1
|
Hartman CB, Dube PS, Legoabe LJ, Van Pelt N, Matheeussen A, Caljon G, Beteck RM. Novel quinoline derivatives with broad-spectrum antiprotozoal activities. Arch Pharm (Weinheim) 2024; 357:e2300319. [PMID: 38396284 DOI: 10.1002/ardp.202300319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
Several quinoline derivatives incorporating arylnitro and aminochalcone moieties were synthesized and evaluated in vitro against a broad panel of trypanosomatid protozoan parasites responsible for sleeping sickness (Trypanosoma brucei rhodesiense), nagana (Trypanosoma brucei brucei), Chagas disease (Trypanosoma cruzi), and leishmaniasis (Leishmania infantum). Several of the compounds demonstrated significant antiprotozoal activity. Specifically, compounds 2c, 2d, and 4i displayed submicromolar activity against T. b. rhodesiense with half-maximal effective concentration (EC50) values of 0.68, 0.8, and 0.19 µM, respectively, and with a high selectivity relative to human lung fibroblasts and mouse primary macrophages (∼100-fold). Compounds 2d and 4i also showed considerable activity against T. b. brucei with EC50 values of 1.4 and 0.4 µM, respectively.
Collapse
Affiliation(s)
- Carla B Hartman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Phelelisiwe S Dube
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Natascha Van Pelt
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - An Matheeussen
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Present C, Girão RD, Lin C, Caljon G, Van Calenbergh S, Moreira O, Ruivo LADS, Batista MM, Azevedo R, Batista DDGJ, Soeiro MDNC. N 6-methyltubercidin gives sterile cure in a cutaneous Leishmania amazonensis mouse model. Parasitology 2024; 151:506-513. [PMID: 38533610 PMCID: PMC11106500 DOI: 10.1017/s0031182024000362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Leishmania is a trypanosomatid parasite that causes skin lesions in its cutaneous form. Current therapies rely on old and expensive drugs, against which the parasites have acquired considerable resistance. Trypanosomatids are unable to synthesize purines relying on salvaging from the host, and nucleoside analogues have emerged as attractive antiparasitic drug candidates. 4-Methyl-7-β-D-ribofuranosyl-7H-pyrrolo[2,3-d]pyrimidine (CL5564), an analogue of tubercidin in which the amine has been replaced by a methyl group, demonstrates activity against Trypanosoma cruzi and Leishmania infantum. Herein, we investigated its in vitro and in vivo activity against L. amazonensis. CL5564 was 6.5-fold (P = 0.0002) more potent than milteforan™ (ML) against intracellular forms in peritoneal mouse macrophages, and highly selective, while combination with ML gave an additive effect. These results stimulated us to study the activity of CL5564 in mouse model of cutaneous Leishmania infection. BALB/c female and male mice infected by L. amazonensis treated with CL5564 (10 mg kg−1, intralesional route for five days) presented a >93% reduction of paw lesion size likely ML given orally at 40 mg kg−1, while the combination (10 + 40 mg kg−1 of CL5564 and ML, respectively) caused >96% reduction. The qPCR confirmed the suppression of parasite load, but only the combination approach reached 66% of parasitological cure. These results support additional studies with nucleoside derivatives.
Collapse
Affiliation(s)
- Cassandra Present
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Roberson Donola Girão
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Cai Lin
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Otacilio Moreira
- Laboratório de Virologia e Parasitologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Leonardo Alexandre de Souza Ruivo
- Laboratório de Virologia e Parasitologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Marcos Meuser Batista
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Raquel Azevedo
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Denise da Gama Jaen Batista
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Maria de Nazaré Correia Soeiro
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Ewald S, Nasuhidehnavi A, Feng TY, Lesani M, McCall LI. The intersection of host in vivo metabolism and immune responses to infection with kinetoplastid and apicomplexan parasites. Microbiol Mol Biol Rev 2024; 88:e0016422. [PMID: 38299836 PMCID: PMC10966954 DOI: 10.1128/mmbr.00164-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
SUMMARYProtozoan parasite infection dramatically alters host metabolism, driven by immunological demand and parasite manipulation strategies. Immunometabolic checkpoints are often exploited by kinetoplastid and protozoan parasites to establish chronic infection, which can significantly impair host metabolic homeostasis. The recent growth of tools to analyze metabolism is expanding our understanding of these questions. Here, we review and contrast host metabolic alterations that occur in vivo during infection with Leishmania, trypanosomes, Toxoplasma, Plasmodium, and Cryptosporidium. Although genetically divergent, there are commonalities among these pathogens in terms of metabolic needs, induction of the type I immune responses required for clearance, and the potential for sustained host metabolic dysbiosis. Comparing these pathogens provides an opportunity to explore how transmission strategy, nutritional demand, and host cell and tissue tropism drive similarities and unique aspects in host response and infection outcome and to design new strategies to treat disease.
