1
|
Zhang S, Tan S, Yang B, Wu Y, Yuan G, Chen F, Liu L. Efficacy of Azvudine Therapy in Patients with Severe and Non-Severe COVID-19: A Propensity Score-Matched Analysis. Infect Drug Resist 2024; 17:4317-4325. [PMID: 39399885 PMCID: PMC11469939 DOI: 10.2147/idr.s481591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
Objective Azvudine is used to treat patients with the coronavirus disease 2019 (COVID-19). This study evaluated the clinical efficacy of azvudine in hospitalized patients with different severities of COVID-19 because few studies have described this in patients with severe and non-severe COVID-19. Methods This retrospective study included hospitalized patients with COVID-19 in Guizhou Provincial People's Hospital between December 2022 and January 2023. Azvudine-treated patients and controls were matched for sex, age, and disease severity at admission. Laboratory results and outcomes, including all-cause mortality, invasive mechanical ventilation, intensive care unit admission, and hospital stay length, were evaluated. Stratified analysis was used to explore the difference in the efficacy of azvudine in severe and non-severe COVID-19 patients. Results No significant differences in all-cause mortality were observed between the 303 azvudine recipients and 303 matched controls. However, azvudine-treated patients had shorter hospital stays (8.34±4.79 vs 9.17±6.25 days, P=0.046) and higher lymphocyte improvement rates (21.5% vs 13.9%, P=0.019), with a more pronounced effect in patients with non-severe COVID-19 (length of hospital stay, 8.07±4.35 vs 10.00±6.29 days, P=0.001; lymphocyte improvement rate, 23.8% vs 12.8%, P=0.015). Conclusion Azvudine treatment shortens hospital stay length and increases the rate of lymphocyte count improvement in patients with non-severe COVID-19, suggesting that azvudine may be a treatment option for these patients.
Collapse
Affiliation(s)
- Siqin Zhang
- Department of Endocrinology and Metabolism, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550002, People’s Republic of China
| | - Songsong Tan
- Department of Endocrinology and Metabolism, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550002, People’s Republic of China
| | - Bin Yang
- Department of Central Laboratory, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550002, People’s Republic of China
| | - Yaoyao Wu
- Department of Respiratory and Critical Medicine, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550002, People’s Republic of China
| | - Guohang Yuan
- Department of Respiratory and Critical Medicine, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550002, People’s Republic of China
| | - Fengjiao Chen
- Research Department, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550002, People’s Republic of China
| | - Lin Liu
- Department of Respiratory and Critical Medicine, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550002, People’s Republic of China
- NHC Key Laboratory of Pulmonary Immunological Diseases (Guizhou Provincial People’s Hospital), Guiyang, Guizhou, 550002, People’s Republic of China
| |
Collapse
|
2
|
Sheng N, Li R, Li Y, Wang Z, Wang L, Li Y, Zhang J, Jiang J. Selectively T cell phosphorylation activation of azvudine in the thymus tissue with immune protection effect. Acta Pharm Sin B 2024; 14:3140-3154. [PMID: 39027259 PMCID: PMC11252455 DOI: 10.1016/j.apsb.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 07/20/2024] Open
Abstract
Thymus is the important immune organ, responsible for T cell development and differentiation. The lower circulating T counts have been observed in patients who died from COVID-19 compared with survivors. Azvudine, also known as FNC, is a thymus-homing anti-SARS-CoV-2 drug in treating COVID-19 patients. In this study, single-cell transcriptome, proteomics, and parallel reaction monitoring (PRM) were applied to insight into the activation process of FNC in rat and SARS-CoV-2 rhesus monkey thymus. The results indicated that thymic immune cells possess a robust metabolic capacity for cytidine-analogue drugs such as FNC. Key enzymes involved in the FNC phosphorylation process, such as Dck, Cmpk1, and Nme2, were highly expressed in CD4+ T cells, CD8+ T cells, and DP (CD4+ CD8+) cells. Additionally, FNC could upregulate multiple phosphorylated kinases in various cell types while downregulating the phosphatases, phosphoribosyl transferases, and deaminases, respectively. The robust phosphorylation capacity of the thymus for cytidine analogue drug FNC, and the activation effect of FNC on the NAs metabolism system potentially contribute to its enrichment in the thymus and immune protection effect. This suggests that it is crucial to consider the expression level of phosphorylation kinases when evaluating NA drug properties, as an important factor during antiviral drug design.
Collapse
Affiliation(s)
- Ning Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Rui Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuhuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Dong T, Zhang W, Wu T, Ge Y, Yang Q, Xu J, Liu Y. Efficacy and Safety of Azvudine in Patients With COVID-19 in China: A Meta-Analysis of Observational Studies. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13798. [PMID: 38994643 PMCID: PMC11240111 DOI: 10.1111/crj.13798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/02/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Azvudine (FNC) is a novel small molecule antiviral drug for treating COVID-19 that is available only on the Chinese market. Despite being recommended for treating COVID-19 by the Chinese guidelines, its efficacy and safety are still unclear. This study aimed to evaluate the protective effect of FNC on COVID-19 outcomes and its safety. METHODS We followed the PRISMA 2020 guidelines and searched the PubMed, Embase, Web of Science, Scopus, and China National Knowledge Infrastructure (CNKI) databases to evaluate studies on the effectiveness of FNC in treating COVID-19 in China, focusing on mortality and overall outcomes. Additionally, its impact on the length of hospital stay (LOHS), time to first nucleic acid negative conversion (T-FNANC), and adverse events was evaluated. The inclusion criterion was that the studies were published from July 2021 to April 10, 2024. This study uses the ROBINS-I tool to assess bias risk and employs the GRADE approach to evaluate the certainty of the evidence. RESULTS The meta-analysis included 24 retrospective studies involving a total of 11 830 patients. Low-certainty evidence revealed no significant difference in mortality (OR = 0.91, 95% CI: 0.76-1.08) or LOHS (WMD = -0.24, 95% CI: -0.83 to 0.35) between FNC and Paxlovid in COVID-19 patients. Low-certainty evidence shows that the T-FNANC was longer (WMD = 1.95, 95% CI: 0.36-3.53). Compared with the Paxlovid group, low-certainty evidence shows the FNC group exhibited a worse composite outcome (OR = 0.77, 95% CI: 0.63-0.95) and fewer adverse events (OR = 0.63, 95% CI: 0.46-0.85). Compared with supportive treatment, low certainty shows FNC significantly reduced the mortality rate in COVID-19 patients (OR = 0.61, 95% CI: 0.51-0.74) and decreased the composite outcome (OR = 0.67, 95% CI: 0.50-0.91), and very low certainty evidence shows significantly decreased the T-FNANC (WMD = -4.62, 95% CI: -8.08 to -1.15). However, in very low certainty, there was no significant difference in LOHS (WMD = -0.70, 95% CI: -3.32 to 1.91) or adverse events (OR = 1.97, 95% CI: 0.48-8.17). CONCLUSIONS FNC appears to be a safe and potentially effective treatment for COVID-19 in China, but further research with larger, high-quality studies is necessary to confirm these findings. Due to the certainty of the evidence and the specific context of the studies conducted in China, caution should be exercised when considering whether the results are applicable worldwide. TRIAL REGISTRATION PROSPERO number: CRD42024520565.
