1
|
Vairappan B, Mukherjee V, Subramanian SB, Ram AK, Ravikumar TS. Nimbolide attenuates hepatocellular carcinoma by regulating miRNAs 21, 145 and 221 and their target gene expression. Gene 2025; 937:149126. [PMID: 39645097 DOI: 10.1016/j.gene.2024.149126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND AND AIMS MicroRNAs (miRNAs) are becoming progressively emerging in cancer research from an etiologic and curative point of view. Several miRNAs act as oncogenes or tumor suppressors, which are dysregulated in numerous cancers. Our previous studies have established that nimbolide (a bioactive terpenoid from neem) attenuated hepatocellular carcinoma (HCC) through various mechanisms in mice. Here, we aimed to elucidate the effect of nimbolide in modulating specific miRNAs (21, 145, and 221) and their target genes involved in promoting inflammation and cancer cell proliferation in HCC mice. METHODS Following the induction of HCC in mice at 28 weeks, nimbolide (6 mg/kg b.wt.) was administered orally for four consecutive weeks. RESULTS We found significantly increased hepatic expression of miR-21a-3p, miR-21a-5p, miR-221-5p and miR-221-3p whilst significantly decreased miR-145a-5p in HCC mice. Nimbolide treatment to HCC mice substantially reduced the miR-21a-5p and miR-221-3p and improved miR-145a-5p gene expression. Our in-silico study also supports these findings. Moreover, hepatic tight junction (TJ) associated proteins such as claudins 1&5 mRNA and protein were increased considerably, whilst significantly decreased hepatic claudin 2 mRNA and protein expression noted in HCC mice. Nimbolide also regulates cadherins, ROCK 1, MMP 9, cyclin D1, CDK4, NF κB and TNFα mRNA expression in HCC mice. CONCLUSION We identified for the first time that nibmolide treatment to HCC mice significantly attenuated hepatic miRNAs 21 & 221 expressions and sheltered miR-145 expression. These findings were further confirmed with in-silico studies. Moreover, nibmolide treatment in HCC mice regulates miRNA target genes involved in cancer cell proliferation and inflammation, thereby attenuating HCC progression in mice.
Collapse
Affiliation(s)
- Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantari Nagar, Puducherry 605006, India.
| | - Victor Mukherjee
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantari Nagar, Puducherry 605006, India
| | - Siva Bala Subramanian
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantari Nagar, Puducherry 605006, India
| | - Amit Kumar Ram
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantari Nagar, Puducherry 605006, India
| | - T S Ravikumar
- All India Institute of Medical Sciences (AIIMS), Mangalagiri, Andhra Pradesh, India
| |
Collapse
|
2
|
Deng R, Zong GF, Wang X, Yue BJ, Cheng P, Tao RZ, Li X, Wei ZH, Lu Y. Promises of natural products as clinical applications for cancer. Biochim Biophys Acta Rev Cancer 2024; 1880:189241. [PMID: 39674416 DOI: 10.1016/j.bbcan.2024.189241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Cancer represents a substantial threat to human health and mortality, necessitating the development of novel pharmacological agents with innovative mechanisms of action. Consequently, extensive research has been directed toward discovering new anticancer compounds derived from natural sources, including plants, microbes, and marine organisms. This review offers a comprehensive analysis of natural anticancer agents that are either currently undergoing clinical trials or have been integrated into clinical practice. A comprehensive understanding of the historical origins of natural anticancer agents, alongside traditional targets for tumor treatment and the distinct characteristics of cancer, can significantly facilitate researchers in the discovery and development of innovative anticancer drugs for clinical use. Furthermore, the exploration of microbial and marine sources is currently a prominent area of focus in the clinical application and advancement of new anticancer therapies. Detailed classification and elucidation of the functions and antitumor properties of these natural products are essential. It is imperative to comprehensively summarize and comprehend the natural anticancer drugs that have been and continue to be utilized in clinical settings.
Collapse
Affiliation(s)
- Rui Deng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China; Nanjing Integrated Traditional Chinese And Western Medicine Hospital, Nanjing 210018. China
| | - Gang-Fan Zong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xi Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China
| | - Bing-Jie Yue
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China
| | - Peng Cheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China
| | - Rui-Zhi Tao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhong-Hong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
3
|
Chen C, Feng Y, Zhou C, Liu Z, Tang Z, Zhang Y, Li T, Gu C, Chen J. Development of natural product-based targeted protein degraders as anticancer agents. Bioorg Chem 2024; 153:107772. [PMID: 39243739 DOI: 10.1016/j.bioorg.2024.107772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Targeted protein degradation (TPD) has emerged as a powerful approach for eliminating cancer-causing proteins through an "event-driven" pharmacological mode. Proteolysis-targeting chimeras (PROTACs), molecular glues (MGs), and hydrophobic tagging (HyTing) have evolved into three major classes of TPD technologies. Natural products (NPs) are a primary source of anticancer drugs and have played important roles in the development of TPD technology. NPs potentially expand the toolbox of TPD by providing a variety of E3 ligase ligands, protein of interest (POI) warheads, and hydrophobic tags (HyTs). As a promising direction in the TPD field, NP-based degraders have shown great potential for anticancer therapy. In this review, we summarize recent advances in the development of NP-based degraders (PROTACs, MGs and HyTing) with anticancer applications. Moreover, we put forward the challenges while presenting potential opportunities for the advancement of future targeted protein degraders derived from NPs.
Collapse
Affiliation(s)
- Cheng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanyan Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States
| | - Zhouyan Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziwei Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ye Zhang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Tong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenglei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jichao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
4
|
Acharya A, Nagpure M, Roy N, Gupta V, Patranabis S, Guchhait SK. How to nurture natural products to create new therapeutics: Strategic innovations and molecule-to-medicinal insights into therapeutic advancements. Drug Discov Today 2024; 29:104221. [PMID: 39481593 DOI: 10.1016/j.drudis.2024.104221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Natural products (NPs) are privileged structures interacting with biomacromolecular targets and exhibiting biological effects important for human health. In this review, we have presented NP-inspired strategic innovations that are promising for addressing preclinical and clinical challenges. An analysis of 'molecule-to-medicinal' properties for improvement of P3 and absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles has been illustrated. The strategies include chemical evolution through knowledge of structure-medicinal properties, truncation of NPs to avoid molecular obesity, pseudo-NPs, selection of common structural features of NPs, medicinophore installation, scaffold hopping, and induced proximity. Molecule-to-medicinal property analysis can guide the development of 'nature-to-new' chemical therapeutics. Coupled with scientific advances and innovations in instrumentation, these strategies hold great potential for enhancing drug design and discovery.