Collapse
Affiliation(s)
- Sarah Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Azadeh Nasuhidehnavi
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Tzu-Yu Feng
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Mahbobeh Lesani
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| |
Collapse
|
4
|
Krols S, Matteucci F, Van Hecke K, Caljon G, Jacobson KA, Van Calenbergh S. Dual N6/C7-Substituted 7-Deazapurine and Tricyclic Ribonucleosides with Affinity for G Protein-Coupled Receptors. ACS Med Chem Lett 2024; 15:81-86. [PMID: 38229744 PMCID: PMC10789135 DOI: 10.1021/acsmedchemlett.3c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024] Open
Abstract
Various purine-based nucleoside analogues have demonstrated unexpected affinity for nonpurinergic G protein-coupled receptors (GPCRs), such as opioid and serotonin receptors. In this work, we synthesized a small library of new 7-deazaadenosine and pyrazolo[3,4-d]pyrimidine riboside analogues, featuring dual C7 and N6 modifications and assessed their affinity for various GPCRs. During the course of the synthesis of 7-ethynyl pyrazolo[3,4-d]pyrimidine ribosides, we observed the formation of an unprecedented tricyclic nucleobase, formed via a 6-endo-dig ring closure. The synthesis of this tricyclic nucleoside was optimized, and the substrate scope for such cyclization was further explored because it might avail further exploration in the nucleoside field. From displacement experiments on a panel of GPCRs and transporters, combining C7 and N6 modifications afforded noncytotoxic nucleosides with micromolar and submicromolar affinity for different GPCRs, such as the 5-hydroxytryptamine (5-HT)2B, κ-opioid (KOR), and σ1/2 receptor. These results corroborate that the novel nucleoside analogues reported here are potentially useful starting points for the further development of modulators of GPCRs and transmembrane proteins.
Collapse
Affiliation(s)
- Simon Krols
- Laboratory
for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Federica Matteucci
- Laboratory
for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Kristof Van Hecke
- XStruct,
Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Guy Caljon
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Kenneth A. Jacobson
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Serge Van Calenbergh
- Laboratory
for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Chung CY, Tseng CC, Li SM, Zeng WZ, Lin YC, Hu YP, Jiang WP, Huang GJ, Tsai HJ, Wong FF. Synthesis of β-Amino Carbonyl 6-(Aminomethyl)- and 6-(Hydroxymethyl)pyrazolopyrimidines for DPP-4 Inhibition Study. Curr Med Chem 2024; 31:3380-3396. [PMID: 35702778 DOI: 10.2174/0929867329666220614094305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/19/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Type-2 diabetes is a chronic progressive metabolic disease resulting in severe vascular complications and mortality risk. Recently, DPP-4 inhibitors had been conceived as a favorable class of agents for the treatment of type 2 diabetes due to the minimal side effects. METHODS Sitagliptin is the first medicine approved for the DPP-4 inhibitor. Its structure involved three fragments: 2,4,5-triflorophenyl fragment pharmacophore, enantiomerically β-amino carbonyl linker, and tetrahydrotriazolopyridine. Herein, we are drawn to the possibility of substituting tetrahydrotriazolopyridine motif present in Sitagliptin with a series of new fused pyrazolopyrimidine bicyclic fragment to investigate potency and safety. RESULTS Two series of fused 6-(aminomethyl)pyrazolopyrimidine and 6-(hydroxymethyl) pyrazolopyrimidine derivatives containing β-amino ester or amide as linkers were successfully designed for the new DPP-4 inhibitors. Most fused 6-methylpyrazolopyrimidines were evaluated against DPP-4 inhibition and selectivity capacity. Based on research study, β-amino carbonyl fused 6-(hydroxymethyl)pyrazolopyrimidine possesses the significant DPP-4 inhibition (IC50 ≤ 59.8 nM) and presents similar with Sitagliptin (IC50 = 28 nM). Particularly, they had satisfactory selectivity over DPP-8 and DPP-9, except for QPP. CONCLUSION β-Amino esters and amides fused 6-(hydroxymethyl)pyrazolopyrimidine were developed as the new DPP-4 inhibitors. Those compounds with a methyl group or hydrogen in N-1 position and methyl substituted group in C-3 of pyrazolopyrimidine moiety showed better potent DPP-4 inhibition (IC50 = 21.4-59.8 nM). Furthermore, they had satisfactory selectivity over DPP-8 and DPP-9 Finally, the docking results revealed that compound 9n was stabilized at DPP-4 active site and would be a potential lead drug.
