1
|
Hemmerle A, Aubert N, Moreno T, Kékicheff P, Heinrich B, Spagnoli S, Goldmann M, Ciatto G, Fontaine P. Opportunities and new developments for the study of surfaces and interfaces in soft condensed matter at the SIRIUS beamline of Synchrotron SOLEIL. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:162-176. [PMID: 37933848 PMCID: PMC10833424 DOI: 10.1107/s1600577523008810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/08/2023] [Indexed: 11/08/2023]
Abstract
The SIRIUS beamline of Synchrotron SOLEIL is dedicated to X-ray scattering and spectroscopy of surfaces and interfaces, covering the tender to mid-hard X-ray range (1.1-13 keV). The beamline has hosted a wide range of experiments in the field of soft interfaces and beyond, providing various grazing-incidence techniques such as diffraction and wide-angle scattering (GIXD/GIWAXS), small-angle scattering (GISAXS) and X-ray fluorescence in total reflection (TXRF). SIRIUS also offers specific sample environments tailored for in situ complementary experiments on solid and liquid surfaces. Recently, the beamline has added compound refractive lenses associated with a transfocator, allowing for the X-ray beam to be focused down to 10 µm × 10 µm while maintaining a reasonable flux on the sample. This new feature opens up new possibilities for faster GIXD measurements at the liquid-air interface and for measurements on samples with narrow geometries.
Collapse
Affiliation(s)
- Arnaud Hemmerle
- Synchrotron SOLEIL, L’Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - Nicolas Aubert
- Synchrotron SOLEIL, L’Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - Thierry Moreno
- Synchrotron SOLEIL, L’Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - Patrick Kékicheff
- Synchrotron SOLEIL, L’Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
- Institut Charles Sadron, Université de Strasbourg, CNRS UPR22, 67034 Strasbourg, France
| | - Benoît Heinrich
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR7504, 67034 Strasbourg, France
| | - Sylvie Spagnoli
- Institut des NanoSciences de Paris, UMR 7588 CNRS, Sorbonne Université, 75252 Paris Cedex 05, France
| | - Michel Goldmann
- Synchrotron SOLEIL, L’Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
- Institut des NanoSciences de Paris, UMR 7588 CNRS, Sorbonne Université, 75252 Paris Cedex 05, France
| | - Gianluca Ciatto
- Synchrotron SOLEIL, L’Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - Philippe Fontaine
- Synchrotron SOLEIL, L’Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| |
Collapse
|
2
|
Habibi B, Pashazadeh S, Pashazadeh A, Saghatforoush LA. An amplified electrochemical sensor employing one-step synthesized nickel-copper-zinc ferrite/carboxymethyl cellulose/graphene oxide nanosheets composite for sensitive analysis of omeprazole. RSC Adv 2023; 13:29931-29943. [PMID: 37860173 PMCID: PMC10582824 DOI: 10.1039/d3ra04766k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
In this work, a signal amplification strategy was designed by the fabrication of a highly sensitive and selective electrochemical sensor based on nickel-copper-zinc ferrite (Ni0.4Cu0.2Zn0.4Fe2O4)/carboxymethyl cellulose (CMC)/graphene oxide nanosheets (GONs) composite modified glassy carbon electrode (GCE) for determination of omeprazole (OMP). The one-step synthesized Ni0.4Cu0.2Zn0.4Fe2O4/CMC/GONs nanocomposite was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy and X-ray diffraction techniques. Then, the Ni0.4Cu0.2Zn0.4Fe2O4/CMC/GONs/GCE was applied to study the electrochemical behavior of the OMP. Electrochemical data show that the Ni0.4Cu0.2Zn0.4Fe2O4/CMC/GONs/GCE exhibits superior electrocatalytic performance on the oxidation of OMP compared with bare GCE, GONs/GCE, CMC/GONs/GCE and MFe2O4/GCE (M = Cu, Ni and Zn including single, double and triple of metals) which can be attributed to the synergistic effects of the nanocomposite components, outstanding electrical properties of Ni0.4Cu0.2Zn0.4Fe2O4 and high conductivity of CMC/GONs as well as the further electron transport action of the nanocomposite. Under optimal conditions, the Ni0.4Cu0.2Zn0.4Fe2O4/CMC/GONs/GCE offers a high performance toward the electrodetermination of OMP with the wide linear-range responses (0.24-5 and 5-75 μM), lower detection limit (0.22 ± 0.05 μM), high sensitivity (1.1543 μA μM-1 cm-2), long-term signal stability and reproducibility (RSD = 2.54%). It should be noted that the Ni0.4Cu0.2Zn0.4Fe2O4/CMC/GONs/GCE sensor could also be used for determination of OMP in drug and biological samples, indicating its feasibility for real analysis.
Collapse
Affiliation(s)
- Biuck Habibi
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University Tabriz 53714-161 Iran +98 41 34327541 +98 41 31452135
| | - Sara Pashazadeh
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University Tabriz 53714-161 Iran +98 41 34327541 +98 41 31452135
| | - Ali Pashazadeh
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University Tabriz 53714-161 Iran +98 41 34327541 +98 41 31452135
| | | |
Collapse
|
3
|
Li L, Jing J, Yang S, Fang S, Liu W, Wang C, Li R, Liu T, Zheng L, Yang C. Bletilla striata Polysaccharide Nanoparticles Improved the Therapeutic Efficacy of Omeprazole on the Rat Gastric Ulcer Induced by Ethanol. Mol Pharm 2023; 20:1996-2008. [PMID: 36827081 DOI: 10.1021/acs.molpharmaceut.2c00922] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Gastric ulcers are a common clinical presentation affecting anyone, regardless of their age or gender. Nanoparticles (NPs) containing Bletilla striata polysaccharide (BSP) and omeprazole (OME) were investigated in the study for their therapeutic effect on gastric ulcers. Ethanol-induced gastric ulcers in rats (240 ± 30 g) were established. Our OME-BSP NPs were more stable than free OME in the acidic environment and can increase the absorption of OME in rat stomach, which was confirmed by in situ gastric absorption and distribution experiments. The extended blood circulation of OME-BSP NPs was also observed in rats with gastric ulcer. More importantly, OME-BSP NPs not only decreased the area of gastric ulcer and inhibited gastric acid secretion but also reversed gastric tissue damage and cell apoptosis, as revealed by HE and TUNEL staining. Subsequent SOD, MDA, PGE2, IL-6, and TNF-α tests further verified the superiority of OME-BSP NPs against rat gastric ulcer, which properly originated from superior antioxidant and anti-inflammatory effects. As a result, our OME-BSP NPs' drug delivery system improved the stability and absorption of OME in the rat stomach and achieved targeted treatment of gastric ulcers.
Collapse
Affiliation(s)
- Lisu Li
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Jincheng Jing
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Shanshan Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Shumei Fang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Wenting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Cong Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Ruixi Li
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Chang Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| |
Collapse
|