wang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Yahao Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Lu Wang
- College of Pharmacy, University of Michigan, NCRC, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Xue-Yan Yang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Yi-Ming Chen
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| |
Collapse
|
37
|
Pabst TP, Chirik PJ. Development of Cobalt Catalysts for the meta-Selective C(sp 2)–H Borylation of Fluorinated Arenes. J Am Chem Soc 2022; 144:6465-6474. [PMID: 35369695 PMCID: PMC9010962 DOI: 10.1021/jacs.2c01162] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cobalt precatalysts for the meta-selective borylation of fluorinated arenes are described. Initial screening and stoichiometric reactivity studies culminated in the preparation of a cobalt alkyl precatalyst supported by the sterically protected terpyridine (5,5″-Me2ArTpy = 4'-(4-N,N'-dimethylaminophenyl)-5,5″-dimethyl-2,2':6',2″-terpyridine). Under the optimized conditions, borylation with this precatalyst afforded up to 16 turnovers and near-exclusive meta regioselectivity with a range of substituted fluoroarenes in cyclopentyl methyl ether solvent at room temperature. Deuterium kinetic isotope effects of 2.9(2) at 23 °C support a turnover-limiting and selectivity-determining C(sp2)-H activation step, and stoichiometric C-H activation experiments provided insights into the identity of the C-H activating intermediate in catalysis. Analysis of the relevant Co-C and C-H bond thermodynamics support that the thermodynamics of C-H activation favor ortho-to-fluorine selectivity, providing additional, indirect support for kinetic control of C-H activation as the origin of meta selectivity.
Collapse
Affiliation(s)
- Tyler P. Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
38
|
Taguchi J, Kimura K, Igawa K, Tomooka K, Hosoya T. 3-Azidoarynes: Generation and Regioselective Reactions. CHEM LETT 2021. [DOI: 10.1246/cl.210632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jumpei Taguchi
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kota Kimura
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Katsuhiko Tomooka
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
39
|
Giustiniano M, Gruber CW, Kent CN, Trippier PC. Back to the Medicinal Chemistry Future. J Med Chem 2021; 64:15515-15518. [PMID: 34719927 DOI: 10.1021/acs.jmedchem.1c01788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mariateresa Giustiniano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, Italy
| | - Christian W Gruber
- Medical University of Vienna, Center for Physiology and Pharmacology, Schwsrzspanierstr. 17, 1090 Vienna, Austria
| | - Caitlin N Kent
- Integrated Drug Discovery, Sanofi R&D, Waltham, Massachusetts 02451, United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
40
|
Subbaiah MAM, Meanwell NA. Bioisosteres of the Phenyl Ring: Recent Strategic Applications in Lead Optimization and Drug Design. J Med Chem 2021; 64:14046-14128. [PMID: 34591488 DOI: 10.1021/acs.jmedchem.1c01215] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The benzene moiety is the most prevalent ring system in marketed drugs, underscoring its historic popularity in drug design either as a pharmacophore or as a scaffold that projects pharmacophoric elements. However, introspective analyses of medicinal chemistry practices at the beginning of the 21st century highlighted the indiscriminate deployment of phenyl rings as an important contributor to the poor physicochemical properties of advanced molecules, which limited their prospects of being developed into effective drugs. This Perspective deliberates on the design and applications of bioisosteric replacements for a phenyl ring that have provided practical solutions to a range of developability problems frequently encountered in lead optimization campaigns. While the effect of phenyl ring replacements on compound properties is contextual in nature, bioisosteric substitution can lead to enhanced potency, solubility, and metabolic stability while reducing lipophilicity, plasma protein binding, phospholipidosis potential, and inhibition of cytochrome P450 enzymes and the hERG channel.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka 560099, India
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
41
|
Juliá F, Shao Q, Duan M, Plutschack MB, Berger F, Mateos J, Lu C, Xue XS, Houk KN, Ritter T. High Site Selectivity in Electrophilic Aromatic Substitutions: Mechanism of C-H Thianthrenation. J Am Chem Soc 2021; 143:16041-16054. [PMID: 34546749 PMCID: PMC8499029 DOI: 10.1021/jacs.1c06281] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
The introduction
of thianthrene as a linchpin has proven to be
a versatile strategy for the C–H functionalization of aromatic
compounds, featuring a broad scope and fast diversification. The synthesis
of aryl thianthrenium salts has displayed an unusually high para regioselectivity, notably superior to those observed
in halogenation or borylation reactions for various substrates. We
report an experimental and computational study on the mechanism of
aromatic C–H thianthrenation reactions, with an emphasis on
the elucidation of the reactive species and the nature of the exquisite
site selectivity. Mechanisms involving a direct attack of arene to
the isolated O-trifluoracetylthianthrene S-oxide (TT+-TFA) or to the thianthrene
dication (TT2+) via electron transfer under
acidic conditions are identified. A reversible interconversion of
the different Wheland-type intermediates before a subsequent, irreversible
deprotonation is proposed to be responsible for the exceptional para selectivity of the reaction.