Collapse
Affiliation(s)
- Ayan Acharya
- National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Mithilesh Nagpure
- National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Nibedita Roy
- National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Vaibhav Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Soumyadeep Patranabis
- National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Sankar K Guchhait
- National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.
| |
Collapse
|
5
|
Peng BY, Wu CY, Lee CJ, Chang TM, Tsao YT, Liu JF. Nimbolide Induces Cell Apoptosis via Mediating ER Stress-Regulated Apoptotic Signaling in Human Oral Squamous Cell Carcinoma. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39462890 DOI: 10.1002/tox.24436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/29/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Human oral squamous cell carcinoma (OSCC) poses a significant health challenge in Asia, with current therapeutic strategies failing to improve the survival rates for OSCC patients sufficiently. To elucidate the effects of Nimbolide on OSCC cell proliferation and apoptosis, we performed a series of experiments, including cell proliferation assays, annexin V/PI assays, and cell cycle analysis. We further investigated nimbolide's role in modulating endoplasmic reticulum (ER) stress, reactive oxygen species (ROS) production, and mitochondrial dysfunction using flow cytometry. Additionally, Western blotting was used to detect apoptosis-related protein expression. Our findings reveal that nimbolide exerts its anti-proliferative effects on OSCC cells by inducing apoptosis. The nimbolide increased intracellular ROS levels and acceleration of cellular calcium accumulation, respectively promoting endoplasmic reticulum stress and cancer cell apoptosis. Furthermore, nimbolide activates the caspase cascade by altering the mitochondrial membrane potential and apoptotic protein expression, thereby inhibiting the viability of tumor cells. Our data show that Nimbolide suppresses tumor growth through the induction of ROS production, ER stress, and mitochondrial dysfunction, resulting in apoptosis in OSCC cells. Overall, our study highlights nimbolide as a potential natural compound for OSCC therapy.
Collapse
Affiliation(s)
- Bou-Yue Peng
- Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Yu Wu
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | - Chia-Jung Lee
- Department of Otolaryngology Head and Neck Surgery, Shin-Kong Wu-Ho-Su Memorial Hospital, Taipei, Taiwan, ROC
- School of Medicine, Fu-Jen Catholic University, Taipei, Taiwan, ROC
| | - Tsung-Ming Chang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Ya-Ting Tsao
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Ju-Fang Liu
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, ROC
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, ROC
| |
Collapse
|
6
|
Zhang H, Zhao X, Wei W, Shen C. Nimbolide protects against diabetic cardiomyopathy by regulating endoplasmic reticulum stress and mitochondrial function via the Akt/mTOR pathway. Tissue Cell 2024; 90:102478. [PMID: 39053131 DOI: 10.1016/j.tice.2024.102478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/07/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Nimbolide has been demonstrated to possess protective properties against gestational diabetes mellitus and diabetic retinopathy. However, the role and molecular mechanism of nimbolide in diabetic cardiomyopathy (DCM) remain unknown. Diabetes was induced in rats via a single injection of streptozotocin (STZ) and then the diabetic rats were administered nimbolide (5 mg/kg and 20 mg/kg) or dimethyl sulfoxide daily for 12 weeks. H9c2 cardiomyocytes were exposed to high glucose (25 mM glucose) to mimic DCM in vitro. The protective effects of nimbolide against DCM were evaluated in vivo and in vitro. The potential molecular mechanism of nimbolide in DCM was further explored. We found that nimbolide dose-dependently decreased blood glucose and improved body weight of diabetic rats. Additionally, nimbolide dose-dependently improved cardiac function, alleviated myocardial injury/fibrosis, and inhibited endoplasmic reticulum (ER) stress and apoptosis in diabetic rats. Moreover, nimbolide dose-dependently improved mitochondrial function and activated the Akt/mTOR signaling. We consistently demonstrated the cardioprotective effects of nimbolide in an in vitro model of DCM. The involvement of ER stress and mitochondrial pathways were further confirmed by using inhibitors of ER stress and mitochondrial division. By applying a specific Akt inhibitor SC66, the cardioprotective effects of nimbolide were partially blocked. Our study indicated that nimbolide alleviated DCM by activating Akt/mTOR pathway. Nimbolide may be a novel therapeutic agent for DCM treatment.
Collapse
Affiliation(s)
| | | | - Wei Wei
- Hainan Second Health School, Wuzhishan 572200, China
| | - Chunjian Shen
- Department of Cardiothoracic Surgery, The Fourth People's Hospital of Shenyang, Shenyang 110000, China.
