1
|
Sun Y, Zhao T, Wang H, Pan Y, Huang L, Feng H. Precision Propargylic Substitution Reaction: Pd-Catalyzed Suzuki-Miyaura Coupling of Nonactivated Propargylamines with Boronic Acids. J Org Chem 2024; 89:13774-13781. [PMID: 39215753 DOI: 10.1021/acs.joc.4c01519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Palladium-catalyzed Suzuki-Miyaura cross-coupling is an efficient approach for C-C bond construction. Here we report a deaminative Suzuki-Miyaura reaction to achieve chemo- and regioselectivity in the cross-coupling of nonactivated propargylamines with boronic acids, in which methyl propiolate is introduced to promote the cleavage of the C-N bond to form the C-C bond. This method features a wide range of substrates, good functional group tolerance, and ease of operation, providing an alternative approach to accessing valuable propargylated aromatic compounds.
Collapse
Affiliation(s)
- Yan Sun
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Tao Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Haixiang Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Ya Pan
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
2
|
Odena C, Santiago TG, Linares ML, Castellanos-Blanco N, McGuire RT, Chaves-Arquero B, Alonso JM, Diéguez-Vázquez A, Tan E, Alcázar J, Buijnsters P, Cañellas S, Martin R. Late-Stage C( sp2)-C( sp3) Diversification via Nickel Oxidative Addition Complexes. J Am Chem Soc 2024; 146:21264-21270. [PMID: 39052124 DOI: 10.1021/jacs.4c08404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Herein, we describe nickel oxidative addition complexes (Ni-OACs) of drug-like molecules as a platform to rapidly generate lead candidates with enhanced C(sp3) fraction. The potential of Ni-OACs to access new chemical space has been assessed not only in C(sp2)-C(sp3) couplings but also in additional bond formations without recourse to specialized ligands and with improved generality when compared to Ni-catalyzed reactions. The development of an automated diversification process further illustrates the robustness of Ni-OACs, thus offering a new gateway to expedite the design-make-test-analyze (DMTA) cycle in drug discovery.
Collapse
Affiliation(s)
- Carlota Odena
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Orgànica, Universitat Rovira i Virgili, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Tomás G Santiago
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
| | | | - Nahury Castellanos-Blanco
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
| | - Ryan T McGuire
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
| | - Belén Chaves-Arquero
- Janssen-Cilag, S.A., a Johnson & Johnson Company, C/Jarama 75A, 45007 Toledo, Spain
| | - Jose Manuel Alonso
- Janssen-Cilag, S.A., a Johnson & Johnson Company, C/Jarama 75A, 45007 Toledo, Spain
| | | | - Eric Tan
- Janssen Pharmaceutica Nv, A Johnson & Johnson Company, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Jesús Alcázar
- Janssen-Cilag, S.A., a Johnson & Johnson Company, C/Jarama 75A, 45007 Toledo, Spain
| | - Peter Buijnsters
- Janssen Pharmaceutica Nv, A Johnson & Johnson Company, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Santiago Cañellas
- Janssen-Cilag, S.A., a Johnson & Johnson Company, C/Jarama 75A, 45007 Toledo, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
3
|
Rago AJ, Zoi I, Gartman JA, McDaniel KA, Jana N, Liu D, Bai WJ. Mining Medicinally Relevant Bioreduction Substrates Inspired by Ligand-Based Drug Design. J Med Chem 2024. [PMID: 39051635 DOI: 10.1021/acs.jmedchem.4c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Exploring the scope of biocatalytic transformations in the absence of enzyme structures without extensive experimentation is a challenging task. To expand the limited substrate capacity of carrot-mediated bioreduction and hunt for new medicinally relevant ketones with minimum cost of labor and time, we deployed a practical method inspired by ligand-based drug design. Through analyzing collected literature data and building pharmacophore and reactivity prediction models, we screened a self-built virtual library of >8000 ketones bearing the most frequently used N,O,S-heterocycles and functional groups in drug discovery. Representative examples were validated, expanding the bioreduction substrate scope. The public availability of our models alongside the straightforward screening workflow makes it time-, labor-, and cost-saving to evaluate unknown bioreduction substrates for medicinal chemistry applications, especially for a large set of structurally differentiated ketones. Our studies also showcase the novelty of utilizing medicinal chemistry principles to solve a general biocatalysis problem.
Collapse
Affiliation(s)
| | - Ioanna Zoi
- AbbVie, Inc., North Chicago, Illinois 60064, United States
| | | | | | - Navendu Jana
- AbbVie, Inc., North Chicago, Illinois 60064, United States
| | - Dachun Liu
- AbbVie, Inc., North Chicago, Illinois 60064, United States
| | - Wen-Ju Bai
- AbbVie, Inc., North Chicago, Illinois 60064, United States
| |
Collapse
|
4
|
Douchez A, Poupart J, Yang G, Vaillancourt L, Marinier A. Squaramide Formation for DNA-Encoded Library Synthesis. Bioconjug Chem 2024; 35:963-970. [PMID: 38874002 DOI: 10.1021/acs.bioconjchem.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
DNA-encoded libraries (DELs) can be considered as one of the most powerful tools for the discovery of small molecules of biological interest. However, the ability to access large DELs is contingent upon having chemical transformations that work in aqueous phase and generate minimal DNA alterations and the availability of building blocks compatible with on-DNA chemistry. In addition, accessing scaffolds of interest to medicinal chemists can be challenging in a DEL setting because of inherent limitations of DNA-supported chemistry. In this context, a squaramide formation reaction was developed by using a two-step process. The mild and high-yielding reaction tolerates a wide array of functional groups and was shown to be safe for DNA, thereby making this methodology ideal for DELs.