Collapse
Affiliation(s)
- Cheng-Yen Chung
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
| | - Ching-Chun Tseng
- Phd Program for Biotech Pharmaceutical Industry, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
- School of Pharmacy, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
| | - Sin-Min Li
- Institute of New Drug Development, China Medical University, No. 91 Hsueh-Shih Rd., Taichung 40402, Taiwan
| | - Wei-Zheng Zeng
- Master Program for Pharmaceutical Manufacture, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
| | - Yu-Ching Lin
- Department of Biological Science and Technology, China Medical University, Taichung Taiwan
| | - Yu-Pei Hu
- Department of Biological Science and Technology, China Medical University, Taichung Taiwan
| | - Wen-Ping Jiang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan
| | - Henry J Tsai
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan
| | - Fung Fuh Wong
- Phd Program for Biotech Pharmaceutical Industry, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
- School of Pharmacy, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
| |
Collapse
|
6
|
Wang L, Fan W, Cui L, Yang N, Zhang X, Yu S, Li Y, Wang B. Synthesis and Biological Activity Evaluation of Novel Chalcone Analogues Containing a Methylxanthine Moiety and Their N-Acyl Pyrazoline Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19343-19356. [PMID: 38047436 DOI: 10.1021/acs.jafc.3c05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
On the basis of the structures of natural methylxanthines and chalcone, a series of novel chalcone analogues containing a methylxanthine moiety, Ia-Ig, and their N-acyl pyrazoline derivatives IIa-IIz and IIaa-IIaf were synthesized and identified through melting points, 1H NMR, 13C NMR, and HRMS. The single crystal of compound IId was obtained, which further illustrated the structural characteristics of the methylxanthine-acylpyrazoline compounds. The biological tests showed that some of them displayed favorable insecticidal activities toward Plutella xylostella L. and were superior to the natural methylxanthine compound caffeine while being comparable with the insecticide triflumuron (e.g., compound Ic: LC50 = 16.8508 mg/L, IIf: LC50 = 1.5721 mg/L, against P. xylostella). Of these compounds, Ic, IIf, and IIu could serve as novel insecticidal leading structures for further study. Some of the compounds showed good fungicidal activities (e.g., compound Ig: EC50 = 14.74 μg/mL, against Rhizoctonia cerealis; IIf: EC50 = 7.06 μg/mL, against Physalospora piricola; IIac: EC50 = 5.37 and 8.19 μg/mL, against Phytophthora capsici and Sclerotinia sclerotiorum, respectively); Ic, Ig, IIa, IIf, IIr, IIs, IIv, IIac, and IIaf could be novel fungicidal leading compounds for further exploration. Furthermore, most of the tested compounds exhibited apparent herbicidal activities against Brassica campestris at a concentration of 100 μg/mL; among others, compound IIa was the best one both toward Brassica campestris and Echinochloa crusgalli and deserves further investigation. The structure-activity relationships of these compounds were also summarized and discussed in detail. The contrast experiment results of compounds C-1 and C-2 showed a positive effect on the biological activity enhancement from the combination of the methylxanthine moiety with the N-dichloroacetyl phenylpyrazoline skeleton. In addition, two 3D-QSAR models with predictive capability were constructed based on the insecticidal and fungicidal activities to afford deep insight into the bioactivity profiles of these compounds. This research provides useful guidance and reference for the discovery and development of novel xanthine natural product-based pesticides.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wenqi Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Li Cui
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Na Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shujing Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yonghong Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Baolei Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Lu S, Zhang Z, Sharma AR, Nakajima-Shimada J, Harunari E, Oku N, Trianto A, Igarashi Y. Bulbiferamide, an Antitrypanosomal Hexapeptide Cyclized via an N-Acylindole Linkage from a Marine Obligate Microbulbifer. JOURNAL OF NATURAL PRODUCTS 2023; 86:1081-1086. [PMID: 36843290 DOI: 10.1021/acs.jnatprod.2c01083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
UV absorption spectroscopy-guided fractionation of the culture extract of a marine obligate bacterium of the genus Microbulbifer yielded a novel cyclic hexapeptide, bulbiferamide (1). NMR spectroscopic and mass spectrometric analyses revealed the structure of 1 to be a cyclic tetrapeptide appending a ureido-bridged two amino acid unit. Notably, Trp is a junction residue, forming on one hand a very rare N-aminoacylated indole linkage for cyclization and on the other hand connecting the ureido-containing tail structure, which is an unprecedented way of configuring peptides. The component amino acids were determined to be l by the advanced Marfey's method. Compound 1 displayed growth inhibitory activity against Trypanosoma cruzi epimastigotes with an IC50 value of 4.1 μM, comparable to the currently approved drug benznidazole, while it was not cytotoxic to P388 murine leukemia cells at 100 μM.