Collapse
Affiliation(s)
- Fabio Juliá
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Qianzhen Shao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569 United States
| | - Meng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569 United States
| | - Matthew B Plutschack
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Florian Berger
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Javier Mateos
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Chenxi Lu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569 United States
| | - Xiao-Song Xue
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569 United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569 United States
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
42
|
Scott KA, Groch JR, Chogii I, Delost MD, Das P, Njardarson JT. Dienolate Annulation Approach for Assembly of Densely Substituted Aromatic Architectures. J Org Chem 2021; 86:10555-10567. [PMID: 34283591 DOI: 10.1021/acs.joc.1c01211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The efficient assembly of complex aromatic structures from simple acyclic building blocks is reported. An anion-cascade union of an enoate and a conjugated imine affords cyclohexenone products, which are readily aromatized to phenols. By engaging the intermediate cyclohexenones with Grignard reagents, a facile addition/elimination proceeds yielding chiral cyclohexadienes, which are then aromatized. In a complementary approach, the cyclohexenone products are converted into enol triflates, which provides a gateway to diverse aromatic architectures following cross-couplings and aromatization steps.
Collapse
|
43
|
Karan G, Sahu S, Maji MS. A one-pot "back-to-front" approach for the synthesis of benzene ring substituted indoles using allylboronic acids. Chem Commun (Camb) 2021; 57:5274-5277. [PMID: 33908966 DOI: 10.1039/d1cc01512e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synthesis of only benzene ring functionalized indoles and poly-substituted carbazoles is reported via a one-pot triple cascade benzannulation protocol. Usage of differently substituted and readily accessible allylboronic acids as a 3-carbon annulating partner enables diverse aliphatic and aromatic substitution patterns, which is still a daunting task. This scalable synthetic protocol tolerates broad scope, thus enabling further downstream modifications. As an application, carbazole based natural products glycozoline and glycozolinol were synthesized.
Collapse
Affiliation(s)
- Ganesh Karan
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India.
| | - Samrat Sahu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India.
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India.
| |
Collapse
|
44
|
Nilova A, Metze B, Stuart DR. Aryl(TMP)iodonium Tosylate Reagents as a Strategic Entry Point to Diverse Aryl Intermediates: Selective Access to Arynes. Org Lett 2021; 23:4813-4817. [PMID: 34032454 DOI: 10.1021/acs.orglett.1c01534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Arenes are broadly found motifs in societally important molecules. Access to diverse arene chemical space is critically important, and the ability to do so from common reagents is highly desirable. Aryl(TMP)iodonium tosylates provide one such access point to arene chemical space via diverse aryl intermediates. Here we demonstrate that controlling reaction pathways selectively leads to arynes with a broad scope of arenes and arynophiles (24 examples, 70% average yield) and efficient access to biologically active compounds.
Collapse
Affiliation(s)
- Aleksandra Nilova
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Bryan Metze
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - David R Stuart
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| |
Collapse
|
45
|
Seo S, Gao M, Paffenholz E, Willis MC. Sequential Catalytic Functionalization of Aryltriazenyl Aldehydes for the Synthesis of Complex Benzenes. ACS Catal 2021; 11:6091-6098. [PMID: 34306807 PMCID: PMC8291607 DOI: 10.1021/acscatal.1c01722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/29/2021] [Indexed: 11/29/2022]
Abstract
![]()
We demonstrate that
aryltriazenes can promote three distinctive
types of C–H functionalization reactions, allowing the preparation
of complex benzene molecules with diverse substitution patterns. 2-Triazenylbenzaldehydes
are shown to be efficient substrates for Rh(I)-catalyzed intermolecular
alkyne hydroacylation reactions. The resulting triazene-substituted
ketone products can then undergo either a Rh(III)-catalyzed C–H
activation, or an electrophilic aromatic substitution reaction, achieving
multifunctionalization of the benzene core. Subsequent triazene derivatization
provides traceless products.
Collapse
Affiliation(s)
- Sangwon Seo
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Ming Gao
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Eva Paffenholz
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Michael C. Willis
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| |
Collapse
|
46
|
Nilova A, Sibbald PA, Valente EJ, González‐Montiel GA, Richardson HC, Brown KS, Cheong PH, Stuart DR. Regioselective Synthesis of 1,2,3,4‐Tetrasubstituted Arenes by Vicinal Functionalization of Arynes Derived from Aryl(Mes)iodonium Salts**. Chemistry 2021; 27:7168-7175. [DOI: 10.1002/chem.202100201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 01/18/2023]
Affiliation(s)
- Aleksandra Nilova
- Department of Chemistry Portland State University Portland Oregon 97201 USA
| | - Paul A. Sibbald
- Department of Chemistry Stetson University DeLand Florida 32723 USA
| | - Edward J. Valente
- Department of Chemistry University of Portland Portland Oregon 97203 USA
| | | | | | - Kevin S. Brown
- Department of Pharmaceutical Sciences and Chemical, Biological, and Environmental Engineering Oregon State University Corvallis Oregon 97331 USA
| | | | - David R. Stuart
- Department of Chemistry Portland State University Portland Oregon 97201 USA
| |
Collapse
|
47
|
Affiliation(s)
- Amir Tavakoli
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Gregory B. Dudley
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| |
Collapse
|