Collapse
Affiliation(s)
- Antoine Douchez
- Drug Discovery Unit, Institute of Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Julien Poupart
- Drug Discovery Unit, Institute of Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Gaoqiang Yang
- Drug Discovery Unit, Institute of Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Louis Vaillancourt
- Drug Discovery Unit, Institute of Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Anne Marinier
- Drug Discovery Unit, Institute of Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
- Département de chimie, Faculté des Arts et Sciences, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
- Département de pharmacologie, Faculté de Médecine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
5
|
Fitzgerald P, Dixit A, Zhang C, Mobley DL, Paegel BM. Building Block-Centric Approach to DNA-Encoded Library Design. J Chem Inf Model 2024; 64:4661-4672. [PMID: 38860710 PMCID: PMC11200258 DOI: 10.1021/acs.jcim.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
DNA-encoded library technology grants access to nearly infinite opportunities to explore the chemical structure space for drug discovery. Successful navigation depends on the design and synthesis of libraries with appropriate physicochemical properties (PCPs) and structural diversity while aligning with practical considerations. To this end, we analyze combinatorial library design constraints including the number of chemistry cycles, bond construction strategies, and building block (BB) class selection in pursuit of ideal library designs. We compare two-cycle library designs (amino acid + carboxylic acid, primary amine + carboxylic acid) in the context of PCPs and chemical space coverage, given different BB selection strategies and constraints. We find that broad availability of amines and acids is essential for enabling the widest exploration of chemical space. Surprisingly, cost is not a driving factor, and virtually, the same chemical space can be explored with "budget" BBs.
Collapse
Affiliation(s)
- Patrick
R. Fitzgerald
- Skaggs
Doctoral Program in the Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| | - Anjali Dixit
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Chris Zhang
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - David L. Mobley
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Brian M. Paegel
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
6
|
Zhang J, Huan XD, Wang X, Li GQ, Xiao WJ, Chen JR. Recent advances in C(sp 3)-N bond formation via metallaphoto-redox catalysis. Chem Commun (Camb) 2024; 60:6340-6361. [PMID: 38832416 DOI: 10.1039/d4cc01969e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The C(sp3)-N bond is ubiquitous in natural products, pharmaceuticals, biologically active molecules and functional materials. Consequently, the development of practical and efficient methods for C(sp3)-N bond formation has attracted more and more attention. Compared to the conventional ionic pathway-based thermal methods, photochemical processes that proceed through radical mechanisms by merging photoredox and transition-metal catalyses have emerged as powerful and alternative tools for C(sp3)-N bond formation. In this review, recent advances in the burgeoning field of C(sp3)-N bond formation via metallaphotoredox catalysis have been highlighted. The contents of this review are categorized according to the transition metals used (copper, nickel, cobalt, palladium, and iron) together with photocatalysis. Emphasis is placed on methodology achievements and mechanistic insight, aiming to inspire chemists to invent more efficient radical-involved C(sp3)-N bond-forming reactions.
Collapse
Affiliation(s)
- Juan Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Xiao-Die Huan
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Xin Wang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Guo-Qing Li
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Wen-Jing Xiao
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Jia-Rong Chen
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| |
Collapse
|
7
|
Gos M, Cebula J, Goszczyński TM. Metallacarboranes in Medicinal Chemistry: Current Advances and Future Perspectives. J Med Chem 2024; 67:8481-8501. [PMID: 38769934 DOI: 10.1021/acs.jmedchem.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Metallacarboranes, exemplified by cobalt bis(dicarbollide) ([COSAN]-), have excelled their historical metallocene analogue label to become promising in drug design, medical studies, and fundamental biological research. Serving as a unique platform for conjugation with biomolecules, they also constitute an auspicious building block for biologically active derivatives and a carrier for cellular transport of membrane-impermeable cargos. Modified [COSAN]- exhibits specific antimicrobial, antiviral, and anticancer actions showing promise for preclinical trials. Contributing to the ongoing development in medicinal chemistry, metallacarboranes offer desirable physicochemical properties and low acute toxicity. This article presents a critical look at metallacarboranes in the context of their application in medicinal chemistry, emphasizing [COSAN]- as a potential game-changer in drug design and biomedical sciences. As medicinal chemistry seeks innovative building blocks, metallacarboranes emerge as an important novelty with versatile solutions and promising implications.
Collapse
Affiliation(s)
- Michalina Gos
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Jakub Cebula
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Tomasz M Goszczyński
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| |
Collapse
|
8
|
Raghavan P, Rago AJ, Verma P, Hassan MM, Goshu GM, Dombrowski AW, Pandey A, Coley CW, Wang Y. Incorporating Synthetic Accessibility in Drug Design: Predicting Reaction Yields of Suzuki Cross-Couplings by Leveraging AbbVie's 15-Year Parallel Library Data Set. J Am Chem Soc 2024; 146:15070-15084. [PMID: 38768950 PMCID: PMC11157529 DOI: 10.1021/jacs.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
Despite the increased use of computational tools to supplement medicinal chemists' expertise and intuition in drug design, predicting synthetic yields in medicinal chemistry endeavors remains an unsolved challenge. Existing design workflows could profoundly benefit from reaction yield prediction, as precious material waste could be reduced, and a greater number of relevant compounds could be delivered to advance the design, make, test, analyze (DMTA) cycle. In this work, we detail the evaluation of AbbVie's medicinal chemistry library data set to build machine learning models for the prediction of Suzuki coupling reaction yields. The combination of density functional theory (DFT)-derived features and Morgan fingerprints was identified to perform better than one-hot encoded baseline modeling, furnishing encouraging results. Overall, we observe modest generalization to unseen reactant structures within the 15-year retrospective library data set. Additionally, we compare predictions made by the model to those made by expert medicinal chemists, finding that the model can often predict both reaction success and reaction yields with greater accuracy. Finally, we demonstrate the application of this approach to suggest structurally and electronically similar building blocks to replace those predicted or observed to be unsuccessful prior to or after synthesis, respectively. The yield prediction model was used to select similar monomers predicted to have higher yields, resulting in greater synthesis efficiency of relevant drug-like molecules.