Collapse
Affiliation(s)
- Shiyang Lu
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Zhiwei Zhang
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Amit Raj Sharma
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Junko Nakajima-Shimada
- Department of Molecular and Cellular Parasitology, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan
| | - Enjuro Harunari
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Naoya Oku
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Agus Trianto
- Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Tembalang Campus, St. Prof. Soedarto SH, Semarang, 50275 Central Java, Indonesia
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
8
|
Nesic de Freitas LSF, da Silva CF, Intagliata S, Amata E, Salerno L, Soeiro MDNC. In vitro and in silico analysis of imatinib analogues as anti- Trypanosoma cruzi drug candidates. Parasitology 2023; 150:1-18. [PMID: 36632017 PMCID: PMC10090470 DOI: 10.1017/s0031182023000057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023]
Abstract
Chagas disease (CD) is a neglected tropical disease caused by the intracellular protozoan Trypanosoma cruzi that remains a serious public health issue affecting more than 6 million people worldwide. The available treatment includes 2 nitro derivatives, benznidazole (BZ) and nifurtimox, that lack in efficacy in the later chronic phase and when administered against the several naturally resistant parasite strains and present several side-effects, demanding new therapeutic options. One strategy is based on repurposing by testing drugs already used for other illness that may share similar targets. In this context, our previous data on imatinib (IMB) and derivatives motivated the screening of 8 new IMB analogues. Our findings showed that all except 1 were active against bloodstream trypomastigotes reaching drug concentration capable of inducing a 50% of parasite lysis (EC50) values < 12 μ m after 2 h while BZ was inactive. After 24 h, all derivatives were more potent than BZ, exhibiting EC50 values 1.5–5.5 times lower. Against intracellular forms, 7 out of 8 derivatives presented high activity, with EC50 values ≤ BZ. LS2/89 stood out as one of the most promising, reaching EC90 values of 1.68 and 4.9 μ m on intracellular and trypomastigote forms, respectively, with the best selectivity index (>60) towards the proliferative forms. Physicochemical parameters as well as the absorption, distribution, metabolism, excretion and toxicity properties were predicted to be acceptable and with good chance of a favourable oral bioavailability. The promising results motivate further studies such as in vivo and combinatory assays aiming to contribute for a novel safer and effective therapy for CD.
