1
|
Ritchey JL, Filippi L, Ballard D, Pei D. Bismuth-Cyclized Cell-Penetrating Peptides. Mol Pharm 2024; 21:5255-5260. [PMID: 39223839 DOI: 10.1021/acs.molpharmaceut.4c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Intracellular delivery of biological cargos, which would yield new research tools and novel therapeutics, remains an active area of research. A convenient and potentially general approach involves the conjugation of a cell-penetrating peptide to a cargo of interest. However, linear CPPs lack sufficient cytosolic entry efficiency and metabolic stability, while previous backbone cyclized CPPs have several drawbacks including the necessity for chemical synthesis and posttranslational conjugation to peptide/protein cargos and epimerization during cyclization. We report here a new class of bismuth cyclized CPPs with excellent cytosolic entry efficiencies, proteolytic stability, and potential compatibility with genetic encoding and recombinant production.
Collapse
Affiliation(s)
- Jeremy L Ritchey
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Lindsi Filippi
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Davis Ballard
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Karpurapu M, Nie Y, Chung S, Yan J, Dougherty P, Pannu S, Wisler J, Harkless R, Parinandi N, Berdyshev E, Pei D, Christman JW. The calcineurin-NFATc pathway modulates the lipid mediators in BAL fluid extracellular vesicles, thereby regulating microvascular endothelial cell barrier function. Front Physiol 2024; 15:1378565. [PMID: 38812883 PMCID: PMC11133699 DOI: 10.3389/fphys.2024.1378565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/16/2024] [Indexed: 05/31/2024] Open
Abstract
Extracellular vesicles mediate intercellular communication by transporting biologically active macromolecules. Our prior studies have demonstrated that the nuclear factor of activated T cell cytoplasmic member 3 (NFATc3) is activated in mouse pulmonary macrophages in response to lipopolysaccharide (LPS). Inhibition of NFATc3 activation by a novel cell-permeable calcineurin peptide inhibitor CNI103 mitigated the development of acute lung injury (ALI) in LPS-treated mice. Although pro-inflammatory lipid mediators are known contributors to lung inflammation and injury, it remains unclear whether the calcineurin-NFATc pathway regulates extracellular vesicle (EV) lipid content and if this content contributes to ALI pathogenesis. In this study, EVs from mouse bronchoalveolar lavage fluid (BALF) were analyzed for their lipid mediators by liquid chromatography in conjunction with mass spectrometry (LC-MS/MS). Our data demonstrate that EVs from LPS-treated mice contained significantly higher levels of arachidonic acid (AA) metabolites, which were found in low levels by prior treatment with CNI103. The catalytic activity of lung tissue cytoplasmic phospholipase A2 (cPLA2) increased during ALI, correlating with an increased amount of arachidonic acid (AA) in the EVs. Furthermore, ALI is associated with increased expression of cPLA2, cyclooxygenase 2 (COX2), and lipoxygenases (5-LOX, 12-LOX, and 15-LOX) in lung tissue, and pretreatment with CNI103 inhibited the catalytic activity of cPLA2 and the expression of cPLA2, COX, and LOX transcripts. Furthermore, co-culture of mouse pulmonary microvascular endothelial cell (PMVEC) monolayer and NFAT-luciferase reporter macrophages with BALF EVs from LPS-treated mice increased the pulmonary microvascular endothelial cell (PMVEC) monolayer barrier permeability and luciferase activity in macrophages. However, EVs from CNI103-treated mice had no negative impact on PMVEC monolayer barrier integrity. In summary, BALF EVs from LPS-treated mice carry biologically active NFATc-dependent, AA-derived lipids that play a role in regulating PMVEC monolayer barrier function.
Collapse
Affiliation(s)
- Manjula Karpurapu
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Sangwoon Chung
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Jiasheng Yan
- Department of Pharmacology, Ohio State University, Columbus, OH, United States
| | - Patrick Dougherty
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, United States
| | - Sonal Pannu
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Jon Wisler
- Department of Surgery, Ohio State Wexner Medical Center, Columbus, OH, United States
| | - Ryan Harkless
- Department of Surgery, Ohio State Wexner Medical Center, Columbus, OH, United States
| | - Narasimham Parinandi
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Evgeny Berdyshev
- Division of Pulmonary Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, United States
| | - John W. Christman
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| |
Collapse
|
3
|
Hu J, Shen X, Kheirabadi M, Streeter MD, Qian Z, Mootha VV, Corey DR. Targeting the Expanded TCF4/Fuchs' Endothelial Corneal Dystrophy CUG Repeat with Morpholino Peptide Conjugates. ACS OMEGA 2023; 8:42797-42802. [PMID: 38024683 PMCID: PMC10652360 DOI: 10.1021/acsomega.3c05634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023]
Abstract
Fuchs' corneal endothelial dystrophy (FECD) is a major cause of vision loss. Corneal transplantation is the only effective curative treatment, but this surgery has limitations. A pharmacological intervention would complement surgery and be beneficial for many patients. FECD is caused by an expanded CUG repeat within intron 2 of the TCF4 RNA. Agents that recognize the expanded repeat can reverse the splicing defects associated with the disease. Successful drug development will require diverse strategies for optimizing the efficacy of anti-CUG oligomers. In this study, we evaluate anti-CUG morpholinos conjugated to cyclic cell penetrating peptides. The morpholino domain of the conjugate is complementary to the repeat, while the peptide has been optimized for import across cell membranes. We show that morpholino conjugates can enter corneal endothelial cells and block the CUG RNA foci associated with the disease. These experiments support morpholino peptide conjugates as an approach for developing anti-CUG therapies for FECD.