Collapse
Affiliation(s)
- Priyanka Raghavan
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Alexander J. Rago
- Advanced
Chemistry Technologies Group, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Pritha Verma
- Advanced
Chemistry Technologies Group, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Majdi M. Hassan
- RAIDERS
Group, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Gashaw M. Goshu
- Advanced
Chemistry Technologies Group, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Amanda W. Dombrowski
- Advanced
Chemistry Technologies Group, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Abhishek Pandey
- RAIDERS
Group, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Connor W. Coley
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Ying Wang
- Advanced
Chemistry Technologies Group, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States
| |
Collapse
|
9
|
Guillemard L, Ackermann L, Johansson MJ. Late-stage meta-C-H alkylation of pharmaceuticals to modulate biological properties and expedite molecular optimisation in a single step. Nat Commun 2024; 15:3349. [PMID: 38637496 PMCID: PMC11026381 DOI: 10.1038/s41467-024-46697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/29/2024] [Indexed: 04/20/2024] Open
Abstract
Catalysed C-H activation has emerged as a transformative platform for molecular synthesis and provides new opportunities in drug discovery by late-stage functionalisation (LSF) of complex molecules. Notably, small aliphatic motifs have gained significant interest in medicinal chemistry for their beneficial properties and applications as sp3-rich functional group bioisosteres. In this context, we disclose a versatile strategy with broad applicability for the ruthenium-catalysed late-stage meta-C(sp2)-H alkylation of pharmaceuticals. This general protocol leverages numerous directing groups inherently part of bioactive scaffolds to selectivity install a variety of medicinally relevant bifunctional alkyl units within drug compounds. Our strategy enables the direct modification of unprotected lead structures to quickly generate an array of pharmaceutically useful analogues without resorting to de novo syntheses. Moreover, productive late-stage modulation of key biological characteristics of drug candidates upon remote C-H alkylation proves viable, highlighting the major benefits of our approach to offer in drug development programmes.
Collapse
Affiliation(s)
- Lucas Guillemard
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany.
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany.
| | - Magnus J Johansson
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
10
|
Wleklinski M, Carpenter PM, Dykstra KD, Donofrio A, Nowak T, Krska SW, Ferguson RD. Parallel purification of microscale libraries via automated solid phase extraction. SLAS Technol 2024; 29:100126. [PMID: 38423211 DOI: 10.1016/j.slast.2024.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/30/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
High-throughput experimentation (HTE) has become more widely utilized in drug discovery for rapid reaction optimization and generation of large synthetic compound arrays. While this has accelerated medicinal chemistry design, make, test (DMT) iterations, the bottleneck of purification persists, consuming time and resources. Herein we describe a general parallel purification approach based on solid phase extraction (SPE) that provides a more efficient and sustainable workflow producing compound libraries with significantly upgraded purity. This robust, user-friendly workflow is fully automated and integrated with HTE library synthesis, as demonstrated by its application to a diverse parallel library compound array generated via amide-bond coupling in HTE microscale format.
Collapse
Affiliation(s)
- Michael Wleklinski
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Paige M Carpenter
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Kevin D Dykstra
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Anthony Donofrio
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Timothy Nowak
- Department of Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Shane W Krska
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Ronald D Ferguson
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA.
| |
Collapse
|
11
|
Chen R, Intermaggio NE, Xie J, Rossi-Ashton JA, Gould CA, Martin RT, Alcázar J, MacMillan DWC. Alcohol-alcohol cross-coupling enabled by S H2 radical sorting. Science 2024; 383:1350-1357. [PMID: 38513032 PMCID: PMC11551712 DOI: 10.1126/science.adl5890] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
Alcohols represent a functional group class with unparalleled abundance and structural diversity. In an era of chemical synthesis that prioritizes reducing time to target and maximizing exploration of chemical space, harnessing these building blocks for carbon-carbon bond-forming reactions is a key goal in organic chemistry. In particular, leveraging a single activation mode to form a new C(sp3)-C(sp3) bond from two alcohol subunits would enable access to an extraordinary level of structural diversity. In this work, we report a nickel radical sorting-mediated cross-alcohol coupling wherein two alcohol fragments are deoxygenated and coupled in one reaction vessel, open to air.
Collapse
Affiliation(s)
- Ruizhe Chen
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA
| | | | - Jiaxin Xie
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA
| | | | - Colin A. Gould
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA
| | - Robert T. Martin
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA
| | - Jesús Alcázar
- Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, Toledo 45007, Spain
| | | |
Collapse
|
12
|
Xue JH, Li Y, Liu Y, Li Q, Wang H. Site-Specific Deaminative Trifluoromethylation of Aliphatic Primary Amines. Angew Chem Int Ed Engl 2024; 63:e202319030. [PMID: 38179851 DOI: 10.1002/anie.202319030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
The introduction of trifluoromethyl groups into organic molecules is of paramount importance in modern synthetic chemistry and medicinal chemistry. While methods for constructing C(sp2 )-CF3 bonds have been well established, the advancement of practical and comprehensive approaches for forming C(sp3 )-CF3 bonds remains considerably restricted. In this work, we describe an efficient and site-specific deaminative trifluoromethylation reaction of aliphatic primary amines to afford the corresponding alkyl trifluoromethyl compounds. The reaction proceeds at room temperature with readily accessible N-anomeric amide (Levin's reagent) and bench-stable bpyCu(CF3 )3 (Grushin's reagent, bpy=2,2'-bipyridine) under blue light. The protocol features mild reaction conditions, good functional group tolerance, and moderate to good yields. Remarkably, the method can be applied to the direct, late-stage trifluoromethylation of natural products and bioactive molecules. Experimental mechanistic studies were conducted, and a radical mechanism is proposed, wherein the dual roles of Grushin's reagent have been elucidated.