Collapse
Affiliation(s)
| | | | - Sebastiano Intagliata
- Department of Drug and Health Sciences, Section of Medicinal Chemistry, University of Catania, Catania, Italy
| | - Emanuele Amata
- Department of Drug and Health Sciences, Section of Medicinal Chemistry, University of Catania, Catania, Italy
| | - Loredana Salerno
- Department of Drug and Health Sciences, Section of Medicinal Chemistry, University of Catania, Catania, Italy
| | | |
Collapse
|
9
|
Fiuza LFDA, Batista DGJ, Girão RD, Hulpia F, Finamore-Araújo P, Aldfer MM, Elmahallawy EK, De Koning HP, Moreira O, Van Calenbergh S, Soeiro MDNC. Phenotypic Evaluation of Nucleoside Analogues against Trypanosoma cruzi Infection: In Vitro and In Vivo Approaches. Molecules 2022; 27:molecules27228087. [PMID: 36432189 PMCID: PMC9695592 DOI: 10.3390/molecules27228087] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi (T. cruzi), is a serious public health problem. Current treatment is restricted to two drugs, benznidazole and nifurtimox, displaying serious efficacy and safety drawbacks. Nucleoside analogues represent a promising alternative as protozoans do not biosynthesize purines and rely on purine salvage from the hosts. Protozoan transporters often present different substrate specificities from mammalian transporters, justifying the exploration of nucleoside analogues as therapeutic agents. Previous reports identified nucleosides with potent trypanocidal activity; therefore, two 7-derivatized tubercidins (FH11706, FH10714) and a 3′-deoxytubercidin (FH8513) were assayed against T. cruzi. They were highly potent and selective, and the uptake of the tubercidin analogues appeared to be mediated by the nucleoside transporter TcrNT2. At 10 μM, the analogues reduced parasitemia >90% in 2D and 3D cardiac cultures. The washout assays showed that FH10714 sterilized the infected cultures. Given orally, the compounds did not induce noticeable mouse toxicity (50 mg/kg), suppressed the parasitemia of T. cruzi-infected Swiss mice (25 mg/kg, 5 days) and presented DNA amplification below the limit of detection. These findings justify further studies with longer treatment regimens, as well as evaluations in combination with nitro drugs, aiming to identify more effective and safer therapies for Chagas disease.
Collapse
Affiliation(s)
- Ludmila F. de A. Fiuza
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Denise G. J. Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Roberson D. Girão
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Paula Finamore-Araújo
- Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro 20000-000, Brazil
| | - Mustafa M. Aldfer
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow 62694, UK
| | - Ehab Kotb Elmahallawy
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow 62694, UK
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Harry P. De Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow 62694, UK
| | - Otacílio Moreira
- Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro 20000-000, Brazil
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Maria de Nazaré C. Soeiro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, Brazil
- Correspondence: ; Tel.: +55-21-2562-1368
| |
Collapse
|
10
|
The Trypanosoma cruzi TcrNT2 Nucleoside Transporter Is a Conduit for the Uptake of 5-F-2'-Deoxyuridine and Tubercidin Analogues. Molecules 2022; 27:molecules27228045. [PMID: 36432150 PMCID: PMC9693223 DOI: 10.3390/molecules27228045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Among the scarce validated drug targets against Chagas disease (CD), caused by Trypanosoma cruzi, the parasite's nucleoside salvage system has recently attracted considerable attention. Although the trypanocidal activity of tubercidin (7-deazapurine) has long been known, the identification of a class of 7-substituted tubercidin analogs with potent in vitro and in vivo activity and much-enhanced selectivity has made nucleoside analogs among the most promising lead compounds against CD. Here, we investigate the recently identified TcrNT2 nucleoside transporter and its potential role in antimetabolite chemotherapy. TcrNT2, expressed in a Leishmania mexicana cell line lacking the NT1 nucleoside transporter locus, displayed very high selectivity and affinity for thymidine with a Km of 0.26 ± 0.05 µM. The selectivity was explained by interactions of 2-oxo, 4-oxo, 5-Me, 3'-hydroxy and 5'-hydroxy with the transporter binding pocket, whereas a hydroxy group at the 2' position was deleterious to binding. This made 5-halogenated 2'-deoxyuridine analogues good substrates but 5-F-2'-deoxyuridine displayed disappointing activity against T. cruzi trypomastigotes. By comparing the EC50 values of tubercidin and its 7-substituted analogues against L. mexicana Cas9, Cas9ΔNT1 and Cas9ΔNT1+TcrNT2 it was shown that TcrNT2 can take up tubercidin and, at a minimum, a subset of the analogs.