Collapse
Affiliation(s)
- Tao Dong
- Pharmacy Department, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Wentao Zhang
- Pharmacy Department, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Tingting Wu
- Medical Device Monitoring and Evaluation Department, National Center for ADR Monitoring, Beijing, China
| | - Yongxiang Ge
- Department of Infectious Diseases, Beijing Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Qi Yang
- Pharmacy Department, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Jia Xu
- Pharmacy Department, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Yuna Liu
- Department of Clinical Laboratory, Beijing Hospital of Integrated Chinese and Western Medicine, Beijing, China
| |
Collapse
|
4
|
Kumar N, Shukla A, Kumar S, Ulasov I, Singh RK, Kumar S, Patel A, Yadav L, Tiwari R, Paswan R, Mohanta SP, Kaushalendra, Antil J, Acharya A. FNC (4'-azido-2'-deoxy-2'-fluoro(arbino)cytidine) as an Effective Therapeutic Agent for NHL: ROS Generation, Cell Cycle Arrest, and Mitochondrial-Mediated Apoptosis. Cell Biochem Biophys 2024; 82:623-639. [PMID: 38253918 DOI: 10.1007/s12013-023-01193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 10/12/2023] [Indexed: 01/24/2024]
Abstract
Cytotoxic nucleoside analogs (NAs) hold great promise in cancer therapeutics by mimicking endogenous nucleosides and interfering with crucial cellular processes. Here, we investigate the potential of the novel cytidine analog, 4'-azido-2'-deoxy-2'-fluoro(arbino)cytidine (FNC), as a therapeutic agent for Non-Hodgkin lymphoma (NHL) using Dalton's lymphoma (DL) as a T-cell lymphoma model. FNC demonstrated dose- and time-dependent inhibition of DL cell growth and proliferation. IC-50 values of FNC were measured at 1 µM, 0.5 µM, and 0.1 µM after 24, 48, and 72 h, respectively. Further elucidation of FNC's mechanism of action uncovers its role in inducing apoptosis in DL cells. Notable DNA fragmentation and nuclear condensation point to activated apoptotic pathways. FNC-induced apoptosis was concomitant with changes in cellular membranes, characterized by membrane rupture and altered morphology. The robust anticancer effects of FNC are linked to its capacity to induce reactive oxygen species (ROS) production, prompting oxidative stress-mediated apoptosis. Additionally, FNC disrupted mitochondrial membrane potential (MMP), leading to mitochondrial dysfunction, further promoting apoptosis. Dysregulation of apoptotic genes, with upregulation of Bax and downregulation of Bcl-2 and Bcl-xl, implicates the mitochondrial-mediated apoptosis pathway. Furthermore, FNC-induced G2/M phase cell cycle arrest was mediated through modulation of the cell cycle inhibitor p21. Overall, this study highlights the potential of FNC as a promising therapeutic agent for NHL.
Collapse
Affiliation(s)
| | | | | | - Ilya Ulasov
- Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | | | | | | | | | | | - Kaushalendra
- Pachhunga University College Campus, Mizoram University, Aizawl, India
| | | | | |
Collapse
|
5
|
Wang Y, Xie H, Wang L, Fan J, Zhang Y, Pan S, Zhou W, Chen Q, Liu X, Wu A, Zhang H, Wang J, Tian X. Effectiveness of azvudine in reducing mortality of COVID-19 patients: a systematic review and meta-analysis. Virol J 2024; 21:46. [PMID: 38395970 PMCID: PMC10893615 DOI: 10.1186/s12985-024-02316-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Azvudine has been approved for the treatment of coronavirus disease 2019 (COVID-19) patients in China, and this meta-analysis aims to illustrate the safety of azvudine and its effectiveness in reducing mortality. METHODS PubMed, Embase, Web of science, Cochrane Library and the Epistemonikos COVID-19 Living Overview of Evidence database (L.OVE) were searched to aggregate currently published studies. Cochrane risk of bias tool and ROBINS-I tool were used to assess the risk of bias of randomized controlled study and cohort study respectively. Odds radios (ORs) with 95% confidence interval (CIs) were combined for dichotomous variables. Publication bias was assessed by Egger's test and funnel plots. RESULTS A total of 184 articles were retrieved from the included databases and 17 studies were included into the final analysis. Pooled analysis showed that azvudine significantly reduced mortality risk in COVID-19 patients compared with controls (OR: 0.41, 95%CI 0.31-0.54, p < 0.001). Besides, either mild to moderate or severe COVID-19 patients could benefit from azvudine administration. There was no significant difference in the incidence of ICU admission (OR: 0.90, 95%CI 0.47-1.72, p = 0.74) and invasive ventilation (OR: 0.94, 95%CI 0.54-1.62, p = 0.82) between azvudine and control group. The incidence of adverse events was similar between azvudine and control (OR: 1.26, 95%CI 0.59-2.70, p = 0.56). CONCLUSIONS This meta-analysis suggests that azvudine could reduce the mortality risk of COVID-19 patients, and the safety of administration is acceptable. TRIAL REGISTRATION PROSPERO; No.: CRD42023462988; URL: https://www.crd.york.ac.uk/prospero/ .