| |
Collapse
|
7
|
Khairuzzaman M, Hasan MM, Ali MT, Mamun AA, Akter S, Nasrin P, Islam MK, Nahar AU, Sarker DK, Hamdi OAA, Uddin SJ, Seidel V, Shilpi JA. Anthelmintic screening of Bangladeshi medicinal plants and related phytochemicals using in vitro and in silico methods: An ethnobotanical perspective. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118132. [PMID: 38565411 DOI: 10.1016/j.jep.2024.118132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Infections caused by parasitic worms or helminth continue to pose a great burden on human and animal health, particularly in underdeveloped tropical and subtropical countries where they are endemic. Current anthelmintic drugs present serious limitations and the emergence of drug resistance has made it increasingly challenging to combat such infections (helminthiases). In Bangladesh, medicinal plants are often used by indigenous communities for the treatment of helminthiases. Knowledge on such plants along with screening for their anthelmintic activity has the potential to lead to the discovery of phytochemicals that could serve as novel molecular scaffolds for the development of new anthelminthic drugs. AIM OF THE STUDY The purpose of this study was i) to conduct an ethnobotanical survey to gather data on Bangladeshi medicinal plants used in the treatment of helminthiases, ii) to test plants with the highest use values for their in vitro anthelmintic activity, and iii) to carry out in silico screening on phytochemicals present in the most active plant extract to investigate their ability to disrupt β-tubulin function in helminths. METHODS The ethnobotanical survey was conducted across three sub-districts of Bangladesh, namely Mathbaria, Phultala and Khan Jahan Ali. The in vitro screening for anthelmintic activity was performed in a motility test using adult Haemonchus contortus worms. Virtual screening using PyRx was performed on the phytochemicals reported from the most active plant, exploring their interactions with the colchicine binding site of the β-tubulin protein target (PDB ID: 1SA0). RESULTS The survey respondents reported a total of 32 plants for treating helminthiases. Based on their use values, the most popular choices were Ananas comosus (L.) Merr., Azadirachta indica A.Juss., Carica papaya L., Citrus maxima (Burm.) Merr., Curcuma longa L., Momordica charantia L., Nigella sativa L. and Syzygium cumini (L.) Skeels. In vitro anthelmintic testing revealed that A. indica leaves and bark had the highest activity with LC50 values of 16 mg/mL in both cases. Other plant extracts also exhibited good anthelmintic activity with LC50 values ranging from 16 to 52 mg/mL, while the value for albendazole (positive control) was 8.39 mg/mL. The limonoids nimbolide and 28-deoxonimbolide showed a binding affinity of -8.9 kcal/mol, and satisfied all drug-likeness parameters. The control ligand N-deacetyl-N-(2-mercaptoacetyl)colchicine had a binding affinity of -6.9 kcal/mol. CONCLUSION Further in silico and in vitro studies are warranted on the identified limonoids to confirm the potential of these derivatives as novel drug templates for helminthiases. The current study supports the need for an ethnobotanical survey-based approach to discover novel drug templates for helminthiases.
Collapse
Affiliation(s)
- M Khairuzzaman
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Mehedi Hasan
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Mohammad Tuhin Ali
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Sheuly Akter
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh; Bangladesh Reference Institute for Chemical Measurements, Dr Kudrat-e-Khuda Road, Dhanmondi, Dhaka, Bangladesh
| | - Papia Nasrin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Khirul Islam
- Department of Life Technologies, Division of Biotechnology, University of Turku, Finland
| | - Akhlak Un Nahar
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Dipto Kumer Sarker
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Omer Abdalla Ahmed Hamdi
- Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Jamil A Shilpi
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh.
| |
Collapse
|
8
|
Wang WH, Yang W, Dong JR, Yang FZ, Chen XT, Xie SD, Yang XQ, Zhao P, Zhu GL. Toonanoronoids A-E, five new limonoids from Toona ciliata var. yunnanensis. Fitoterapia 2024; 175:105938. [PMID: 38565379 DOI: 10.1016/j.fitote.2024.105938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/19/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Five new B-seco-limonoids, namely toonanoronoids A-E (1-5), in conjunction with three previously reported compounds, were isolated from the EtOAc extract of the twigs and leaves of Toona ciliata var. yunnanensis. Their structures were elucidated through comprehensive spectroscopic and X-ray crystallographic analysis. The cytotoxic activities of new compounds against five human tumor cell lines (HL-60, SMMC-7721, A549, MCF-7, and SW480) were screened, Compounds 4 and 5 exerted inhibition toward two tumor cell lines (HL-60, SW-480) with IC50 values between 1.7 and 5.9 μM.
Collapse
Affiliation(s)
- Wei-Hua Wang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650233, PR China; Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong 657000, Yunnan, China
| | - Wei Yang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650233, PR China
| | - Jin-Run Dong
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650233, PR China
| | - Fa-Zhong Yang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650233, PR China
| | - Xiao-Tao Chen
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650233, PR China
| | - Si-Da Xie
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650233, PR China
| | - Xiao-Qin Yang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650233, PR China
| | - Ping Zhao
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650233, PR China.
| | - Guo-Lei Zhu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650233, PR China.
| |
Collapse
|
9
|
Zhao Y, Chen Y, Yan N. The Role of Natural Products in Diabetic Retinopathy. Biomedicines 2024; 12:1138. [PMID: 38927345 PMCID: PMC11200400 DOI: 10.3390/biomedicines12061138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/07/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
Diabetic retinopathy (DR) is one of the most severe complications of diabetes mellitus and potentially leads to significant visual impairment and blindness. The complex mechanisms involved in the pathological changes in DR make it challenging to achieve satisfactory outcomes with existing treatments. Diets conducive to glycemic control have been shown to improve outcomes in diabetic patients, thus positioning dietary interventions as promising avenues for DR treatment. Investigations have demonstrated that natural products (NPs) may effectively manage DR. Many types of natural compounds, including saponins, phenols, terpenoids, flavonoids, saccharides, alkaloids, and vitamins, have been shown to exert anti-inflammatory, antioxidant, anti-neovascular, and antiapoptotic effects in vivo and in vitro. Nevertheless, the clinical application of NPs still faces challenges, such as suboptimal specificity, poor bioavailability, and a risk of toxicity. Prospective clinical studies are imperative to validate the therapeutic potential of NPs in delaying or preventing DR.
Collapse
Affiliation(s)
- Yuxuan Zhao
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.C.)
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.C.)
| | - Naihong Yan
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.C.)