Collapse
|
11
|
Jain S, Sahu U, Kumar A, Khare P. Metabolic Pathways of Leishmania Parasite: Source of Pertinent Drug Targets and Potent Drug Candidates. Pharmaceutics 2022; 14:pharmaceutics14081590. [PMID: 36015216 PMCID: PMC9416627 DOI: 10.3390/pharmaceutics14081590] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Leishmaniasis is a tropical disease caused by a protozoan parasite Leishmania that is transmitted via infected female sandflies. At present, leishmaniasis treatment mainly counts on chemotherapy. The currently available drugs against leishmaniasis are costly, toxic, with multiple side effects, and limitations in the administration route. The rapid emergence of drug resistance has severely reduced the potency of anti-leishmanial drugs. As a result, there is a pressing need for the development of novel anti-leishmanial drugs with high potency, low cost, acceptable toxicity, and good pharmacokinetics features. Due to the availability of preclinical data, drug repurposing is a valuable approach for speeding up the development of effective anti-leishmanial through pointing to new drug targets in less time, having low costs and risk. Metabolic pathways of this parasite play a crucial role in the growth and proliferation of Leishmania species during the various stages of their life cycle. Based on available genomics/proteomics information, known pathways-based (sterol biosynthetic pathway, purine salvage pathway, glycolysis, GPI biosynthesis, hypusine, polyamine biosynthesis) Leishmania-specific proteins could be targeted with known drugs that were used in other diseases, resulting in finding new promising anti-leishmanial therapeutics. The present review discusses various metabolic pathways of the Leishmania parasite and some drug candidates targeting these pathways effectively that could be potent drugs against leishmaniasis in the future.
Collapse
Affiliation(s)
- Surbhi Jain
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal 462026, Madhya Pradesh, India; (S.J.); (U.S.)
| | - Utkarsha Sahu
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal 462026, Madhya Pradesh, India; (S.J.); (U.S.)
- Division of Synthetic Biology, Absolute Foods, Plot 68, Sector 44, Gurugram 122003, Haryana, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, Chhattisgarh, India
- Correspondence: or (A.K.); (P.K.)
| | - Prashant Khare
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal 462026, Madhya Pradesh, India; (S.J.); (U.S.)
- Division of Synthetic Biology, Absolute Foods, Plot 68, Sector 44, Gurugram 122003, Haryana, India
- Correspondence: or (A.K.); (P.K.)
| |
Collapse
|
12
|
Synthesis, antimicrobial activity and molecular docking studies of new fused pyrimidinethiones. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Exploration of 6-methyl-7-(Hetero)Aryl-7-Deazapurine ribonucleosides as antileishmanial agents. Eur J Med Chem 2022; 237:114367. [DOI: 10.1016/j.ejmech.2022.114367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022]
|
14
|
Soeiro MDNC. Perspectives for a new drug candidate for Chagas disease therapy. Mem Inst Oswaldo Cruz 2022; 117:e220004. [PMID: 35293439 PMCID: PMC8923671 DOI: 10.1590/0074-02760220004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 12/21/2022] Open
Abstract
Chagas disease (CD), a neglected tropical illness caused by the protozoan Trypanosoma cruzi, affects more than 6 million people mostly in poor areas of Latin America. CD has two phases: an acute, short phase mainly oligosymptomatic followed to the chronic phase, a long-lasting stage that may trigger cardiac and/or digestive disorders and death. Only two old drugs are available and both present low efficacy in the chronic stage, display side effects and are inactive against parasite strains naturally resistant to these nitroderivatives. These shortcomings justify the search for novel therapeutic options considering the target product profile for CD that will be presently reviewed besides briefly revisiting the data on phosphodiesterase inhibitors upon T. cruzi.
Collapse
|
15
|
Debasis Das, Xie L, Wang J, Qiao D, Hong J. Design, Synthesis of New Pyrazolo[3,4-d]Pyrimidine Derivatives and In Vitro Evaluation of Antiproliferative Activity against Leukemia Cell Lines. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Lin C, Jaén Batista DDG, Mazzeti AL, Donola Girão R, de Oliveira GM, Karalic I, Hulpia F, Soeiro MDNC, Maes L, Caljon G, Van Calenbergh S. N 6-modification of 7-Deazapurine nucleoside analogues as Anti-Trypanosoma cruzi and anti-Leishmania agents: Structure-activity relationship exploration and In vivo evaluation. Eur J Med Chem 2022; 231:114165. [PMID: 35144125 DOI: 10.1016/j.ejmech.2022.114165] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 11/18/2022]
Abstract
Chagas disease and leishmaniasis are two poverty-related neglected tropical diseases that cause high mortality and morbidity. Current treatments suffer from severe limitations and novel, safer and more effective drugs are urgently needed. Both Trypanosoma cruzi and Leishmania are auxotrophic for purines and absolutely depend on uptake and assimilation of host purines. This led us to successfully explore purine nucleoside analogues as chemotherapeutic agents against these and other kinetoplastid infections. This study extensively explored the modification of the 6-amino group of tubercidin, a natural product with trypanocidal activity but unacceptable toxicity for clinical use. We found that mono-substitution of the amine with short alkyls elicits potent and selective antitrypanosomal and antileishmanial activity. The methyl analogue 15 displayed the best in vitro activity against both T. cruzi and L. infantum and high selectivity versus host cells. Oral administration for five consecutive days in an acute Chagas disease mouse model resulted in significantly reduced peak parasitemia levels (75, 89 and 96% with 12.5, 25 and 50 mg/kg/day, respectively). as well as increased animal survival rates with the lower doses (83 and 67% for 12.5 and 25 mg/kg/day, respectively).