Collapse
Affiliation(s)
- Jiang-Hao Xue
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yin Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yuan Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qingjiang Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Honggen Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
13
|
Quirós I, Martín M, Gomez-Mendoza M, Cabrera-Afonso MJ, Liras M, Fernández I, Nóvoa L, Tortosa M. Isonitriles as Alkyl Radical Precursors in Visible Light Mediated Hydro- and Deuterodeamination Reactions. Angew Chem Int Ed Engl 2024; 63:e202317683. [PMID: 38150265 DOI: 10.1002/anie.202317683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 12/28/2023]
Abstract
Herein, we report the use of isonitriles as alkyl radical precursors in light-mediated hydro- and deuterodeamination reactions. The reaction is scalable, shows broad functional group compatibility and potential to be used in late-stage functionalization. Importantly, the method is general for Cα -primary, Cα -secondary and Cα -tertiary alkyl isonitriles. For most examples, high yields were obtained through direct visible-light irradiation of the isonitrile in the presence of a silyl radical precursor. Interestingly, in the presence of an organic photocatalyst (4CzIPN) a dramatic acceleration was observed. In-depth mechanistic studies using UV/Vis absorption, steady-state and time-resolved photoluminescence, and transient absorption spectroscopy suggest that the excited state of 4CzIPN can engage in a single-electron transfer with the isonitrile.
Collapse
Affiliation(s)
- Irene Quirós
- Organic Chemistry Department, Universidad Autónoma de Madrid (UAM), Avda. Francisco Tomás y Valiente 7, Cantoblanco, 28049, Madrid, Spain
| | - María Martín
- Organic Chemistry Department, Universidad Autónoma de Madrid (UAM), Avda. Francisco Tomás y Valiente 7, Cantoblanco, 28049, Madrid, Spain
| | - Miguel Gomez-Mendoza
- Photoactivated Processes Unit, IMDEA Energy, Av. Ramón de la Sagra 3, Móstoles, 28935, Madrid, Spain
| | - María Jesús Cabrera-Afonso
- Organic Chemistry Department, Universidad Autónoma de Madrid (UAM), Avda. Francisco Tomás y Valiente 7, Cantoblanco, 28049, Madrid, Spain
| | - Marta Liras
- Photoactivated Processes Unit, IMDEA Energy, Av. Ramón de la Sagra 3, Móstoles, 28935, Madrid, Spain
| | - Israel Fernández
- Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
- Center of Innovation in Advanced Chemistry (ORFEO-CINQA), Spain
| | - Luis Nóvoa
- Organic Chemistry Department, Universidad Autónoma de Madrid (UAM), Avda. Francisco Tomás y Valiente 7, Cantoblanco, 28049, Madrid, Spain
| | - Mariola Tortosa
- Organic Chemistry Department, Universidad Autónoma de Madrid (UAM), Avda. Francisco Tomás y Valiente 7, Cantoblanco, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Avda. Francisco Tomás y Valiente 7, Cantoblanco, 28049, Madrid, Spain
- Center of Innovation in Advanced Chemistry (ORFEO-CINQA), Spain
| |
Collapse
|
14
|
Brocklehurst CE, Altmann E, Bon C, Davis H, Dunstan D, Ertl P, Ginsburg-Moraff C, Grob J, Gosling DJ, Lapointe G, Marziale AN, Mues H, Palmieri M, Racine S, Robinson RI, Springer C, Tan K, Ulmer W, Wyler R. MicroCycle: An Integrated and Automated Platform to Accelerate Drug Discovery. J Med Chem 2024; 67:2118-2128. [PMID: 38270627 DOI: 10.1021/acs.jmedchem.3c02029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
We herein describe the development and application of a modular technology platform which incorporates recent advances in plate-based microscale chemistry, automated purification, in situ quantification, and robotic liquid handling to enable rapid access to high-quality chemical matter already formatted for assays. In using microscale chemistry and thus consuming minimal chemical matter, the platform is not only efficient but also follows green chemistry principles. By reorienting existing high-throughput assay technology, the platform can generate a full package of relevant data on each set of compounds in every learning cycle. The multiparameter exploration of chemical and property space is hereby driven by active learning models. The enhanced compound optimization process is generating knowledge for drug discovery projects in a time frame never before possible.
Collapse
Affiliation(s)
- Cara E Brocklehurst
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Eva Altmann
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Corentin Bon
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Holly Davis
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - David Dunstan
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Peter Ertl
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Carol Ginsburg-Moraff
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Jonathan Grob
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Daniel J Gosling
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Guillaume Lapointe
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Alexander N Marziale
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Heinrich Mues
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Marco Palmieri
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Sophie Racine
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Richard I Robinson
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Clayton Springer
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Kian Tan
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - William Ulmer
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - René Wyler
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| |
Collapse
|
15
|
Reisenbauer JC, Paschke ASK, Krizic J, Botlik BB, Finkelstein P, Morandi B. Direct Access to Quinazolines and Pyrimidines from Unprotected Indoles and Pyrroles through Nitrogen Atom Insertion. Org Lett 2023; 25:8419-8423. [PMID: 37983173 DOI: 10.1021/acs.orglett.3c03264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Recent advances in single-atom insertion reactions have opened up new synthetic approaches for molecular diversification. Developing innovative strategies to directly transform biologically relevant molecules, without any prefunctionalization, is key to further expanding the scope and utility of such transformations. Herein, the direct access to quinazolines and pyrimidines from the corresponding unprotected 1H-indoles and 1H-pyrroles is reported, relying on the implementation of lithium bis(trimethylsilyl)amide (LiHMDS) as a novel nitrogen atom source in combination with commercially available hypervalent iodine reagents. Further application of this strategy in late-stage settings demonstrates its potential in lead structure diversification campaigns.