Collapse
Affiliation(s)
- Yaqi Wang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Huaiya Xie
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Luo Wang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Junping Fan
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Ying Zhang
- International Medical Services, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Siqi Pan
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Wangji Zhou
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Qiaoling Chen
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Xueqi Liu
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Aohua Wu
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Hong Zhang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Jinglan Wang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Xinlun Tian
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, 100730, Beijing, China.
| |
Collapse
|
6
|
Tian X, Xu Y, Wang L, Dong C, Yan X, Fan J, Xie H, Zhang H, Wang J, Liu Y, Wang Y, Pan S, Wu A, Liu X, Yao C, Wang M. Efficacy and safety of azvudine in symptomatic adult COVID-19 participants who are at increased risk of progressing to critical illness: a study protocol for a multicentre randomized double-blind placebo-controlled phase III trial. Trials 2024; 25:77. [PMID: 38254211 PMCID: PMC10804629 DOI: 10.1186/s13063-024-07914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 will coexist with humans for a long time, and it is therefore important to develop effective treatments for coronavirus disease 2019 (COVID-19). Recent studies have demonstrated that antiviral therapy is a key factor in preventing patients from progressing to severe disease, even death. Effective and affordable antiviral medications are essential for disease treatment and are urgently needed. Azvudine, a nucleoside analogue, is a potential low-cost candidate with few drug interactions. However, validation of high-quality clinical studies is still limited. METHODS This is a multicentre, randomized, double-blind, placebo-controlled phase III clinical trial involving 1096 adult patients with mild-to-moderate symptoms of COVID-19 who are at high risk for progression to severe COVID-19. Patients will be randomized to (1) receive azvudine tablets 5 mg daily for a maximum of 7 days or (2) receive placebo five tablets daily. All participants will be permitted to use a standard treatment strategy except antiviral therapy beyond the investigational medications. The primary outcome will be the ratio of COVID-19-related critical illness and all-cause mortality among the two groups within 28 days. DISCUSSION The purpose of this clinical trial is to determine whether azvudine can prevent patients at risk of severe disease from progressing to critical illness and death, and the results will identify whether azvudine is an effective and affordable antiviral treatment option for COVID-19. TRIAL REGISTRATION ClinicalTrials.gov NCT05689034. Registered on 18 January 2023.
Collapse
Affiliation(s)
- Xinlun Tian
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yan Xu
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Luo Wang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Chongya Dong
- Department of Biostatistics, Peking University First Hospital, Beijing, China
| | - Xiaoyan Yan
- Peking University Clinical Research Institute, Beijing, China
| | - Junping Fan
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Huaiya Xie
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Hong Zhang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jinglan Wang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yongjian Liu
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yaqi Wang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Siqi Pan
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Aohua Wu
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xueqi Liu
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Chen Yao
- Peking University Clinical Research Institute, Beijing, China
- Department of Biostatistics, Peking University First Hospital, Beijing, China
| | - Mengzhao Wang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
7
|
Cao Q, Ding Y, Xu Y, Li M, Zheng R, Cao Z, Wang W, Bi Y, Ning G, Xu Y, Zhao R. Small-molecule anti-COVID-19 drugs and a focus on China's homegrown mindeudesivir (VV116). Front Med 2023; 17:1068-1079. [PMID: 38165534 DOI: 10.1007/s11684-023-1037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/15/2023] [Indexed: 01/03/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has stimulated tremendous efforts to develop therapeutic agents that target severe acute respiratory syndrome coronavirus 2 to control viral infection. So far, a few small-molecule antiviral drugs, including nirmatrelvir-ritonavir (Paxlovid), remdesivir, and molnupiravir have been marketed for the treatment of COVID-19. Nirmatrelvir-ritonavir has been recommended by the World Health Organization as an early treatment for outpatients with mild-to-moderate COVID-19. However, the existing treatment options have limitations, and effective treatment strategies that are cost-effective and convenient for tackling COVID-19 are still needed. To date, four domestically developed oral anti-COVID-19 drugs have been granted conditional market approval in China. These drugs include azvudine, simnotrelvir-ritonavir (Xiannuoxin), leritrelvir, and mindeudesivir (VV116). Preclinical and clinical studies have explored the efficacy and tolerability of mindeudesivir and supported its early use in mild-to-moderate COVID-19 cases at high risk for progression. In this review, we discuss the most recent findings regarding the pharmacological mechanism and therapeutic effects focusing on mindeudesivir and other small-molecule antiviral agents for COVID-19. These findings will expand our understanding and highlight the potential widespread application of China's homegrown anti-COVID-19 drugs.
Collapse
Affiliation(s)
- Qiuyu Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yi Ding
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ruizhi Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhujun Cao
- Department of Infectious Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yiping Xu
- Clinical Trials Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ren Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
8
|
Liu Z, Liang F, Gao S, Zhu X, Song X, Chen W, Tao X, Wang Z, Xu D. Separation and quantification of Azvudine in plasma of patients with COVID-19 using LC-MS/MS. J Pharm Biomed Anal 2023; 236:115736. [PMID: 37776627 DOI: 10.1016/j.jpba.2023.115736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Azvudine (FNC) is a new drug conditionally approved in 2022 for the treatment of coronavirus disease 2019 (COVID-19) in China. However, the exposure level of FNC in COVID-19 patients in clinical practice is still obscure, and there is no liquid chromatography-tandem mass spectrometry (LC-MS/MS) or LC method reported for quantifying the FNC. In this study, a simple, fast, and reliable LC-MS/MS method using L-phenylalanine-D5 (Phe-D5) as the internal standard (IS) was developed for the quantification of FNC in plasma from COVID-19 patients. After simple protein precipitation with methanol, the analyte in the supernatant was separated on Waters Atlantis® T3 (2.1 ×100 mm, 3.0 µm) column with the mobile phase consisting of acetonitrile (ACN) - aqueous solution (containing 0.03% heptafluorobutyric acid and 0.2% formic acid). The mobile phase was delivered at 0.3 mL/min in an isocratic elution program (15:85, V: V). The linear relationship of FNC was good within the calibration range of 2.0 - 2000.0 ng/mL, with the recovery of FNC ranging from 81.37% to 103.31% and the matrix effect was 94.77%- 109.83%. The short-term, long-term, and freeze-thaw stability of the FNC assessed in method was acceptable, and all other items met the requirements of validation of the biological analytical method. Finally, the method was applied to detect the exposure level of FNC in plasma samples from patients diagnosed with COVID-19, and the results, which are within the linear range of the method, showed huge inter-individual variation, supporting the significance of therapeutic drug monitoring of FNC.