Collapse
Affiliation(s)
- Cai Lin
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium
| | - Denise da Gama Jaén Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360, Rio de Janeiro, Brazil
| | - Ana Lia Mazzeti
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360, Rio de Janeiro, Brazil
| | - Roberson Donola Girão
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360, Rio de Janeiro, Brazil
| | - Gabriel Melo de Oliveira
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360, Rio de Janeiro, Brazil
| | - Izet Karalic
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium
| | - Fabian Hulpia
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Maria de Nazaré C Soeiro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360, Rio de Janeiro, Brazil
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium.
| |
Collapse
|
17
|
Campagnaro GD, Elati HAA, Balaska S, Martin Abril ME, Natto MJ, Hulpia F, Lee K, Sheiner L, Van Calenbergh S, de Koning HP. A Toxoplasma gondii Oxopurine Transporter Binds Nucleobases and Nucleosides Using Different Binding Modes. Int J Mol Sci 2022; 23:ijms23020710. [PMID: 35054895 PMCID: PMC8776092 DOI: 10.3390/ijms23020710] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma gondii is unable to synthesize purines de novo, instead salvages them from its environment, inside the host cell, for which they need high affinity carriers. Here, we report the expression of a T. gondii Equilibrative Nucleoside Transporter, Tg244440, in a Trypanosoma brucei strain from which nucleobase transporters have been deleted. Tg244440 transported hypoxanthine and guanine with similar affinity (Km ~1 µM), while inosine and guanosine displayed Ki values of 4.05 and 3.30 µM, respectively. Low affinity was observed for adenosine, adenine, and pyrimidines, classifying Tg244440 as a high affinity oxopurine transporter. Purine analogues were used to probe the substrate-transporter binding interactions, culminating in quantitative models showing different binding modes for oxopurine bases, oxopurine nucleosides, and adenosine. Hypoxanthine and guanine interacted through protonated N1 and N9, and through unprotonated N3 and N7 of the purine ring, whereas inosine and guanosine mostly employed the ribose hydroxy groups for binding, in addition to N1H of the nucleobase. Conversely, the ribose moiety of adenosine barely made any contribution to binding. Tg244440 is the first gene identified to encode a high affinity oxopurine transporter in T. gondii and, to the best of our knowledge, the first purine transporter to employ different binding modes for nucleosides and nucleobases.
Collapse
Affiliation(s)
- Gustavo D. Campagnaro
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.D.C.); (H.A.A.E.); (S.B.); (M.E.M.A.); (M.J.N.); (K.L.); (L.S.)
| | - Hamza A. A. Elati
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.D.C.); (H.A.A.E.); (S.B.); (M.E.M.A.); (M.J.N.); (K.L.); (L.S.)
| | - Sofia Balaska
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.D.C.); (H.A.A.E.); (S.B.); (M.E.M.A.); (M.J.N.); (K.L.); (L.S.)
| | - Maria Esther Martin Abril
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.D.C.); (H.A.A.E.); (S.B.); (M.E.M.A.); (M.J.N.); (K.L.); (L.S.)
| | - Manal J. Natto
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.D.C.); (H.A.A.E.); (S.B.); (M.E.M.A.); (M.J.N.); (K.L.); (L.S.)
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry, Campus Heymans, Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium; (F.H.); (S.V.C.)
| | - Kelly Lee
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.D.C.); (H.A.A.E.); (S.B.); (M.E.M.A.); (M.J.N.); (K.L.); (L.S.)
| | - Lilach Sheiner
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.D.C.); (H.A.A.E.); (S.B.); (M.E.M.A.); (M.J.N.); (K.L.); (L.S.)