| |
Collapse
|
10
|
Rajendran P, Renu K, Abdallah BM, Ali EM, Veeraraghavan VP, Sivalingam K, Rustagi Y, Abdelsalam SA, Ibrahim RIH, Al-Ramadan SY. Nimbolide: promising agent for prevention and treatment of chronic diseases (recent update). Food Nutr Res 2024; 68:9650. [PMID: 38571915 PMCID: PMC10989234 DOI: 10.29219/fnr.v68.9650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 04/05/2024] Open
Abstract
Background Nimbolide, a bioactive compound derived from the neem tree, has garnered attention as a potential breakthrough in the prevention and treatment of chronic diseases. Recent updates in research highlight its multifaceted pharmacological properties, demonstrating anti-inflammatory, antioxidant, and anticancer effects. With a rich history in traditional medicine, nimbolide efficacy in addressing the molecular complexities of conditions such as cardiovascular diseases, diabetes, and cancer positions it as a promising candidate for further exploration. As studies progress, the recent update underscores the growing optimism surrounding nimbolide as a valuable tool in the ongoing pursuit of innovative therapeutic strategies for chronic diseases. Methods The comprehensive search of the literature was done until September 2020 on the MEDLINE, Embase, Scopus and Web of Knowledge databases. Results Most studies have shown the Nimbolide is one of the most potent limonoids derived from the flowers and leaves of neem (Azadirachta indica), which is widely used to treat a variety of human diseases. In chronic diseases, nimbolide reported to modulate the key signaling pathways, such as Mitogen-activated protein kinases (MAPKs), Wingless-related integration site-β (Wnt-β)/catenin, NF-κB, PI3K/AKT, and signaling molecules, such as transforming growth factor (TGF-β), Matrix metalloproteinases (MMPs), Vascular Endothelial Growth Factor (VEGF), inflammatory cytokines, and epithelial-mesenchymal transition (EMT) proteins. Nimbolide has anti-inflammatory, anti-microbial, and anti-cancer properties, which make it an intriguing compound for research. Nimbolide demonstrated therapeutic potential for osteoarthritis, rheumatoid arthritis, cardiovascular, inflammation and cancer. Conclusion The current review mainly focused on understanding the molecular mechanisms underlying the therapecutic effects of nimbolide in chronic diseases.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Kalaiselvi Sivalingam
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Yashika Rustagi
- Centre for Cancer Genomics, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Rashid Ismael Hag Ibrahim
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Department of Botany, Faculty of Science, University of Khartoum, Sudan
| | - Saeed Yaseen Al-Ramadan
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
11
|
Sun YP, Xie Z, Jin WF, Liu YW, Sun LJ, Liu JS, Wang GK. Swieteliacates S-U, phragmalin limonoids, from the leaves of Swietenia macrophylla. Org Biomol Chem 2024; 22:2182-2186. [PMID: 38390690 DOI: 10.1039/d3ob02113k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Three novel phragmalin-type limonoids, swieteliacates S-U (1-3), were isolated from Swietenia macrophylla leaves, alongside four previously identified limonoids (4-7). The structures, encompassing absolute configurations, were delineated through 1D and 2D NMR analyses, high-resolution mass spectrometry (HR-MS), and NMR and ECD calculations. Swieteliacate S (1) is a distinctive cryptate comprising a tricyclo[4.2.110,30.11,4]decane fragment and an additional five-membered oxygen ring. Compounds 3 and 5 exhibited inhibition rates of 26.08 ± 2.26% and 15.42 ± 3.66%, respectively, on triglyceride (TG) production in Hep G2 cells at 40 μM.
Collapse
Affiliation(s)
- Yun-Peng Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Zhe Xie
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Wen-Fang Jin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Ying-Wei Liu
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, P.R. China
| | - Li-Juan Sun
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, P.R. China
| | - Jin-Song Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, P.R. China.
| | - Guo-Kai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, P.R. China.
| |
Collapse
|
12
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
13
|
Nagini S, Palrasu M, Bishayee A. Limonoids from neem (Azadirachta indica A. Juss.) are potential anticancer drug candidates. Med Res Rev 2024; 44:457-496. [PMID: 37589457 DOI: 10.1002/med.21988] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
Neem (Azadirachta indica A. Juss.), a versatile evergreen tree recognized for its ethnopharmacological value, is a rich source of limonoids of the triterpenoid class, endowed with potent medicinal properties. Extracts of neem have been documented to display anticancer effects in diverse malignant cell lines as well as in preclinical animal models that has largely been attributed to the constituent limonoids. Of late, neem limonoids have become the cynosure of research attention as potential candidate agents for cancer prevention and therapy. Among the various limonoids found in neem, azadirachtin, epoxyazadiradione, gedunin, and nimbolide, have been extensively investigated for anticancer activity. Azadirachtin, a potent biodegradable pesticide, exhibits profound antiproliferative effects by preventing mitotic spindle formation and cell division. The antiproliferative activity of gedunin has been demonstrated to be mediated primarily via inhibition of heat shock protein90 and its client proteins. Epoxyazadiradione inhibits pro-inflammatory and kinase-driven signaling pathways to block tumorigenesis. Nimbolide, the most potent cytotoxic neem limonoid, inhibits the growth of cancer cells by regulating the phosphorylation of keystone kinases that drive oncogenic signaling besides modulating the epigenome. There is overwhelming evidence to indicate that neem limonoids exert anticancer effects by preventing the acquisition of hallmark traits of cancer, such as cell proliferation, apoptosis evasion, inflammation, invasion, angiogenesis, and drug resistance. Neem limonoids are value additions to the armamentarium of natural compounds that target aberrant oncogenic signaling to inhibit cancer development and progression.
Collapse
Affiliation(s)
- Siddavaram Nagini
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Manikandan Palrasu
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
14
|
Varshney K, Mazumder R, Rani A, Mishra R, Khurana N. Recent Research Trends against Skin Carcinoma - An Overview. Curr Pharm Des 2024; 30:2685-2700. [PMID: 39051578 DOI: 10.2174/0113816128307653240710044902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/29/2024] [Indexed: 07/27/2024]
Abstract
Skin cancer is a prevalent and sometimes lethal cancer that affects a wide range of people. UV radiation exposure is the main cause of skin cancer. Immunosuppression, environmental factors, and genetic predisposition are other contributing variables. Fair-skinned people and those with a history of sunburns or severe sun exposure are more likely to experience this condition. Melanoma, squamous cell carcinoma (SCC), and basal cell carcinoma (BCC) are the three main forms. Melanoma poses a bigger hazard because of its tendency for metastasis, while SCC and BCC have limited metastatic potential. Genetic mutations and changes to signalling pathways such as p53 and MAPK are involved in pathogenesis. Early diagnosis is essential, and molecular testing, biopsy, dermoscopy, and visual inspection can all help. In addition to natural medicines like curcumin and green tea polyphenols, treatment options include immunotherapy, targeted therapy, radiation, surgery, and chemotherapy. Reducing the incidence of skin cancer requires preventive actions, including sun protection and early detection programs. An overview of skin cancers, including their forms, pathophysiology, diagnosis, and treatment, highlighting herbal therapy, is given in this review.