Collapse
Affiliation(s)
- Zhijun Liu
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Fengying Liang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Shouhong Gao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Xiujing Zhu
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Xinhua Song
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Wansheng Chen
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Xia Tao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Zhipeng Wang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Deduo Xu
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
9
|
Liu B, Yang M, Xu L, Li Y, Cai J, Xie B, Zong K, Guo S. Azvudine and mortality in patients with coronavirus disease 2019: A retrospective cohort study. Int Immunopharmacol 2023; 124:110824. [PMID: 37633242 DOI: 10.1016/j.intimp.2023.110824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
OBJECTIVES Several studies have found that azvudine (FNC) can inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication both in vivo and in vitro. However, the effect of FNC on the risk of death in patients with coronavirus disease 2019 (COVID-19) is unclear. This study aims to investigate the effect of FNC on the risk of death in patients with coronavirus disease 2019 (COVID-19). METHODS Charts of consecutive patients hospitalized at five hospitals in Chongqing with confirmed COVID-19. The primary outcome of the study was 28-day mortality. Secondary outcomes were: ICU admission rates, length of hospital and ICU stay, and also the range of mechanical ventilation days when admission. We compared primary outcome in patients who received FNC with those in patients who did not, using a multivariable model with inverse probability weighting according to the propensity score. RESULTS We included 1,110 patients in our study cohort. Of the 236 patients treated with FNC, 30 died within 28 days (12.7%), and of the 874 patients not treated with FNC, 206 died within 28 days (23.6%). In the crude, unadjusted analysis, a significant beneficial effect of FNC in terms of the 28-day mortality (OR 0.472, 95% CI 0.312-0.714; p < 0.001) in the overall population was detected. The adjusted odds ratio by multivariate analysis was (OR 0.498, 95% CI 0.287-0.864; p = 0.013). In the multivariate analysis with inverse probability weighting according to the propensity score, a significantly beneficial effect of FNC in terms of the 28-day mortality was further confirmed (OR 0.754, 95% CI 0.614-0.925; p = 0.007). Moreover, multivariable propensity-score analyses with matching also yielded similar results (OR 0.438, 95% CI 0.246-0.778; p = 0.005). CONCLUSION Our results reveal that in patients with COVID-19, FNC administration was associated with a significantly reduced 28-day mortality.
Collapse
Affiliation(s)
- Bin Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Youyi Rd 1, Yuzhong, Chongqing 400016, China; Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, No. 116, Changjiang South Road, Tianyuan District, Zhuzhou, Hunan 412007, China
| | - Mingjin Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Youyi Rd 1, Yuzhong, Chongqing 400016, China
| | - Li Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Youyi Rd 1, Yuzhong, Chongqing 400016, China
| | - Yishi Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Youyi Rd 1, Yuzhong, Chongqing 400016, China
| | - Jing Cai
- Department of Endocrinology and Metabolism, Chengdu First People's Hospital, No.18, Wanxiang North Road, High-tech Zone, Chengdu, Sichuan 610000, China
| | - Bo Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Youyi Rd 1, Yuzhong, Chongqing 400016, China; Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, No. 116, Changjiang South Road, Tianyuan District, Zhuzhou, Hunan 412007, China
| | - Kaican Zong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Youyi Rd 1, Yuzhong, Chongqing 400016, China
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Youyi Rd 1, Yuzhong, Chongqing 400016, China.
| |
Collapse
|
10
|
Zeng B, Zhou J, Peng D, Dong C, Qin Q. The prevention and treatment of COVID-19 in patients treated with hemodialysis. Eur J Med Res 2023; 28:410. [PMID: 37814329 PMCID: PMC10563282 DOI: 10.1186/s40001-023-01389-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023] Open
Abstract
Patients treated with hemodialysis are often immunocompromised due to concomitant disease. As a result, this population is at high risk of infection and mortality from COVID-19. In addition to symptomatic treatment, a series of antiviral drugs targeting COVID-19 are now emerging. However, these antivirals are used mainly in mild or moderate patients with high-risk factors for progression to severe disease and are not available as pre- or post-exposure prophylaxis for COVID-19. There is a lack of clinical data on the use of anti-COVID-19 drugs, especially in patients treated with hemodialysis, therefore, vaccination remains the main measure to prevent SARS-CoV-2 infection in these patients. Here, we review the clinical features and prognosis of patients on hemodialysis infected with SARS-CoV-2, the main anti-COVID-19 drugs currently available for clinical use, and the safety and efficacy of anti-COVID-19 drugs or COVID-19 vaccination in patients treated with hemodialysis. This information will provide a reference for the treatment and vaccination of COVID-19 in patients treated with hemodialysis and maximize the health benefits of these patients during the outbreak.
Collapse
Affiliation(s)
- Binyu Zeng
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha, China
| | - Jia Zhou
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha, China
| | - Daizhuang Peng
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha, China
| | - Chengmei Dong
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha, China
| | - Qun Qin
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha, China.
| |
Collapse
|
11
|
Yang L, Wang Z. Bench-to-bedside: Innovation of small molecule anti-SARS-CoV-2 drugs in China. Eur J Med Chem 2023; 257:115503. [PMID: 37229831 PMCID: PMC10193775 DOI: 10.1016/j.ejmech.2023.115503] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/19/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
The ongoing COVID-19 pandemic has resulted in millions of deaths globally, highlighting the need to develop potent prophylactic and therapeutic strategies against SARS-CoV-2. Small molecule inhibitors (remdesivir, Paxlovid, and molnupiravir) are essential complements to vaccines and play important roles in clinical treatment of SARS-CoV-2. Many advances have been made in development of anti-SARS-CoV-2 inhibitors in China, but progress in discovery and characterization of pharmacological activity, antiviral mechanisms, and clinical efficacy are limited. We review development of small molecule anti-SARS-CoV-2 drugs (azvudine [approved by the NMPA of China on July 25, 2022], VV116 [approved by the NMPA of China on January 29, 2023], FB2001, WPV01, pentarlandir, and cepharanthine) in China and summarize their pharmacological activity, potential mechanisms of action, clinical trials and use, and important milestones in their discovery. The role of structural biology in drug development is also reviewed. Future studies should focus on development of diverse second-generation inhibitors with excellent oral bioavailability, superior plasma half-life, increased antiviral activity against SARS-CoV-2 and its variants, high target specificity, minimal side effects, reduced drug-drug interactions, and improved lung histopathology.