Collapse
Affiliation(s)
| | | | - Jelena Krizic
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Bence B Botlik
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | | | - Bill Morandi
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| |
Collapse
|
16
|
Pedersen PS, Blakemore DC, Chinigo GM, Knauber T, MacMillan DWC. One-Pot Synthesis of Sulfonamides from Unactivated Acids and Amines via Aromatic Decarboxylative Halosulfonylation. J Am Chem Soc 2023; 145:21189-21196. [PMID: 37729614 PMCID: PMC10680120 DOI: 10.1021/jacs.3c08218] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The coupling of carboxylic acids and amines to form amide linkages is the most commonly performed reaction in the pharmaceutical industry. Herein, we report a new strategy that merges these traditional amide coupling partners to generate sulfonamides, important amide bioisosteres. This method leverages copper ligand-to-metal charge transfer (LMCT) to convert aromatic acids to sulfonyl chlorides, followed by one-pot amination to form the corresponding sulfonamide. This process requires no prefunctionalization of the native acid or amine and extends to a diverse set of aryl, heteroaryl, and s-rich aliphatic substrates. Further, we extend this strategy to the synthesis of (hetero)aryl sulfonyl fluorides, which have found utility as "click" handles in chemical probes and programmable bifunctional reagents. Finally, we demonstrate the utility of these protocols in pharmaceutical analogue synthesis.
Collapse
Affiliation(s)
- P Scott Pedersen
- Merck Center for Catalysis, Princeton University, Princeton, New Jersey 08544, United States
| | - David C Blakemore
- Worldwide Research and Development, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Gary M Chinigo
- Worldwide Research and Development, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Thomas Knauber
- Worldwide Research and Development, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - David W C MacMillan
- Merck Center for Catalysis, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
17
|
Ertl P, Altmann E, Racine S, Decoret O. Which boronic acids are used most frequently for synthesis of bioactive molecules? Bioorg Med Chem 2023; 91:117405. [PMID: 37421711 DOI: 10.1016/j.bmc.2023.117405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Boronic acids are essential building blocks used for the synthesis of bioactive molecules, the generation of chemical libraries and the exploration of structure-activity relationships. As a result, more than ten thousand boronic acids are commercially available. Medicinal chemists are therefore facing a challenge; which of them should they select to maximize information obtained by the synthesis of new target molecules. The present article aims to help them to make the right choices. The boronic acids used frequently in the synthesis of bioactive molecules were identified by mining several large molecular and reaction databases and their properties were analyzed. Based on the results a diverse set of boronic acids covering well the bioactive chemical space was selected and is suggested as a basis for library design for the efficient exploration of structure-activity relationships. A Boronic Acid Navigator web tool which helps chemists to make their own selection is also made available at https://bit.ly/boronics.
Collapse
Affiliation(s)
- Peter Ertl
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Eva Altmann
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Sophie Racine
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Odile Decoret
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| |
Collapse
|
18
|
Bai WJ, Estrada MA, Gartman JA, Judd AS. Enantioselective Bioreduction of Medicinally Relevant Nitrogen-Heteroaromatic Ketones. ACS Med Chem Lett 2023; 14:846-852. [PMID: 37312862 PMCID: PMC10258907 DOI: 10.1021/acsmedchemlett.3c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/27/2023] [Indexed: 06/15/2023] Open
Abstract
We herein report an enantioselective bioreduction of ketones that bear the most frequently used nitrogen-heteroaromatics in FDA-approved drugs. Ten varieties of these nitrogen-containing heterocycles were systematically investigated. Eight categories were studied for the first time and seven types were tolerated, significantly expanding the substrate scope of plant-mediated reduction. By use of purple carrots in buffered aqueous media with a simplified reaction setup, this biocatalytic transformation was achieved within 48 h at ambient temperature, offering medicinal chemists a pragmatic and scalable tool to access a broad variety of nitrogen-heteroaryl-containing chiral alcohols. With multiple reactive sites, the structurally diverse set of chiral alcohols can be used for library compound preparation, early route-scouting activities, and synthesis of other pharmaceutical molecules, favorably accelerating medicinal chemistry campaigns.
Collapse
Affiliation(s)
- Wen-Ju Bai
- AbbVie Inc., North Chicago, Illinois 60064, United States
| | | | | | - Andrew S. Judd
- AbbVie Inc., North Chicago, Illinois 60064, United States
| |
Collapse
|
19
|
Liu W, Mulhearn J, Hao B, Cañellas S, Last S, Gómez JE, Jones A, De Vera A, Kumar K, Rodríguez R, Van Eynde L, Strambeanu II, Wolkenberg SE. Enabling Deoxygenative C(sp 2)-C(sp 3) Cross-Coupling for Parallel Medicinal Chemistry. ACS Med Chem Lett 2023; 14:853-859. [PMID: 37312855 PMCID: PMC10258906 DOI: 10.1021/acsmedchemlett.3c00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 06/15/2023] Open
Abstract
Herein we report the development of an automated deoxygenative C(sp2)-C(sp3) coupling of aryl bromide with alcohols to enable parallel medicinal chemistry. Alcohols are among the most diverse and abundant building blocks, but their usage as alkyl precursors has been limited. Although metallaphotoredox deoxygenative coupling is becoming a promising strategy to form C(sp2)-C(sp3) bond, the reaction setup limits its widespread application in library synthesis. To achieve high throughput and consistency, an automated workflow involving solid-dosing and liquid-handling robots has been developed. We have successfully demonstrated this high-throughput protocol is robust and consistent across three automation platforms. Furthermore, guided by cheminformatic analysis, we examined alcohols with comprehensive chemical space coverage and established a meaningful scope for medicinal chemistry applications. By accessing the rich diversity of alcohols, this automated protocol has the potential to substantially increase the impact of C(sp2)-C(sp3) cross-coupling in drug discovery.