Collapse
Affiliation(s)
- Jiaxin Hu
- Department
of Pharmacology and Biochemistry, UT Southwestern
Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, United States
| | - Xiulong Shen
- Entrada
Therapeutics Inc., Boston, Massachusetts 02210, United States
| | | | | | - Ziqing Qian
- Entrada
Therapeutics Inc., Boston, Massachusetts 02210, United States
| | - V. Vinod Mootha
- Department
of Ophthalmology, UT Southwestern Medical
Center, Dallas, Texas 75390, United States
- McDermott
Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas 75390, United States
| | - David R. Corey
- Department
of Pharmacology and Biochemistry, UT Southwestern
Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, United States
| |
Collapse
|
4
|
Tang Y, Zheng F, Bao X, Zheng Y, Hu X, Lou S, Zhao H, Cui S. Discovery of Highly Selective and Orally Bioavailable PI3Kδ Inhibitors with Anti-Inflammatory Activity for Treatment of Acute Lung Injury. J Med Chem 2023; 66:11905-11926. [PMID: 37606563 DOI: 10.1021/acs.jmedchem.3c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
PI3Kδ is a promising target for the treatment of inflammatory disease; however, the application of PI3Kδ inhibitors in acute respiratory inflammatory diseases is rarely investigated. In this study, through scaffold hopping design, we report a new series of 1H-pyrazolo[3,4-d]pyrimidin-4-amine-tethered 3-methyl-1-aryl-1H-indazoles as highly selective and potent PI3Kδ inhibitors with significant anti-inflammatory activities for treatment of acute lung injury (ALI). There were 29 compounds designed, prepared, and subjected to PI3Kδ inhibitory activity evaluation and anti-inflammatory activity evaluation in macrophages. (S)-29 was identified as a candidate with high PI3Kδ inhibitory activity, isoform selectivity, and high oral bioavailability. The in vivo administration of (S)-29 at 10 mg/kg dosage could significantly ameliorate histopathological changes and attenuate lung inflammation in lung tissues of LPS-challenged mice. Molecular docking demonstrated the success of scaffold hopping design. Overall, (S)-29 is a potent PI3Kδ inhibitor which might be a promising candidate for the treatment of ALI.
Collapse
Affiliation(s)
- Yongmei Tang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fanli Zheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xiaodong Bao
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanan Zheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xueping Hu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Siyue Lou
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Li X, Kheirabadi M, Dougherty PG, Kamer KJ, Shen X, Estrella NL, Peddigari S, Pathak A, Blake SL, Sizensky E, Genio CD, Gaur AB, Dhanabal M, Girgenrath M, Sethuraman N, Qian Z. The endosomal escape vehicle platform enhances delivery of oligonucleotides in preclinical models of neuromuscular disorders. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:273-285. [PMID: 37538053 PMCID: PMC10393622 DOI: 10.1016/j.omtn.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023]
Abstract
Biological therapeutic agents are highly targeted and potent but limited in their ability to reach intracellular targets. These limitations often necessitate high therapeutic doses and can be associated with less-than-optimal therapeutic activity. One promising solution for therapeutic agent delivery is use of cell-penetrating peptides. Canonical cell-penetrating peptides, however, are limited by low efficiencies of cellular uptake and endosomal escape, minimal proteolytic stability, and toxicity. To overcome these limitations, we designed a family of proprietary cyclic cell-penetrating peptides that form the core of our endosomal escape vehicle technology capable of delivering therapeutic agent-conjugated cargo intracellularly. We demonstrated the therapeutic potential of this endosomal escape vehicle platform in preclinical models of muscular dystrophy with distinct disease etiology. An endosomal escape vehicle-conjugated, splice-modulating oligonucleotide restored dystrophin protein expression in striated muscles in the mdx mouse, a model for Duchenne muscular dystrophy. Furthermore, another endosomal escape vehicle-conjugated, sterically blocking oligonucleotide led to knockdown of aberrant transcript expression levels in facioscapulohumeral muscular dystrophy patient-derived skeletal muscle cells. These findings suggest a significant therapeutic potential of our endosomal escape vehicle conjugated oligonucleotides for targeted upregulation and downregulation of gene expression in neuromuscular diseases, with possible broader application of this platform for delivery of intracellular biological agents.