Collapse
Affiliation(s)
- Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, PR China; Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China; School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
12
|
Hou J, Peng Y, Liu B, Zhang Q, Wang JH, Yu W, Chang J. 4'-Ethynyl-2'-deoxy-2'-β-fluoro-2-fluoroadenosine: A Highly Potent and Orally Available Clinical Candidate for the Treatment of HIV-1 Infection. J Med Chem 2023; 66:11282-11293. [PMID: 37535016 DOI: 10.1021/acs.jmedchem.3c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
2'-Deoxy-2'-β-fluoroadenosines bearing 4'-azido or 4'-ethynyl groups designed for the treatment of HIV-1 infection have been synthesized. All these compounds possess nanomolar anti-HIV-1 activity, with the 4'-ethynyl-2-fluoroadenosine analog 1c (CL-197) being the most potent compound with low cytotoxicity (EC50 = 0.9 nM, CC50 > 100 μM). It also shows potent inhibitory activities on drug resistant and clinical HIV-1 strains. Oral administration of 1c to Beagle dogs resulted in high levels of its bioactive form 1c-TP in peripheral blood mononuclear cells, the HIV-1 target cells, where the resulting triphosphate exhibited a long-term intracellular retention and could prevent HIV-1 infection for an extended time. 1c displayed low in vivo toxicity and favorable pharmacokinetics profiles in Sprague-Dawley rats. The preclinical data support further development of 1c as a highly potent and orally bioavailable clinical candidate to treat HIV-1 infection. Currently, CL-197 is in clinical trials in China (registration number: CXHL2200529).
Collapse
Affiliation(s)
- Jiao Hou
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Youmei Peng
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Bingjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qianqian Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jian-Hua Wang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Henan Normal University, Xinxiang 453007, China
| | - Wenquan Yu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Junbiao Chang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Henan Normal University, Xinxiang 453007, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
13
|
Yang H, Wang Z, Jiang C, Zhang Y, Zhang Y, Xu M, Zhang Y, Wang Y, Liu X, An Z, Tong Z. Oral azvudine for mild-to-moderate COVID-19 in high risk, nonhospitalized adults: Results of a real-world study. J Med Virol 2023; 95:e28947. [PMID: 37470209 DOI: 10.1002/jmv.28947] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023]
Abstract
Azvudine is recommended by Chinese health authorities for COVID-19 treatment but has not been tested in real-world clinical studies. This study aimed to evaluate the real-world effectiveness of Azvudine among COVID-19 nonhospitalized patients. This was a retrospective cohort study, looking at nonhospitalized patients who tested positive for SARS-CoV-2. Patients admitted between December 19, 2022 and January 5, 2023 were included. Those who received Azvudine treatment were in the Azvudine group, while those who received supportive treatment were the control group. The primary outcome was the disease progression rate by Day 28. Secondary outcomes were individual disease progression outcomes (death or COVID-19-related hospitalization) and duration of fever. The safety outcomes were assessed based on adverse events (AEs) overall, as well as AEs that were considered to be related to the drug. A total of 804 patients with high risk for progression were enrolled in our study. Among them, 317 (39.43%) received treatment with Azvudine. Our study found that Azvudine could reduce the rate of disease progression, as well as rate of COVID-19-related hospitalization in patients comparing the control group. Furthermore, if taken within 3 days of the onset of symptoms, it could also shorten the duration of fever. Despite a higher incidence of drug-related AEs compared to supportive treatment, the majority of these were mild. Azvudine has been found to be effective in reducing the rate of disease progression of COVID-19, albeit with a slight increase in AEs.
Collapse
Affiliation(s)
- Hui Yang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhaojian Wang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Chunguo Jiang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Yi Zhang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Man Xu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yi Zhang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yushu Wang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xuefeng Liu
- Departments of Pathology, Urology, and Radiation Oncology, The Ohio State University, Columbus, Ohio, USA
| | - Zhuoling An
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Jiang R, Sun J, Zhao B, Zhang R, Liu L, Chen J. Presence of the M184I mutation after short-term exposure to azvudine for COVID-19 in people living with HIV. AIDS 2023; 37:1341-1342. [PMID: 37930315 PMCID: PMC10241321 DOI: 10.1097/qad.0000000000003564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 11/07/2023]
Affiliation(s)
- Rui Jiang
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
15
|
Zhu Q, Xu Y, Wang T, Xie F. Innate and adaptive immune response in SARS-CoV-2 infection-Current perspectives. Front Immunol 2022; 13:1053437. [PMID: 36505489 PMCID: PMC9727711 DOI: 10.3389/fimmu.2022.1053437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been a global pandemic, caused by a novel coronavirus strain with strong infectivity, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the in-depth research, the close relationship between COVID-19 and immune system has been dug out. During the infection, macrophages, dendritic cells, natural killer cells, CD8+ T cells, Th1, Th17, Tfh cells and effector B cells are all involved in the anti-SARS-CoV-2 responses, however, the dysfunctional immune responses will ultimately lead to the excessive inflammation, acute lung injury, even other organ failure. Thus, a detailed understanding of pertinent immune response during COVID-19 will provide insights in predicting disease outcomes and developing appropriate therapeutic approaches. In this review, we mainly clarify the role of immune cells in COVID-19 and the target-vaccine development and treatment.