Collapse
Affiliation(s)
- Kamya Varshney
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh 201306, India
| | - Rupa Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh 201306, India
| | - Anjna Rani
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh 201306, India
| | - Rashmi Mishra
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh 201306, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
15
|
Grover P, Thakur K, Bhardwaj M, Mehta L, Raina SN, Rajpal VR. Phytotherapeutics in Cancer: From Potential Drug Candidates to Clinical Translation. Curr Top Med Chem 2024; 24:1050-1074. [PMID: 38279745 DOI: 10.2174/0115680266282518231231075311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/28/2024]
Abstract
Annually, a significant number of individuals succumb to cancer, an anomalous cellular condition characterized by uncontrolled cellular proliferation and the emergence of highly perilous tumors. Identifying underlying molecular mechanism(s) driving disease progression has led to various inventive therapeutic approaches, many of which are presently under pre-clinical and/or clinical trials. Over the recent years, numerous alternative strategies for addressing cancer have also been proposed and put into practice. This article delineates the modern therapeutic drugs employed in cancer treatment and their associated toxicity. Due to inherent drug toxicity associated with most modern treatments, demand rises for alternative therapies and phytochemicals with minimal side effects and proven efficacy against cancer. Analogs of taxol, Vinca alkaloids like vincristine and vinblastine, and podophyllotoxin represent a few illustrative examples in this context. The phytochemicals often work by modifying the activity of molecular pathways that are thought to be involved in the onset and progression of cancer. The principal objective of this study is to provide an overview of our current understanding regarding the pharmacologic effects and molecular targets of the active compounds found in natural products for cancer treatment and collate information about the recent advancements in this realm. The authors' interest in advancing the field of phytochemical research stems from both the potential of these compounds for use as drugs as well as their scientific validity. Accordingly, the significance of herbal formulations is underscored, shedding light on anticancer phytochemicals that are sought after at both pre-clinical and clinical levels, with discussion on the opportunities and challenges in pre-clinical and clinical cancer studies.
Collapse
Affiliation(s)
- Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | | | - Monika Bhardwaj
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, 180001, India
| | - Lovekesh Mehta
- Amity Institute of Pharmacy, Amity University, Noida, 201301, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, Noida, 201301, India
| | - Vijay Rani Rajpal
- Department of Botany, Hansraj College, Delhi University, Delhi, 110007, India
| |
Collapse
|
16
|
Burcher JT, DeLiberto LK, Allen AM, Kilpatrick KL, Bishayee A. Bioactive phytocompounds for oral cancer prevention and treatment: A comprehensive and critical evaluation. Med Res Rev 2023; 43:2025-2085. [PMID: 37143373 DOI: 10.1002/med.21969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023]
Abstract
The high incidence of oral cancer combined with excessive treatment cost underscores the need for novel oral cancer preventive and therapeutic options. The value of natural agents, including plant secondary metabolites (phytochemicals), in preventing carcinogenesis and representing expansive source of anticancer drugs have been established. While fragmentary research data are available on antioral cancer effects of phytochemicals, a comprehensive and critical evaluation of the potential of these agents for the prevention and intervention of human oral malignancies has not been conducted according to our knowledge. This study presents a complete and critical analysis of current preclinical and clinical results on the prevention and treatment of oral cancer using phytochemicals. Our in-depth analysis highlights anticancer effects of various phytochemicals, such as phenolics, terpenoids, alkaloids, and sulfur-containing compounds, against numerous oral cancer cells and/or in vivo oral cancer models by antiproliferative, proapoptotic, cell cycle-regulatory, antiinvasive, antiangiogenic, and antimetastatic effects. Bioactive phytochemicals exert their antineoplastic effects by modulating various signaling pathways, specifically involving the epidermal growth factor receptor, cytokine receptors, toll-like receptors, and tumor necrosis factor receptor and consequently alter the expression of downstream genes and proteins. Interestingly, phytochemicals demonstrate encouraging effects in clinical trials, such as reduction of oral lesion size, cell growth, pain score, and development of new lesions. While most phytochemicals displayed minimal toxicity, concerns with bioavailability may limit their clinical application. Future directions for research include more in-depth mechanistic in vivo studies, administration of phytochemicals using novel formulations, investigation of phytocompounds as adjuvants to conventional treatment, and randomized clinical trials.
Collapse
Affiliation(s)
- Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Lindsay K DeLiberto
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Andrea M Allen
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Kaitlyn L Kilpatrick
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
17
|
Curcumin in Wound Healing-A Bibliometric Analysis. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010143. [PMID: 36676091 PMCID: PMC9866018 DOI: 10.3390/life13010143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Curcumin has been widely used to treat a variety of diseases and disorders since ancient times, most notably for the purpose of healing wounds. Despite the large number of available reviews on this topic, a bibliometric tool-based meta-analysis is missing in the literature. Scope and approach: To evaluate the influence and significance of the countries, journals, organizations and authors that have contributed the most to this topic, the popular bibliometric markers, including article count, citation count, and Hirsch index (H-index), are taken into account. Their collaborative networks and keyword co-occurrence along with the trend analysis are also sketched out using the VOSviewer software. To the best of our knowledge, this is the first bibliometric review on the topic and hence it is envisaged that it will attract researchers to explore future research dimensions in the related field. KEY FINDINGS AND CONCLUSIONS India provided the most articles, making up more than 27.49 percent of the entire corpus. The International Journal of Biological Macromolecules published the most articles (44), and it also received the most citations (2012). The Journal of Ethnopharmacology (28 articles) and Current Pharmaceutical Design (20 articles) were the next most prolific journals with 1231 and 812 citations, respectively. The results indicate a significant increase in both research and publications on the wound-healing properties of curcumin. Recent studies have concentrated on creating novel medicine-delivery systems that use nano-curcumin to boost the effect of the curcumin molecule in therapeutic targeting. It has also been observed that genetic engineering and biotechnology have recently been employed to address the commercial implications of curcumin.