Collapse
Affiliation(s)
- Wei Liu
- Discovery
Chemistry, Janssen Research & Development
LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - James Mulhearn
- Discovery
Chemistry, Janssen Research & Development
LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Bo Hao
- Discovery
Chemistry, Janssen Research & Development
LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Santiago Cañellas
- Discovery
Chemistry, Janssen Research & Development LLC, Janssen-Cilag, S.A., E-45007 Toledo, Spain
| | - Stefaan Last
- Discovery
Chemistry, Janssen Research & Development
LLC, 2340 Beerse, Belgium
| | - José Enrique Gómez
- Discovery
Chemistry, Janssen Research & Development LLC, Janssen-Cilag, S.A., E-45007 Toledo, Spain
| | - Alexander Jones
- Discovery
Chemistry, Janssen Research & Development
LLC, 2340 Beerse, Belgium
| | - Alexander De Vera
- Discovery
Chemistry, Janssen Research & Development
LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Kiran Kumar
- Discovery
Chemistry, Janssen Research & Development
LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Raquel Rodríguez
- Discovery
Chemistry, Janssen Research & Development LLC, Janssen-Cilag, S.A., E-45007 Toledo, Spain
| | - Lars Van Eynde
- Discovery
Chemistry, Janssen Research & Development
LLC, 2340 Beerse, Belgium
| | - Iulia I. Strambeanu
- Discovery
Chemistry, Janssen Research & Development
LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Scott E. Wolkenberg
- Discovery
Chemistry, Janssen Research & Development
LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
20
|
Castellino NJ, Montgomery AP, Danon JJ, Kassiou M. Late-stage Functionalization for Improving Drug-like Molecular Properties. Chem Rev 2023. [PMID: 37285604 DOI: 10.1021/acs.chemrev.2c00797] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of late-stage functionalization (LSF) methodologies, particularly C-H functionalization, has revolutionized the field of organic synthesis. Over the past decade, medicinal chemists have begun to implement LSF strategies into their drug discovery programs, allowing for the drug discovery process to become more efficient. Most reported applications of late-stage C-H functionalization of drugs and drug-like molecules have been to rapidly diversify screening libraries to explore structure-activity relationships. However, there has been a growing trend toward the use of LSF methodologies as an efficient tool for improving drug-like molecular properties of promising drug candidates. In this review, we have comprehensively reviewed recent progress in this emerging area. Particular emphasis is placed on case studies where multiple LSF techniques were implemented to generate a library of novel analogues with improved drug-like properties. We have critically analyzed the current scope of LSF strategies to improve drug-like properties and commented on how we believe LSF can transform drug discovery in the future. Overall, we aim to provide a comprehensive survey of LSF techniques as tools for efficiently improving drug-like molecular properties, anticipating its continued uptake in drug discovery programs.
Collapse
Affiliation(s)
| | | | - Jonathan J Danon
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
21
|
Chattapadhyay D, Aydogan A, Doktor K, Maity A, Wu JW, Michaudel Q. Harnessing Sulfur(VI) Fluoride Exchange Click Chemistry and Photocatalysis for Deaminative Benzylic Arylation. ACS Catal 2023; 13:7263-7268. [PMID: 37655265 PMCID: PMC10468006 DOI: 10.1021/acscatal.3c01981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/07/2023] [Indexed: 09/02/2023]
Abstract
While among the most common functional handles present in organic molecules, amines are a widely underutilized linchpin for C-C bond formation. To facilitate C-N bond cleavage, large activating groups are typically used but result in the generation of stoichiometric amounts of organic waste. Herein, we report an atom-economic activation of benzylic primary amines relying on the Sulfur(VI) Fluoride Exchange (SuFEx) click chemistry and the aza-Ramberg-Bäcklund reaction. This two-step sequence allows the high-yielding generation of 1,2-dialkyldiazenes from primary amines via loss of SO2. Excitation of the diazenes with blue light and an Ir photocatalyst affords radical pairs upon expulsion of N2, which can be coaxed into the formation of C(sp3)-C(sp2) bonds upon diffusion and capture by a Ni catalyst. This arylative strategy relying on a traceless click approach was harnessed in a variety of examples and its mechanism was investigated.
Collapse
Affiliation(s)
| | | | - Katarzyna Doktor
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Arunava Maity
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Jiun Wei Wu
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Quentin Michaudel
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
22
|
Deaminative bromination, chlorination, and iodination of primary amines. iScience 2023; 26:106255. [PMID: 36909668 PMCID: PMC9993034 DOI: 10.1016/j.isci.2023.106255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
The primary amino group has been seldom utilized as a transformable functionality in organic synthesis. Reported herein is a deaminative halogenation of primary amines using N-anomeric amide as the nitrogen-deletion reagent. Both aliphatic and aromatic amines are competent substrates for direct halogenations. The mildness and robustness of the protocol are evidenced by the successful reactions of several complex- and functional group-enriched bioactive compounds or drugs. Elaboration of the resulting products provides interesting analogues of drug molecules.
Collapse
|
23
|
Alonso M, Cañellas S, Delgado F, Serrano M, Diéguez-Vázquez A, Gómez JE. Accelerated Synthesis of Bicyclo[1.1.1]pentylamines: A High-Throughput Approach. Org Lett 2023; 25:771-776. [PMID: 36724762 DOI: 10.1021/acs.orglett.2c04226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Strained bicyclic substructures such as bicyclo[1.1.1]pentylamines (BCPAs) are increasingly targeted in medicinal chemistry as arylamine bioisosteres. Here, we leverage high-throughput automated synthesis to rapidly develop library-amenable reaction conditions and maximize design space to expand access to BCPAs. This new protocol relies on a copper-mediated C-N coupling approach and uses accessible and bench-stable iodo-BCP building blocks. Its applicability has been exemplified by incorporating BCPs in drug-like compounds, providing straightforward access to a library of valuable aniline-like isosteres.