Collapse
Affiliation(s)
- Qiugang Zhu
- Department of Laboratory Medicine, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Yan Xu
- Department of Respiratory Medicine, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Ting Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Feiting Xie
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Feiting Xie,
| |
Collapse
|
16
|
Cao X, Du X, Jiao H, An Q, Chen R, Fang P, Wang J, Yu B. Carbohydrate-based drugs launched during 2000 -2021. Acta Pharm Sin B 2022; 12:3783-3821. [PMID: 36213536 PMCID: PMC9532563 DOI: 10.1016/j.apsb.2022.05.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/18/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023] Open
Abstract
Carbohydrates are fundamental molecules involved in nearly all aspects of lives, such as being involved in formating the genetic and energy materials, supporting the structure of organisms, constituting invasion and host defense systems, and forming antibiotics secondary metabolites. The naturally occurring carbohydrates and their derivatives have been extensively studied as therapeutic agents for the treatment of various diseases. During 2000 to 2021, totally 54 carbohydrate-based drugs which contain carbohydrate moities as the major structural units have been approved as drugs or diagnostic agents. Here we provide a comprehensive review on the chemical structures, activities, and clinical trial results of these carbohydrate-based drugs, which are categorized by their indications into antiviral drugs, antibacterial/antiparasitic drugs, anticancer drugs, antidiabetics drugs, cardiovascular drugs, nervous system drugs, and other agents.
Collapse
Affiliation(s)
- Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Xiaojing Du
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Heng Jiao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Quanlin An
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Ruoxue Chen
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Pengfei Fang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing Wang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
17
|
Yu B, Chang J. The first Chinese oral anti-COVID-19 drug Azvudine launched. Innovation (N Y) 2022; 3:100321. [PMID: 36106026 PMCID: PMC9461232 DOI: 10.1016/j.xinn.2022.100321] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Bin Yu
- College of Chemistry & School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Junbiao Chang
- College of Chemistry & School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China,NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Normal University, Xinxiang 453007, China,Corresponding author
| |
Collapse
|
18
|
Ouyang J, Zaongo SD, Harypursat V, Li X, Routy JP, Chen Y. SARS-CoV-2 pre-exposure prophylaxis: A potential COVID-19 preventive strategy for high-risk populations, including healthcare workers, immunodeficient individuals, and poor vaccine responders. Front Public Health 2022; 10:945448. [PMID: 36003629 PMCID: PMC9393547 DOI: 10.3389/fpubh.2022.945448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023] Open
Abstract
The unprecedented worldwide spread of SARS-CoV-2 has imposed severe challenges on global health care systems. The roll-out and widespread administration of COVID-19 vaccines has been deemed a major milestone in the race to restrict the severity of the infection. Vaccines have as yet not entirely suppressed the relentless progression of the pandemic, due mainly to the emergence of new virus variants, and also secondary to the waning of protective antibody titers over time. Encouragingly, an increasing number of antiviral drugs, such as remdesivir and the newly developed drug combination, Paxlovid® (nirmatrelvir/ritonavir), as well as molnupiravir, have shown significant benefits for COVID-19 patient outcomes. Pre-exposure prophylaxis (PrEP) has been proven to be an effective preventive strategy in high-risk uninfected people exposed to HIV. Building on knowledge from what is already known about the use of PrEP for HIV disease, and from recently gleaned knowledge of antivirals used against COVID-19, we propose that SARS-CoV-2 PrEP, using specific antiviral and adjuvant drugs against SARS-CoV-2, may represent a novel preventive strategy for high-risk populations, including healthcare workers, immunodeficient individuals, and poor vaccine responders. Herein, we critically review the risk factors for severe COVID-19 and discuss PrEP strategies against SARS-CoV-2. In addition, we outline details of candidate anti-SARS-CoV-2 PrEP drugs, thus creating a framework with respect to the development of alternative and/or complementary strategies to prevent COVID-19, and contributing to the global armamentarium that has been developed to limit SARS-CoV-2 infection, severity, and transmission.
Collapse
Affiliation(s)
- Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Silvere D. Zaongo
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Xiaofang Li
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
| | - Yaokai Chen
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
19
|
Li G, Wang Y, De Clercq E. Approved HIV reverse transcriptase inhibitors in the past decade. Acta Pharm Sin B 2022; 12:1567-1590. [PMID: 35847492 PMCID: PMC9279714 DOI: 10.1016/j.apsb.2021.11.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/13/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
HIV reverse transcriptase (RT) inhibitors are the important components of highly active antiretroviral therapies (HAARTs) for anti-HIV treatment and pre-exposure prophylaxis in clinical practice. Many RT inhibitors and their combination regimens have been approved in the past ten years, but a review on their drug discovery, pharmacology, and clinical efficacy is lacking. Here, we provide a comprehensive review of RT inhibitors (tenofovir alafenamide, rilpivirine, doravirine, dapivirine, azvudine and elsulfavirine) approved in the past decade, regarding their drug discovery, pharmacology, and clinical efficacy in randomized controlled trials. Novel RT inhibitors such as islatravir, MK-8504, MK-8507, MK8583, IQP-0528, and MIV-150 will be also highlighted. Future development may focus on the new generation of novel antiretroviral inhibitors with higher bioavailability, longer elimination half-life, more favorable side-effect profiles, fewer drug-drug interactions, and higher activities against circulating drug-resistant strains.