Collapse
Affiliation(s)
- Xiang Li
- Entrada Therapeutics, One Design Center Place, Suite 17-500, Boston, MA 02210, USA
| | - Mahboubeh Kheirabadi
- Entrada Therapeutics, One Design Center Place, Suite 17-500, Boston, MA 02210, USA
| | - Patrick G. Dougherty
- Entrada Therapeutics, One Design Center Place, Suite 17-500, Boston, MA 02210, USA
| | - Kimberli J. Kamer
- Entrada Therapeutics, One Design Center Place, Suite 17-500, Boston, MA 02210, USA
| | - Xiulong Shen
- Entrada Therapeutics, One Design Center Place, Suite 17-500, Boston, MA 02210, USA
| | - Nelsa L. Estrella
- Entrada Therapeutics, One Design Center Place, Suite 17-500, Boston, MA 02210, USA
| | - Suresh Peddigari
- Entrada Therapeutics, One Design Center Place, Suite 17-500, Boston, MA 02210, USA
| | - Anushree Pathak
- Entrada Therapeutics, One Design Center Place, Suite 17-500, Boston, MA 02210, USA
| | - Sara L. Blake
- Entrada Therapeutics, One Design Center Place, Suite 17-500, Boston, MA 02210, USA
| | - Emmanuelle Sizensky
- Entrada Therapeutics, One Design Center Place, Suite 17-500, Boston, MA 02210, USA
| | - Carmen del Genio
- Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Arti B. Gaur
- Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Mohanraj Dhanabal
- Entrada Therapeutics, One Design Center Place, Suite 17-500, Boston, MA 02210, USA
| | - Mahasweta Girgenrath
- Entrada Therapeutics, One Design Center Place, Suite 17-500, Boston, MA 02210, USA
| | - Natarajan Sethuraman
- Entrada Therapeutics, One Design Center Place, Suite 17-500, Boston, MA 02210, USA
| | - Ziqing Qian
- Entrada Therapeutics, One Design Center Place, Suite 17-500, Boston, MA 02210, USA
| |
Collapse
|
6
|
Pei D. Designing Cell-Permeable Peptide Therapeutics That Enter the Cell by Endocytosis. ACS SYMPOSIUM SERIES. AMERICAN CHEMICAL SOCIETY 2022; 1417:179-197. [PMID: 37621949 PMCID: PMC10448808 DOI: 10.1021/bk-2022-1417.ch007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Intracellular protein-protein interactions (PPIs) represent a large class of exciting as well as challenging drug targets for traditional drug modalities (i.e., small molecules and biologics). Peptides (especially cyclic peptides) have proven highly effective as PPI inhibitors in vitro but are generally impermeable to the cell membrane. The recent discovery of a family of highly active cyclic cell-penetrating peptides (CPPs) has enabled the delivery of peptides into the cytosol of mammalian cells at therapeutically relevant levels. This chapter describes the various strategies that have been developed to conjugate or integrate different types of peptidyl cargoes (e.g., linear, cyclic, and stapled peptides) with cyclic CPPs to generate cell-permeable, metabolically stable, and biologically active macrocyclic peptides against intracellular targets including PPIs.
Collapse
Affiliation(s)
- Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Buyanova M, Sahni A, Yang R, Sarkar A, Salim H, Pei D. Discovery of a Cyclic Cell-Penetrating Peptide with Improved Endosomal Escape and Cytosolic Delivery Efficiency. Mol Pharm 2022; 19:1378-1388. [PMID: 35405068 PMCID: PMC9175492 DOI: 10.1021/acs.molpharmaceut.1c00924] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyclic cell-penetrating peptide 12 (CPP12) is highly efficient for the cytosolic delivery of a variety of cargo molecules into mammalian cells in vitro and in vivo. However, its cytosolic entry efficiency is substantially reduced at lower concentrations or in the presence of serum proteins. In this study, CPP12 analogs were prepared by replacing its hydrophobic residues with amino acids of varying hydrophobicity and evaluated for cellular entry. Substitution of l-3-benzothienylalanine (Bta) for l-2-naphthylalanine (Nal) resulted in CPP12-2, which exhibits up to 3.8-fold higher cytosolic entry efficiency than CPP12, especially at low CPP concentrations; thanks to improved endosomal escape efficiency. CPP12-2 is well suited for the cytosolic delivery of highly potent cargos to achieve biological activity at low concentrations.