Collapse
Affiliation(s)
- Maialen Alonso
- Chemical Capabilities, Analytical & Purification, Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, E-45007 Toledo, Spain
| | - Santiago Cañellas
- Chemical Capabilities, Analytical & Purification, Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, E-45007 Toledo, Spain
| | - Francisca Delgado
- Chemical Capabilities, Analytical & Purification, Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, E-45007 Toledo, Spain
| | - Marta Serrano
- Chemical Capabilities, Analytical & Purification, Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, E-45007 Toledo, Spain
| | - Alejandro Diéguez-Vázquez
- Chemical Capabilities, Analytical & Purification, Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, E-45007 Toledo, Spain
| | - José Enrique Gómez
- Chemical Capabilities, Analytical & Purification, Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, E-45007 Toledo, Spain
| |
Collapse
|
24
|
McGrath A, Zhang R, Shafiq K, Cernak T. Repurposing amine and carboxylic acid building blocks with an automatable esterification reaction. Chem Commun (Camb) 2023; 59:1026-1029. [PMID: 36598511 DOI: 10.1039/d2cc05670d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
New methodologies to unite amines and carboxylic acids that complement the popular amide coupling can significantly expand accessible chemical space if they yield products distinct from the classic R-NHC(O)-R' amide arrangement. Here we have developed an amine-acid esterification reaction based on pyridinium salt activation of amine C-N bonds to create products of type R-OC(O)-R' upon reaction with alkyl and aryl carboxylic acids. The protocol is robust and facile as demonstrated by automation on open-source robotics.
Collapse
Affiliation(s)
- Andrew McGrath
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Rui Zhang
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Khadija Shafiq
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Tim Cernak
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA. .,Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
Storozhenko OA, Festa AA, Zolotareva VA, Rybakov VB, Varlamov AV, Voskressensky LG. Photoredox-Catalyzed Chlorotrifluoromethylation of Arylallenes: Synthesis of a Trifluoromethyl Building Block. Org Lett 2023; 25:438-442. [PMID: 36625635 DOI: 10.1021/acs.orglett.2c04214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A new class of trifluoromethyl building blocks─2-trifluoromethyl allyl chlorides─have been obtained through a photoredox-catalyzed chlorotrifluoromethylation of aryl allenes. The reaction proceeded in a regio- and stereoselective manner. A trifluoromethylated analog of the flunarizine drug was synthesized.
Collapse
Affiliation(s)
- Olga A Storozhenko
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
| | - Alexey A Festa
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
| | - Valeria A Zolotareva
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
| | - Victor B Rybakov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Alexey V Varlamov
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
| | - Leonid G Voskressensky
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
| |
Collapse
|
26
|
Abdiaj I, Cañellas S, Dieguez A, Linares ML, Pijper B, Fontana A, Rodriguez R, Trabanco A, Palao E, Alcázar J. End-to-End Automated Synthesis of C(sp 3)-Enriched Drug-like Molecules via Negishi Coupling and Novel, Automated Liquid-Liquid Extraction. J Med Chem 2023; 66:716-732. [PMID: 36520521 PMCID: PMC9841985 DOI: 10.1021/acs.jmedchem.2c01646] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Indexed: 12/23/2022]
Abstract
Herein, we report an end-to-end process including synthesis, work-up, purification, and post-purification with minimal human intervention using Negishi coupling as a key transformation to increase Fsp3 in bioactive molecules. The main advantages of this protocol are twofold. First, the automated sequential generation of organozinc reagents from readily available alkyl halides offers a large diversity of alkyl groups to functionalize (hetero)aryl halide scaffolds via Pd-catalyzed Negishi coupling in continuous flow. Second, a fully automated liquid-liquid extraction has been developed and successfully applied for unattended operations. The workflow was completed with mass-triggered preparative high-performance liquid chromatography HPLC, providing an efficient production line of compounds with enriched sp3 character and better drug-like properties. The modular nature allows a smooth adaptation to a wide variety of synthetic methods and protocols and makes it applicable to any medchem laboratory.
Collapse
Affiliation(s)
- Irini Abdiaj
- Discovery Chemistry, Janssen Research
and Development, Janssen-Cilag, S.A., C/ Jarama 75, E-45007Toledo, Spain
| | - Santiago Cañellas
- Discovery Chemistry, Janssen Research
and Development, Janssen-Cilag, S.A., C/ Jarama 75, E-45007Toledo, Spain
| | - Alejandro Dieguez
- Discovery Chemistry, Janssen Research
and Development, Janssen-Cilag, S.A., C/ Jarama 75, E-45007Toledo, Spain
| | - Maria Lourdes Linares
- Discovery Chemistry, Janssen Research
and Development, Janssen-Cilag, S.A., C/ Jarama 75, E-45007Toledo, Spain
| | - Brenda Pijper
- Discovery Chemistry, Janssen Research
and Development, Janssen-Cilag, S.A., C/ Jarama 75, E-45007Toledo, Spain
| | - Alberto Fontana
- Discovery Chemistry, Janssen Research
and Development, Janssen-Cilag, S.A., C/ Jarama 75, E-45007Toledo, Spain
| | - Raquel Rodriguez
- Discovery Chemistry, Janssen Research
and Development, Janssen-Cilag, S.A., C/ Jarama 75, E-45007Toledo, Spain
| | - Andres Trabanco
- Discovery Chemistry, Janssen Research
and Development, Janssen-Cilag, S.A., C/ Jarama 75, E-45007Toledo, Spain
| | - Eduardo Palao
- Discovery Chemistry, Janssen Research
and Development, Janssen-Cilag, S.A., C/ Jarama 75, E-45007Toledo, Spain
| | - Jesus Alcázar
- Discovery Chemistry, Janssen Research
and Development, Janssen-Cilag, S.A., C/ Jarama 75, E-45007Toledo, Spain
| |
Collapse
|
27
|
Dherange BD, Yuan M, Kelly CB, Reiher CA, Grosanu C, Berger KJ, Gutierrez O, Levin MD. Direct Deaminative Functionalization. J Am Chem Soc 2023; 145:17-24. [PMID: 36548788 PMCID: PMC10245626 DOI: 10.1021/jacs.2c11453] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Selective functional group interconversions in complex molecular settings underpin many of the challenges facing modern organic synthesis. Currently, a privileged subset of functional groups dominates this landscape, while others, despite their abundance, are sorely underdeveloped. Amines epitomize this dichotomy; they are abundant but otherwise intransigent toward direct interconversion. Here, we report an approach that enables the direct conversion of amines to bromides, chlorides, iodides, phosphates, thioethers, and alcohols, the heart of which is a deaminative carbon-centered radical formation process using an anomeric amide reagent. Experimental and computational mechanistic studies demonstrate that successful deaminative functionalization relies not only on outcompeting the H-atom transfer to the incipient radical but also on the generation of polarity-matched, productive chain-carrying radicals that continue to react efficiently. The overall implications of this technology for interconverting amine libraries were evaluated via high-throughput parallel synthesis and applied in the development of one-pot diversification protocols.