Collapse
Key Words
- 3TC, (−)-2′,3′-dideoxy-3′-thiacytidine (common name, lamivudine)
- ABC, abacavir
- ATV, atazanavir
- AZT, 3′-azido-3′-deoxy-thymidine (common name, zidovudine)
- BIC, bictegravir
- CAB, cabotegravir
- CC50, the 50% cytotoxic concentration
- COBI, cobicistat
- Clinical efficacy
- DOR, doravirine
- DPV, dapivirine
- DRV, darunavir
- DTG, dolutegravir
- EACS, European AIDS Clinical Society
- EC50, half maximal effective concentration
- EFV, efavirenz
- ESV, elsulfavirine
- EVG, elvitegravir
- F, bioavailability
- FDA, US Food and Drug Administration
- FTC, (−)-2′,3′-dideoxy-5-fluoro-3′-thiacytidine (common name, emtricitabine)
- HAART
- HAART, highly active antiretroviral therapy
- HIV treatment
- HIV, human immunodeficiency virus
- IAS-USA, International Antiviral Society-USA
- IC50, half maximal inhibitory concentration
- MSM, men who have sex with men
- NNRTI
- NNRTI, non-nucleoside reverse transcriptase inhibitor
- NRTI
- NRTI, nucleoside/nucleotide reverse transcriptase inhibitor
- RPV, rilpivirine
- TAF, tenofovir alafenamide
- TDF, tenofovir disoproxil fumarate
- t1/2, elimination half-life
Collapse
Affiliation(s)
- Guangdi Li
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Yali Wang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Erik De Clercq
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven B-3000, Belgium
| |
Collapse
|
20
|
Chang J. 4'-Modified Nucleosides for Antiviral Drug Discovery: Achievements and Perspectives. Acc Chem Res 2022; 55:565-578. [PMID: 35077644 DOI: 10.1021/acs.accounts.1c00697] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modified nucleosides show therapeutic promise for antiviral therapies. However, issues including the emergence of drug resistance, toxicity, and coinfections have posed new challenges for nucleoside-based antiviral drug discovery, particularly in the era of the coronavirus disease 2019 (COVID-19) pandemic. Chemical manipulation could impact the antiviral potency, safety, and drug resistance of nucleosides. Generally, modified nucleosides are difficult to recognize by intracellular important enzymes as substrates and thus exhibit low toxicity. 4'-Modified nucleosides represent an important subclass of modified nucleosides for antiviral therapies. To prevent the occurrence of drug resistance, 4'-modified nucleosides should have 3'-OH, which should also be chemically unreactive for proviral DNA biosynthesis. The absence of 3'-OH may explain the occurrence of drug resistance for censavudine. The introduction of 4'-substituents improves enzymatic and acidic stability and makes the nucleosides more lipophilic, thus improving cell permeability and bioavailability. Steric hindrance between the 4'-substituent and 3'-OH changes the furanose conformation to the 3'-endo type, in which the oxygen lone pair on the furanose ring could not form an oxocarbonium ion for glycolysis. Currently, seven 4'-modified nucleoside drug candidates such as azvudine (also known as FNC), islatravir, censavudine, balapiravir, lumicitabine, AL-335, and 4-azidothymidine have progressed into clinical stages for treating viral infections. Of note, FNC was officially approved by NMPA in July 2021 for use in adult patients with high HIV-1 virus loads (nos. H20210035 and H20210036), providing an alternative therapeutic for patients with HIV-1. The long-term cellular retention of FNC suggests its potential as a long-lasting pre-exposure prophylaxis (PrEP) agent for preventing HIV-1 infection. Mechanistically, FNC not only inhibited HIV-1 reverse transcription and replication but also restored A3G expression in peripheral blood CD4+ T cells in HIV-1 patients receiving FNC. The 4'-azido group in azvudine stabilizes the 3'-C-endo (north) conformation by steric effects and the formation of an intramolecular hydrogen bond with the 3'-OH group, thus decreasing the nucleophilicity of 3'-OH. The north conformation may also enhance the phosphorylation efficiency of FNC by cellular kinases. Encouragingly, FNC, islatravir, and balapiravir show promise for the treatment of coronaviruses, of which FNC has advanced to phase 3 clinical trials in different countries to treat patients with COVID-19 (clinical trial numbers: NCT04668235 and NCT04425772). FNC cured the COVID-19 disease in almost all patients and showed better therapeutic efficacy than remdesivir. In this Account, we provide an overview of 4'-modified nucleoside analogs in clinical stages for antiviral therapies, highlighting the drug discovery strategies, structure-activity relationship studies, and preclinical/clinical studies and also give our perspectives on nucleoside-based antiviral drug discovery.
Collapse
Affiliation(s)
- Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
21
|
Fayzullina D, Kharwar RK, Acharya A, Buzdin A, Borisov N, Timashev P, Ulasov I, Kapomba B. FNC: An Advanced Anticancer Therapeutic or Just an Underdog? Front Oncol 2022; 12:820647. [PMID: 35223502 PMCID: PMC8867032 DOI: 10.3389/fonc.2022.820647] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
Azvudine (FNC) is a novel cytidine analogue that has both antiviral and anticancer activities. This minireview focuses on its underlying molecular mechanisms of suppressing viral life cycle and cancer cell growth and discusses applications of this nucleoside drug for advanced therapy of tumors and malignant blood diseases. FNC inhibits positive-stand RNA viruses, like HCV, EV, SARS-COV-2, HBV, and retroviruses, including HIV, by suppressing their RNA-dependent polymerase enzymes. It may also inhibit such enzyme (reverse transcriptase) in the human retrotransposons, including human endogenous retroviruses (HERVs). As the activation of retrotransposons can be the major factor of ongoing cancer genome instability and consequently higher aggressiveness of tumors, FNC has a potential to increase the efficacy of multiple anticancer therapies. Furthermore, FNC also showed other aspects of anticancer activity by inhibiting adhesion, migration, invasion, and proliferation of malignant cells. It was also reported to be involved in cell cycle arrest and apoptosis, thereby inhibiting the progression of cancer through different pathways. To the date, the grounds of FNC effects on cancer cells are not fully understood and hence additional studies are needed for better understanding molecular mechanisms of its anticancer activities to support its medical use in oncology.
Collapse
Affiliation(s)
- Daria Fayzullina
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Rajesh Kumar Kharwar
- Endocrine Research Lab, Department of Zoology, Kutir Post Graduate College, Chakkey, Jaunpur, India
| | - Arbind Acharya
- Tumor Immunology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anton Buzdin
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Nicolas Borisov
- Department of Medical and Biological Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Peter Timashev
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ilya Ulasov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Byron Kapomba
- Department of General Surgery, Parirenyatwa Group of Hospitals, Harare, Zimbabwe,*Correspondence: Byron Kapomba,
| |
Collapse
|
22
|
Gao S, Huang T, Song L, Xu S, Cheng Y, Cherukupalli S, Kang D, Zhao T, Sun L, Zhang J, Zhan P, Liu X. Medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors. Acta Pharm Sin B 2022; 12:581-599. [PMID: 34485029 PMCID: PMC8405450 DOI: 10.1016/j.apsb.2021.08.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Novel therapies are urgently needed to improve global treatment of SARS-CoV-2 infection. Herein, we briefly provide a concise report on the medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors with representative examples in different strategies from the medicinal chemistry perspective.
Collapse
Affiliation(s)
- Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Tianguang Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Letian Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Yusen Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Ji'nan 250012, China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Ji'nan 250012, China,Corresponding authors. Tel./fax: +86 531 88382005 (Peng Zhan), +86 531 88380270 (Xinyong Liu).