Collapse
|
18
|
Glucosidase inhibitor, Nimbidiol ameliorates renal fibrosis and dysfunction in type-1 diabetes. Sci Rep 2022; 12:21707. [PMID: 36522378 PMCID: PMC9755213 DOI: 10.1038/s41598-022-25848-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetic nephropathy is characterized by excessive accumulation of extracellular matrix (ECM) leading to renal fibrosis, progressive deterioration of renal function, and eventually to end stage renal disease. Matrix metalloproteinases (MMPs) are known to regulate synthesis and degradation of the ECM. Earlier, we demonstrated that imbalanced MMPs promote adverse ECM remodeling leading to renal fibrosis in type-1 diabetes. Moreover, elevated macrophage infiltration, pro-inflammatory cytokines and epithelial‒mesenchymal transition (EMT) are known to contribute to the renal fibrosis. Various bioactive compounds derived from the medicinal plant, Azadirachta indica (neem) are shown to regulate inflammation and ECM proteins in different diseases. Nimbidiol is a neem-derived diterpenoid that is considered as a potential anti-diabetic compound due to its glucosidase inhibitory properties. We investigated whether Nimbidiol mitigates adverse ECM accumulation and renal fibrosis to improve kidney function in type-1 diabetes and the underlying mechanism. Wild-type (C57BL/6J) and type-1 diabetic (C57BL/6-Ins2Akita/J) mice were treated either with saline or with Nimbidiol (0.40 mg kg-1 d-1) for eight weeks. Diabetic kidney showed increased accumulation of M1 macrophages, elevated pro-inflammatory cytokines and EMT. In addition, upregulated MMP-9 and MMP-13, excessive collagen deposition in the glomerular and tubulointerstitial regions, and degradation of vascular elastin resulted to renal fibrosis in the Akita mice. These pathological changes in the diabetic mice were associated with functional impairments that include elevated resistive index and reduced blood flow in the renal cortex, and decreased glomerular filtration rate. Furthermore, TGF-β1, p-Smad2/3, p-P38, p-ERK1/2 and p-JNK were upregulated in diabetic kidney compared to WT mice. Treatment with Nimbidiol reversed the changes to alleviate inflammation, ECM accumulation and fibrosis and thus, improved renal function in Akita mice. Together, our results suggest that Nimbidiol attenuates inflammation and ECM accumulation and thereby, protects kidney from fibrosis and dysfunction possibly by inhibiting TGF-β/Smad and MAPK signaling pathways in type-1 diabetes.
Collapse
|
19
|
Wang WH, He LF, Li CP, Yang FZ, Yang XQ, Xie SD, Zhao P, Zhu GL. Tociliatonoid A: a Novel Limonoid from Toona ciliata. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Li J, Cai Z, Li XW, Zhuang C. Natural Product-Inspired Targeted Protein Degraders: Advances and Perspectives. J Med Chem 2022; 65:13533-13560. [PMID: 36205223 DOI: 10.1021/acs.jmedchem.2c01223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Targeted protein degradation (TPD), a promising therapeutic strategy in drug discovery, has great potential to regulate the endogenous degradation of undruggable targets with small molecules. As vital resources that provide diverse structural templates for drug discovery, natural products (NPs) are a rising and robust arsenal for the development of therapeutic TPD. The first proof-of-concept study of proteolysis-targeting chimeras (PROTACs) was a natural polyketide ovalicin-derived degrader; since then, NPs have shown great potential to promote TPD technology. The use of NP-inspired targeted protein degraders has been confirmed to be a promising strategy to treat many human conditions, including cancer, inflammation, and nonalcoholic fatty liver disease. Nevertheless, the development of NP-inspired degraders is challenging, and the field is currently in its infancy. In this review, we summarize the bioactivities and mechanisms of NP-inspired degraders and discuss the associated challenges and future opportunities in this field.
Collapse
Affiliation(s)
- Jiao Li
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhenyu Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Chunlin Zhuang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
21
|
Recent Advances on Biological Activities and Structural Modifications of Dehydroabietic Acid. Toxins (Basel) 2022; 14:toxins14090632. [PMID: 36136570 PMCID: PMC9501862 DOI: 10.3390/toxins14090632] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Dehydroabietic acid is a tricyclic diterpenoid resin acid isolated from rosin. Dehydroabietic acid and its derivatives showed lots of medical and agricultural bioactivities, such as anticancer, antibacterial, antiviral, antiulcer, insecticidal, and herbicidal activities. This review summarized the research advances on the structural modification and total synthesis of dehydroabietic acid and its derivatives from 2015 to 2021, and analyzed the biotransformation and structure-activity relationships in order to provide a reference for the development and utilization of dehydroabietic acid and its derivatives as drugs and pesticides.
Collapse
|
22
|
A Comprehensive Review of BET-targeting PROTACs for Cancer Therapy. Bioorg Med Chem 2022; 73:117033. [DOI: 10.1016/j.bmc.2022.117033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/11/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022]
|
23
|
Bajalia EM, Azzouz FB, Chism DA, Giansiracusa DM, Wong CG, Plaskett KN, Bishayee A. Phytochemicals for the Prevention and Treatment of Renal Cell Carcinoma: Preclinical and Clinical Evidence and Molecular Mechanisms. Cancers (Basel) 2022; 14:3278. [PMID: 35805049 PMCID: PMC9265746 DOI: 10.3390/cancers14133278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Renal cell carcinoma (RCC) is associated with about 90% of renal malignancies, and its incidence is increasing globally. Plant-derived compounds have gained significant attention in the scientific community for their preventative and therapeutic effects on cancer. To evaluate the anticancer potential of phytocompounds for RCC, we compiled a comprehensive and systematic review of the available literature. Our work was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. The literature search was performed using scholarly databases such as PubMed, Scopus, and ScienceDirect and keywords such as renal cell carcinoma, phytochemicals, cancer, tumor, proliferation, apoptosis, prevention, treatment, in vitro, in vivo, and clinical studies. Based on in vitro results, various phytochemicals, such as phenolics, terpenoids, alkaloids, and sulfur-containing compounds, suppressed cell viability, proliferation and growth, showed cytotoxic activity, inhibited invasion and migration, and enhanced the efficacy of chemotherapeutic drugs in RCC. In various animal tumor models, phytochemicals suppressed renal tumor growth, reduced tumor size, and hindered angiogenesis and metastasis. The relevant antineoplastic mechanisms involved upregulation of caspases, reduction in cyclin activity, induction of cell cycle arrest and apoptosis via modulation of a plethora of cell signaling pathways. Clinical studies demonstrated a reduced risk for the development of kidney cancer and enhancement of the efficacy of chemotherapeutic drugs. Both preclinical and clinical studies displayed significant promise of utilizing phytochemicals for the prevention and treatment of RCC. Further research, confirming the mechanisms and regulatory pathways, along with randomized controlled trials, are needed to establish the use of phytochemicals in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (E.M.B.); (F.B.A.); (D.A.C.); (D.M.G.); (C.G.W.); (K.N.P.)