Collapse
Affiliation(s)
- Marina Buyanova
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Ashweta Sahni
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Rui Yang
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Amar Sarkar
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Heba Salim
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
8
|
Buyanova M, Pei D. Targeting intracellular protein-protein interactions with macrocyclic peptides. Trends Pharmacol Sci 2022; 43:234-248. [PMID: 34911657 PMCID: PMC8840965 DOI: 10.1016/j.tips.2021.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/23/2021] [Accepted: 11/09/2021] [Indexed: 01/07/2023]
Abstract
Intracellular protein-protein interactions (PPIs) are challenging targets for traditional drug modalities. Macrocyclic peptides (MPs) prove highly effective PPI inhibitors in vitro and can be rapidly discovered against PPI targets by rational design or screening combinatorial libraries but are generally impermeable to the cell membrane. Recent advances in MP science and technology are allowing for the development of 'drug-like' MPs that potently and specifically modulate intracellular PPI targets in cell culture and animal models. In this review, we highlight recent progress in generating cell-permeable MPs that enter the mammalian cell by passive diffusion, endocytosis followed by endosomal escape, or as-yet unknown mechanisms.
Collapse
Affiliation(s)
- Marina Buyanova
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
9
|
Sajid MI, Moazzam M, Stueber R, Park SE, Cho Y, Malik NUA, Tiwari RK. Applications of amphipathic and cationic cyclic cell-penetrating peptides: Significant therapeutic delivery tool. Peptides 2021; 141:170542. [PMID: 33794283 DOI: 10.1016/j.peptides.2021.170542] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/16/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
A new class of peptides, cyclic cell-penetrating peptides (CPPs), has great potential for delivering a vast variety of therapeutics intracellularly for treating diverse ailments. CPPs have been used previously; however, their further use is limited due to instability, toxicity, endosomal degradation, and insufficient cellular penetration. Cyclic CPPs are being investigated in delivering therapeutics to treat various ailments, including multi-drug resistant microbial infections, HIV, and cancer. They can act as a carrier for a variety of cargos and target intracellularly. Approximately 40 cyclic peptides-based therapeutics are available in the market, and annually one cyclic peptide-based drug enters the market. Numerous research and review articles have been published in the last decade about linear and cyclic peptides separately. This review is the first to provide a comprehensive deliberation about cationic and amphipathic cyclic CPPs. Herein, we highlights their structures, significant advantages, translocation mechanisms, and delivery application in the area of biomedical sciences.
Collapse
Affiliation(s)
- Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA; Faculty of Pharmacy, University of Central Punjab, Lahore, 54000, Pakistan
| | - Muhammad Moazzam
- Faculty of Pharmacy, University of Central Punjab, Lahore, 54000, Pakistan
| | - Ryan Stueber
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Shang Eun Park
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Yeseom Cho
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Noor Ul Ain Malik
- Faculty of Pharmacy, University of Central Punjab, Lahore, 54000, Pakistan
| | - Rakesh K Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA.
| |
Collapse
|
10
|
Chang CK, Chiu PF, Yang HY, Juang YP, Lai YH, Lin TS, Hsu LC, Yu LCH, Liang PH. Targeting Colorectal Cancer with Conjugates of a Glucose Transporter Inhibitor and 5-Fluorouracil. J Med Chem 2021; 64:4450-4461. [PMID: 33819035 DOI: 10.1021/acs.jmedchem.0c00897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Overexpression of glucose transporters (GLUTs) in colorectal cancer cells is associated with 5-fluorouracil (1, 5-FU) resistance and poor clinical outcomes. We designed and synthesized a novel GLUT-targeting drug conjugate, triggered by glutathione in the tumor microenvironment, that releases 5-FU and GLUTs inhibitor (phlorizin (2) and phloretin (3)). Using an orthotopic colorectal cancer mice model, we showed that the conjugate exhibited better antitumor efficacy than 5-FU, with much lower exposure of 5-FU during treatment and without significant side effects. Our study establishes a GLUT-targeting theranostic incorporating a disulfide linker between the targeting module and cytotoxic payload as a potential antitumor therapy.
Collapse
Affiliation(s)
- Chun-Kai Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Pei-Fang Chiu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Hui-Yi Yang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Pu Juang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yen-Hsun Lai
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Tzung-Sheng Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Lih-Ching Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Linda Chia-Hui Yu
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan.,The Genomics Research Center, Academia Sinica, Taipei 128, Taiwan
| |
Collapse
|
11
|
|