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Campus Heymans, Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium; (F.H.); (S.V.C.)
| | - Harry P. de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.D.C.); (H.A.A.E.); (S.B.); (M.E.M.A.); (M.J.N.); (K.L.); (L.S.)
- Correspondence: ; Tel.: +44-141-3303753
| |
Collapse
|
18
|
Cardoso-Santos C, Ferreira de Almeida Fiuza L, França da Silva C, Mazzeti AL, Donola Girão R, Melo de Oliveira G, da Gama Jaen Batista D, Cruz Moreira O, Lins da Silva Gomes N, Maes L, Caljon G, Hulpia F, Calenbergh SV, Correia Soeiro MDN. 7-Aryl-7-deazapurine 3'-deoxyribonucleoside derivative as a novel lead for Chagas' disease therapy: in vitro and in vivo pharmacology. JAC Antimicrob Resist 2021; 3:dlab168. [PMID: 34806007 PMCID: PMC8599808 DOI: 10.1093/jacamr/dlab168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
Background The protozoan Trypanosoma cruzi is auxotrophic for purines and causes Chagas’ disease (CD), a neglected illness affecting >6 million people. Combining the 3-deoxyribofuranose part of cordycepin with the modified purine ring of a nucleoside ‘hit’ led to the discovery of 4-amino-5-(4-chlorophenyl)-N7-(3′-deoxy-β-d-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (Cpd1), revealing promising anti-T. cruzi activity. Objectives To further evaluate Cpd1 in vitro and in vivo to fully assess its therapeutic potential against CD, covering cell culture sterilization through washout assays, drug combination with benznidazole and long-term administration in T. cruzi-infected mice. Results Although less susceptible to Cpd1 than amastigotes, trypomastigotes present an impaired capacity to successfully establish intracellular infection of cardiac cultures. Combination of benznidazole with Cpd1 indicated no interaction (additive effect) (FIC index = 0.72) while administration to mice at one-tenth of the optimal dose (2.5 mg/kg and 10 mg/kg for Cpd1 and benznidazole, respectively) suppressed parasitaemia but failed to avoid mortality. Long-term treatment (60 days) gave a rapid drop of the parasitaemia (>98% decline) and 100% mice survival but only 16% cure. In vitro washout experiments demonstrated that although parasite release into the supernatant of infected cardiac cultures was reduced by >94%, parasite recrudescence did occur after treatment. Conclusions Parasite recrudescence did occur after treatment corroborating the hypothesis of therapeutic failure due to subpopulations of dormant forms and/or genetic factors in persister parasites involved in natural drug resistance.
Collapse
Affiliation(s)
- Camila Cardoso-Santos
- Laboratory of Cellular Biology (LBC), Oswaldo Cruz Institute (IOC/FIOCRUZ), 21040-360 Rio de Janeiro, RJ, Brazil.,Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Antwerp, Belgium
| | | | - Cristiane França da Silva
- Laboratory of Cellular Biology (LBC), Oswaldo Cruz Institute (IOC/FIOCRUZ), 21040-360 Rio de Janeiro, RJ, Brazil
| | - Ana Lia Mazzeti
- Laboratory of Cellular Biology (LBC), Oswaldo Cruz Institute (IOC/FIOCRUZ), 21040-360 Rio de Janeiro, RJ, Brazil
| | - Roberson Donola Girão
- Laboratory of Cellular Biology (LBC), Oswaldo Cruz Institute (IOC/FIOCRUZ), 21040-360 Rio de Janeiro, RJ, Brazil
| | - Gabriel Melo de Oliveira
- Laboratory of Cellular Biology (LBC), Oswaldo Cruz Institute (IOC/FIOCRUZ), 21040-360 Rio de Janeiro, RJ, Brazil
| | - Denise da Gama Jaen Batista
- Laboratory of Cellular Biology (LBC), Oswaldo Cruz Institute (IOC/FIOCRUZ), 21040-360 Rio de Janeiro, RJ, Brazil
| | - Otacilio Cruz Moreira
- Real Time PCR Platform RPT09A, Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Natália Lins da Silva Gomes
- Real Time PCR Platform RPT09A, Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Antwerp, Belgium
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Serge V Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | | |
Collapse
|