| |
Collapse
|
24
|
Mohapatra P, Singh P, Singh D, Sahoo S, Sahoo SK. Phytochemical based nanomedicine: a panacea for cancer treatment, present status and future prospective. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
Wylie MR, Merrell DS. The Antimicrobial Potential of the Neem Tree Azadirachta indica. Front Pharmacol 2022; 13:891535. [PMID: 35712721 PMCID: PMC9195866 DOI: 10.3389/fphar.2022.891535] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022] Open
Abstract
Azadirachta indica (A. Juss), also known as the neem tree, has been used for millennia as a traditional remedy for a multitude of human ailments. Also recognized around the world as a broad-spectrum pesticide and fertilizer, neem has applications in agriculture and beyond. Currently, the extensive antimicrobial activities of A. indica are being explored through research in the fields of dentistry, food safety, bacteriology, mycology, virology, and parasitology. Herein, some of the most recent studies that demonstrate the potential of neem as a previously untapped source of novel therapeutics are summarized as they relate to the aforementioned research topics. Additionally, the capacity of neem extracts and compounds to act against drug-resistant and biofilm-forming organisms, both of which represent large groups of pathogens for which there are limited treatment options, are highlighted. Updated information on the phytochemistry and safety of neem-derived products are discussed as well. Although there is a growing body of exciting evidence that supports the use of A. indica as an antimicrobial, additional studies are clearly needed to determine the specific mechanisms of action, clinical efficacy, and in vivo safety of neem as a treatment for human pathogens of interest. Moreover, the various ongoing studies and the diverse properties of neem discussed herein may serve as a guide for the discovery of new antimicrobials that may exist in other herbal panaceas across the globe.
Collapse
Affiliation(s)
- Marina R Wylie
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
26
|
Vergoten G, Bailly C. Molecular docking study of GSK-3β interaction with nomilin, kihadanin B, and related limonoids and triterpenes with a furyl-δ-lactone core. J Biochem Mol Toxicol 2022; 36:e23130. [PMID: 35686814 DOI: 10.1002/jbt.23130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 11/06/2022]
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a target enzyme considered for the treatment of multiple human diseases, from neurodegenerative pathologies to viral infections and cancers. Numerous inhibitors of GSK-3β have been discovered but thus far only a few have reached clinical trials and only one drug, tideglusib (1), has been registered. Natural products targeting GSK-3β have been identified, including the two anticancer limonoids obacunone (5) and gedunin (4), both presenting a furyl-δ-lactone core. To help identifying novel GSK-3β ligands, we have performed a molecular docking study with 15 complementary natural products bearing a furyl-δ-lactone unit (such as limonin (6) and kihadanins A (8) and B (9)) or a closely related structure (such as cedrelone (10) and nimbolide (11)). The formation of GSK-3β-binding complexes for those natural products was compared to reference GSK-3β ATP-competitive inhibitors LY2090314 (3) and AR-A014418 (2). Our in silico analysis led to the identification of two new GSK-3β-binding natural products: kihadanin B (9) and nomilin (7). The latter surpassed the reference compounds in terms of calculated empirical energy of interaction (ΔE). Nomilin (7) can possibly bind to the active site of GSK-3β, notably via the furyl-δ-lactone core and its 1-acetyl group, implicated in the protein interaction. Compound structure-binding relationships are discussed. The study should help the discovery of novel natural products targeting GSK-3β.
Collapse
Affiliation(s)
- Gérard Vergoten
- Inserm, INFINITE - U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, Lille, France
| | - Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille, Wasquehal, France
| |
Collapse
|
27
|
Xu Z, Chu M. Advances in Immunosuppressive Agents Based on Signal Pathway. Front Pharmacol 2022; 13:917162. [PMID: 35694243 PMCID: PMC9178660 DOI: 10.3389/fphar.2022.917162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Immune abnormality involves in various diseases, such as infection, allergic diseases, autoimmune diseases, as well as transplantation. Several signal pathways have been demonstrated to play a central role in the immune response, including JAK/STAT, NF-κB, PI3K/AKT-mTOR, MAPK, and Keap1/Nrf2/ARE pathway, in which multiple targets have been used to develop immunosuppressive agents. In recent years, varieties of immunosuppressive agents have been approved for clinical use, such as the JAK inhibitor tofacitinib and the mTOR inhibitor everolimus, which have shown good therapeutic effects. Additionally, many immunosuppressive agents are still in clinical trials or preclinical studies. In this review, we classified the immunosuppressive agents according to the immunopharmacological mechanisms, and summarized the phase of immunosuppressive agents.
Collapse
Affiliation(s)
- Zhiqing Xu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Pharmacology, Jilin University, Changchun, China
| | - Ming Chu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
28
|
Luo J, Sun Y, Li Q, Kong L. Research progress of meliaceous limonoids from 2011 to 2021. Nat Prod Rep 2022; 39:1325-1365. [PMID: 35608367 DOI: 10.1039/d2np00015f] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Covering: July 2010 to December 2021Limonoids, a kind of natural tetranortriterpenoids with diverse skeletons and valuable insecticidal and medicinal bioactivities, are the characteristic metabolites of most plants of the Meliaceae family. The chemistry and bioactivities of meliaceous limonoids are a continuing hot area of natural products research; to date, about 2700 meliaceous limonoids have been identified. In particular, more than 1600, including thirty kinds of novel rearranged skeletons, have been isolated and identified in the past decade due to their wide distribution and abundant content in Meliaceae plants and active biosynthetic pathways. In addition to the discovery of new structures, many positive medicinal bioactivities of meliaceous limonoids have been investigated, and extensive achievements regarding the chemical and biological synthesis have been made. This review summarizes the recent research progress in the discovery of new structures, medicinal and agricultural bioactivities, and chem/biosynthesis of limonoids from the plants of the Meliaceae family during the past decade, with an emphasis on the discovery of limonoids with novel skeletons, the medicinal bioactivities and mechanisms, and chemical synthesis. The structures, origins, and bioactivities of other new limonoids were provided as ESI. Studies published from July 2010 to December 2021 are reviewed, and 482 references are cited.