Collapse
Affiliation(s)
- Balu D Dherange
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Mingbin Yuan
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Christopher B Kelly
- Discovery Process Research, Janssen Research & Development LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Christopher A Reiher
- Parallel Medicinal Chemistry, Janssen Research & Development LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Cristina Grosanu
- High Throughput Purification, Janssen Research & Development LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Kathleen J Berger
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mark D Levin
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
28
|
Felten S, He CQ, Weisel M, Shevlin M, Emmert MH. Accessing Diverse Azole Carboxylic Acid Building Blocks via Mild C–H Carboxylation: Parallel, One-Pot Amide Couplings and Machine-Learning-Guided Substrate Scope Design. J Am Chem Soc 2022; 144:23115-23126. [DOI: 10.1021/jacs.2c10557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stephanie Felten
- Process Research & Development, MRL, Merck & Co. Inc, 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Cyndi Qixin He
- Computational and Structural Chemistry, MRL, Merck & Co. Inc, 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Mark Weisel
- Process Research & Development, MRL, Merck & Co. Inc, 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Michael Shevlin
- Process Research & Development, MRL, Merck & Co. Inc, 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Marion H. Emmert
- Process Research & Development, MRL, Merck & Co. Inc, 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
29
|
Reisenbauer JC, Green O, Franchino A, Finkelstein P, Morandi B. Late-stage diversification of indole skeletons through nitrogen atom insertion. Science 2022; 377:1104-1109. [PMID: 36048958 DOI: 10.1126/science.add1383] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Compared with peripheral late-stage transformations mainly focusing on carbon-hydrogen functionalizations, reliable strategies to directly edit the core skeleton of pharmaceutical lead compounds still remain scarce despite the recent flurry of activity in this area. Herein, we report the skeletal editing of indoles through nitrogen atom insertion, accessing the corresponding quinazoline or quinoxaline bioisosteres by trapping of an electrophilic nitrene species generated from ammonium carbamate and hypervalent iodine. This reactivity relies on the strategic use of a silyl group as a labile protecting group that can facilitate subsequent product release. The utility of this highly functional group-compatible methodology in the context of late-stage skeletal editing of several commercial drugs is demonstrated.
Collapse
Affiliation(s)
| | - Ori Green
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Allegra Franchino
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
30
|
Ring replacement recommender: Ring modifications for improving biological activity. Eur J Med Chem 2022; 238:114483. [DOI: 10.1016/j.ejmech.2022.114483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/19/2022]
|
31
|
Intermaggio NE, Millet A, Davis DL, MacMillan DWC. Deoxytrifluoromethylation of Alcohols. J Am Chem Soc 2022; 144:11961-11968. [PMID: 35786873 DOI: 10.1021/jacs.2c04807] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Deoxy-functionalization of alcohols represents a class of reactions that has had a profound impact on modern medicine. In particular, deoxyfluorination is commonly employed as a means to incorporate high-value fluorine atoms into drug-like molecules. Recently, the trifluoromethyl (CF3) group has garnered attention from medicinal chemists due to its ability to markedly improve the pharmaceutical properties of small-molecule drug candidates. To date, however, there remains no general means to accomplish the analogous deoxygenative trifluoromethylation of alcohols. We report herein a copper metallaphotoredox-mediated direct deoxytrifluoromethylation, wherein alcohol substrates are activated in situ by benzoxazolium salts for C(sp3)-CF3 bond formation.
Collapse
Affiliation(s)
- Nicholas E Intermaggio
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Agustin Millet
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Dali L Davis
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
32
|
Goldman B, Kearnes S, Kramer T, Riley P, Walters WP. Defining Levels of Automated Chemical Design. J Med Chem 2022; 65:7073-7087. [PMID: 35511951 PMCID: PMC9150065 DOI: 10.1021/acs.jmedchem.2c00334] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 01/07/2023]
Abstract
One application area of computational methods in drug discovery is the automated design of small molecules. Despite the large number of publications describing methods and their application in both retrospective and prospective studies, there is a lack of agreement on terminology and key attributes to distinguish these various systems. We introduce Automated Chemical Design (ACD) Levels to clearly define the level of autonomy along the axes of ideation and decision making. To fully illustrate this framework, we provide literature exemplars and place some notable methods and applications into the levels. The ACD framework provides a common language for describing automated small molecule design systems and enables medicinal chemists to better understand and evaluate such systems.
Collapse
Affiliation(s)
- Brian Goldman
- Relay
Therapeutics, 399 Binney Street, Cambridge, Massachusetts 02139, United States
| | - Steven Kearnes
- Relay
Therapeutics, 399 Binney Street, Cambridge, Massachusetts 02139, United States
| | - Trevor Kramer
- Relay
Therapeutics, 399 Binney Street, Cambridge, Massachusetts 02139, United States
| | - Patrick Riley
- Relay
Therapeutics, 399 Binney Street, Cambridge, Massachusetts 02139, United States
| | - W. Patrick Walters
- Relay
Therapeutics, 399 Binney Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|