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Ji'nan 250012, China,Corresponding authors. Tel./fax: +86 531 88382005 (Peng Zhan), +86 531 88380270 (Xinyong Liu).
| |
Collapse
|
23
|
Wen J, Li X, Zhao QX, Yang XF, Wu ML, Yan Q, Chang J, Wang H, Jin X, Su X, Deng K, Chen L, Wang JH. Pharmacological suppression of glycogen synthase kinase-3 reactivates HIV-1 from latency via activating Wnt/β-catenin/TCF1 axis in CD4 + T cells. Emerg Microbes Infect 2022; 11:391-405. [PMID: 34985411 PMCID: PMC8812804 DOI: 10.1080/22221751.2022.2026198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACTHIV-1 latency posts a major obstacle for HIV-1 eradication. Currently, no desirable latency reversing agents (LRAs) have been implicated in the "Shock and Kill" strategy to mobilize the latently infected cells to be susceptible for clearance by immune responses. Identification of key cellular pathways that modulate HIV-1 latency helps to develop efficient LRAs. In this study, we demonstrate that the Wnt downstream β-catenin/TCF1 pathway is a crucial modulator for HIV-1 latency. The pharmacological activation of the β-catenin/TCF1 pathway with glycogen synthase kinase-3 (GSK3) inhibitors promoted transcription of HIV-1 proviral DNA and reactivated latency in CD4+ T cells; the GSK3 kinase inhibitor 6-bromoindirubin-3'-oxime (6-BIO)-induced HIV-1 reactivation was subsequently confirmed in resting CD4+ T cells from cART-suppressed patients and SIV-infected rhesus macaques. These findings advance our understanding of the mechanisms responsible for viral latency, and provide the potent LRA that can be further used in conjunction of immunotherapies to eradicate viral reservoirs.
Collapse
Affiliation(s)
- Jing Wen
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xin Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Qing-Xia Zhao
- Department of Infection, Zhengzhou Sixth People's Hospital, Zhengzhou, People's Republic of China
| | - Xiao-Fan Yang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Meng-Li Wu
- College of Life Science, Henan Normal University, Xinxiang, People's Republic of China
| | - Qihong Yan
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Junbiao Chang
- College of Life Science, Henan Normal University, Xinxiang, People's Republic of China
| | - Haikun Wang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Xia Jin
- College of Life Science, Henan Normal University, Xinxiang, People's Republic of China
| | - Xiao Su
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Kai Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ling Chen
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Jian-Hua Wang
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
24
|
Rajasekhar S, Das S, Balamurali MM, Chanda K. Therapeutic Inhibitory Activities of
N
‐Hydroxy Derived Cytidines: A Patent Overview. ChemistrySelect 2021. [DOI: 10.1002/slct.202102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sreerama Rajasekhar
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology Vellore 632014 India
| | - Soumyadip Das
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology Vellore 632014 India
| | - M. M. Balamurali
- Division of Chemistry School of Advanced Sciences Vellore Institute of Technology, Chennai campus Vandalur-Kelambakkam Road Chennai 600 127 Tamil Nadu India
| | - Kaushik Chanda
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology Vellore 632014 India
| |
Collapse
|
25
|
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
26
|
Groaz E, De Clercq E, Herdewijn P. Anno 2021: Which antivirals for the coming decade? ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2021; 57:49-107. [PMID: 34744210 PMCID: PMC8563371 DOI: 10.1016/bs.armc.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite considerable progress in the development of antiviral drugs, among which anti-immunodeficiency virus (HIV) and anti-hepatitis C virus (HCV) medications can be considered real success stories, many viral infections remain without an effective treatment. This not only applies to infectious outbreaks caused by zoonotic viruses that have recently spilled over into humans such as severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), but also ancient viral diseases that have been brought under control by vaccination such as variola (smallpox), poliomyelitis, measles, and rabies. A largely unsolved problem are endemic respiratory infections due to influenza, respiratory syncytial virus (RSV), and rhinoviruses, whose associated morbidity will likely worsen with increasing air pollution. Furthermore, climate changes will expose industrialized countries to a dangerous resurgence of viral hemorrhagic fevers, which might also become global infections. Herein, we summarize the recent progress that has been made in the search for new antivirals against these different threats that the world population will need to confront with increasing frequency in the next decade.
Collapse
Affiliation(s)
- Elisabetta Groaz
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium,Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy,Corresponding author:
| | - Erik De Clercq
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Yu B, Chang J. Azvudine (FNC): a promising clinical candidate for COVID-19 treatment. Signal Transduct Target Ther 2020; 5:236. [PMID: 33040075 PMCID: PMC7547293 DOI: 10.1038/s41392-020-00351-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 01/07/2023] Open
Affiliation(s)
- Bin Yu
- grid.207374.50000 0001 2189 3846School of Pharmaceutical Sciences, Zhengzhou University, 450001 Zhengzhou, China
| | - Junbiao Chang
- grid.207374.50000 0001 2189 3846School of Pharmaceutical Sciences, Zhengzhou University, 450001 Zhengzhou, China ,grid.462338.80000 0004 0605 6769Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, College of Life Science and College of Chemistry and Chemical Engineering, Henan Normal University, 453007 Xinxiang, China
| |
Collapse
|
28
|
Wang HX, Li WP, Zhang MM, Xie MS, Qu GR, Guo HM. Synthesis of chiral pyrimidine-substituted diester D-A cyclopropanes via asymmetric cyclopropanation of phenyliodonium ylides. Chem Commun (Camb) 2020; 56:11649-11652. [PMID: 33000801 DOI: 10.1039/d0cc04536e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A highly enantioselective cyclopropanation to synthesize pyrimidine-substituted diester D-A cyclopropanes is reported. Various N1-vinylpyrimidines react well with phenyliodonium ylides, delivering chiral cyclopropanes in up to 97% yield with up to 99% ee. Through simple [3+2] annulation with benzaldehyde or ethyl glyoxylate, different chiral pyrimidine nucleoside analogues with a sugar ring could be obtained.
Collapse
Affiliation(s)
- Hai-Xia Wang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Wen-Peng Li
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Mi-Mi Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Ming-Sheng Xie
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|