Collapse
Affiliation(s)
- Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Yunpeng Sun
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Qiurong Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
29
|
A UHPLC-QTOF-MS/MS method with a superimposed multiple product ion strategy and esterase inhibitor improved sensitivity for the determination of xylocarpin H in rat plasma. J Pharm Biomed Anal 2022; 216:114803. [DOI: 10.1016/j.jpba.2022.114803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/11/2022] [Accepted: 04/23/2022] [Indexed: 11/23/2022]
|
30
|
Nivetha R, Arvindhvv S, Baba AB, Gade DR, Gopal G, K C, Kallamadi KPR, Reddy GB, Nagini S. Nimbolide, a Neem Limonoid, Inhibits Angiogenesis in Breast Cancer by Abrogating Aldose Reductase Mediated IGF-1/PI3K/Akt Signaling. Anticancer Agents Med Chem 2022; 22:2619-2636. [DOI: 10.2174/1871520622666220204115151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
Background & Objectives:
There is growing evidence to implicate the insulin/IGF-1R/PI3K/Akt signaling cascade in breast cancer development and the central role of aldose reductase (AR) in mediating the crosstalk between this pathway and angiogenesis. The current study was designed to investigate whether nimbolide, a neem limonoid, targets this oncogenic signaling network to prevent angiogenesis in breast cancer.
Methods:
Breast cancer cells (MCF-7, MDA-MB-231), EAhy926 endothelial cells, MDA-MB-231 xenografted nude mice, and tumour tissues from breast cancer patients were used for the study. Expression of AR and key players in IGF-1/PI3K/Akt signaling and angiogenesis was evaluated by qRT-PCR, immunoblotting, and immunohistochemistry. Molecular docking and simulation, overexpression, and knockdown experiments were performed to determine whether nimbolide targets AR and IGF-1R
Results:
Nimbolide inhibited AR with consequent blockade of the IGF-1/PI3K/Akt and HIF-1/VEGF signaling circuit by influencing the phosphorylation and intracellular localisation of key signaling molecules. Downregulation of DNMT-1, HDAC-6, miR-21, HOTAIR, and H19 with upregulation of miR-148a/miR-152 indicated that nimbolide regulates AR and IGF-1/PI3K/Akt signaling via epigenetic modifications. Coadministration of nimbolide with metformin and the chemotherapeutic drugs tamoxifen/cisplatin displayed higher efficacy than single agents in inhibiting IGF-1/PI3K/Akt/AR signaling. Grade-wise increases in IGF-1R and AR expression in breast cancer tissues underscore their value as biomarkers of progression.
Conclusions:
This study provides evidence for the anticancer effects of nimbolide in cellular and mouse models of breast cancer besides providing leads for new drug combinations. It has also opened up avenues for investigating potential molecules such as AR for therapeutic targeting of cancer.
Collapse
Affiliation(s)
- Ramesh Nivetha
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608002, Tamil Nadu, India
| | - Soundararajan Arvindhvv
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608002, Tamil Nadu, India
| | - Abdul Basit Baba
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608002, Tamil Nadu, India
| | - Deepak Reddy Gade
- Centre for Molecular Cancer Research, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, India
| | - Gopisetty Gopal
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai 600020, Tamil Nadu, India
| | - Chitrathara K
- Department of Surgical & Gynecologic Oncology, VPS Lakeshore Hospital, Nettoor, Maradu, Kochi, Kerala 682040
| | | | - G. Bhanuprakash Reddy
- Department of Biochemistry, ICMR-National Institute of Nutrition, Hyderabad-500007, India
| | - Siddavaram Nagini
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608002, Tamil Nadu, India
| |
Collapse
|
31
|
Nath N, Rana A, Nagini S, Mishra R. Glycogen synthase kinase-3β inactivation promotes cervical cancer progression, invasion, and drug resistance. Biotechnol Appl Biochem 2021; 69:1929-1941. [PMID: 34554598 DOI: 10.1002/bab.2258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 09/19/2021] [Indexed: 01/03/2023]
Abstract
Human papillomavirus (HPV) infection-dependent cervical cancer is one of the most common gynecological cancers and often becomes aggressive, with rapid proliferation, invasion/migration, and drug resistance. Here, 135 fresh human cervical squamous cell carcinoma (CSCC) tissue specimens, comprising 21 adjacent normal (AN), 30 cervical intraepithelial neoplasia (CIN1-3 ), 45 CSCC, and 39 drugs (chemo-radiation)-resistant cervical tumor (DRCT) tissues were included. HPV-positive (HeLa, SiHa), HPV-negative (C33A), and cisplatin-resistant (CisR-HeLa/-SiHa/-C33A) cell lines were used for in vitro studies. HPV16/18 oncoproteins E6/E7, pERK1/2, and glycogen synthase kinase-3 (GSK3) and the matrix metalloproteinases (MMPs) MMP-9/-2 were assessed using immunohistochemistry, WB, and gelatin zymography. HPV16/18 infection was observed in 16.7% of the CIN1-3 , 77.8% of the CSCC, and 89.7% of DRCT samples. Total and inactive GSK3β expressions were associated with overall CSCC progression (p = 0.039 and p = 0.024, respectively) and chemoresistance (p = 0.004 and p = 0.014, respectively). Positive correlations were observed, between the expression of E6 and pGSK3β expression (p = 0.013); E6 and CSCC progression (p < 0.0001)/drug resistance (p = 0.0001). CisR-HeLa/-SiHa was more dependent on pGSK3β, and activation of GSK3 by SMIs (iAkt), treatment with nimbolide, or knockdown of E6/E7 reduced cisplatin resistance and promoted apoptosis. Hence, the activation of GSK3β with nimbolide and iAkt can be exploited for therapeutic interventions of cervical cancer.
Collapse
Affiliation(s)
- Nidhi Nath
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Ajay Rana
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The University of Illinois at Chicago, Chicago, Illinois, USA
| | - Siddavaram Nagini
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Rajakishore Mishra
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| |
Collapse
|