1
|
Hunter CD, Cairo CW. Detection Strategies for Sialic Acid and Sialoglycoconjugates. Chembiochem 2024; 25:e202400402. [PMID: 39444251 DOI: 10.1002/cbic.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Indexed: 10/25/2024]
Abstract
Glycoconjugates are a vast class of biomolecules implicated in biological processes important for human health and disease. The structural complexity of glycoconjugates remains a challenge to deciphering their precise biological roles and for their development as biomarkers and therapeutics. Human glycoconjugates on the outside of the cell are modified with sialic (neuraminic) acid residues at their termini. The enzymes that install sialic acids are sialyltransferases (SiaTs), a family of 20 different isoenzymes. The removal and degradation of sialic acids is mediated by neuraminidase (NEU; sialidase) enzymes, of which there are four isoenzymes. In this review, we discuss chemical and biochemical approaches for the detection and analysis of sialoglycoconjugate (SGC) structures and their enzymatic products. The most common methods include affinity probes and synthetic substrates. Fluorogenic and radiolabelled substrates are also important tools for many applications, including screening for enzyme inhibitors. Strategies that give insight into the native substrate-specificity of enzymes that regulate SGCs (SiaT & NEU) are necessary to improve our understanding of the role of sialic acid metabolism in health and disease.
Collapse
Affiliation(s)
- Carmanah D Hunter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
2
|
Zhou W, Yang W, Jiang P, Gou S. A Lysosome-Targeting hNEU1 Inhibitor Treats Myocardial Infarction: A Potential Therapeutic Breakthrough. J Med Chem 2024; 67:16899-16911. [PMID: 39253767 DOI: 10.1021/acs.jmedchem.4c01874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The overexpression of NEU1 has recently been certified as being associated with myocardial infarction. However, the pursuit of an efficacious human NEU1 (hNEU1) inhibitor remains challenging, and viral NEU1 (viNEU1) inhibitor drugs are significantly weaker in terms of hNEU1 inhibition. Recognizing that hNEU1 is located within the lysosome, we designed a series of lysosome-targeting compounds, derived from oseltamivir, aimed at hNEU1 inhibition. Among these compounds, OsMo exhibits the most potent activity. Our findings reveal that OsMo accumulates within lysosomes and releases its pharmacophore via enzymatic catalysis. OsMo enhances hNEU1 inhibition by accumulating pharmacophores at the target site. OsMo exhibits improved regulation of abnormal autophagy during myocardial injury, demonstrating superior efficacy in treating myocardial infarction in vivo. Furthermore, OsMo exhibits acceptable pharmacokinetic parameters. Importantly, the development of molecules with lysosome-targeting abilities represents a promising avenue for addressing myocardial injuries linked to hNEU1 overexpression.
Collapse
Affiliation(s)
- Wen Zhou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Wanxiang Yang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ping Jiang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
3
|
Nonn M, Fustero S, Kiss L. Application of 2-Azabicyclo[2.2.1]Hept-5-En-3-One (Vince Lactam) in Synthetic Organic and Medicinal Chemistry. CHEM REC 2024; 24:e202400070. [PMID: 39008895 DOI: 10.1002/tcr.202400070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Indexed: 07/17/2024]
Abstract
2-Azabicyclo[2.2.1]hept-5-en-3-one (Vince lactam) is known to be a valuable building block in synthetic organic chemistry and drug research. It is an important precursor to access of some blockbuster antiviral drugs such as Carbovir or Abacavir as well as other carbocyclic neuraminidase inhibitors as antiviral agents. The ring C=C bond of the Vince lactam allows versatile chemical manipulations to create not only functionalized γ-lactams, but also γ-amino acid derivatives with a cyclopentane framework. The aim of the current account is to summarize the chemistry of Vince lactam, its synthetic utility and application in organic and medicinal chemistry over the last decade.
Collapse
Affiliation(s)
- Melinda Nonn
- MTA TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Center for Natural Sciences, H-1117, Budapest, Magyar tudósok krt. 2, Hungary
| | - Santos Fustero
- Department of Organic Chemistry, University of Valencia, Pharmacy Faculty, València, 46100-Burjassot Valencia, Spain
| | - Loránd Kiss
- Institute of Organic Chemistry, Stereochemistry Research Group, HUN-REN Research Center for Natural Sciences, H-1117, Budapest, Magyar tudósok krt. 2, Hungary
| |
Collapse
|
4
|
Radwan M, Guo T, Carvajal EG, Bekkema BAR, Cairo CW. Bioisosteres at C9 of 2-Deoxy-2,3-didehydro- N-acetyl Neuraminic Acid Identify Selective Inhibitors of NEU3. J Med Chem 2024; 67:13594-13603. [PMID: 39101748 DOI: 10.1021/acs.jmedchem.3c02186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Human neuraminidases play critical roles in many physiological and pathological processes. Humans have four isoenzymes of NEU, making selective inhibitors important tools to investigate the function of individual isoenzymes. A typical scaffold for NEU inhibitors is 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (DANA) where C9 modifications can be critical for potency and selectivity against human NEU. To design improved DANA analogues, we generated a library of compounds with either a short alkyl chain or a biphenyl substituent linked to the C9 position through one of six amide bioisosteres. Bioisostere linkers included triazole, urea, thiourea, carbamate, thiocarbamate, and sulfonamide groups. Within this library, we identified a C9 biphenyl carbamate derivative (963) that showed high selectivity and potency for NEU3 (Ki = 0.12 ± 0.01 μM). In contrast, NEU1 and NEU4 isoenzymes preferred amide and triazole linkers, respectively. Finally, analogues with urea, sulfonamide, and amide linkers showed enhanced inhibitory activity for a bacterial NEU, NanI from Clostridium perfringens.
Collapse
Affiliation(s)
- Mostafa Radwan
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tianlin Guo
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Elisa G Carvajal
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Benjamin A R Bekkema
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
5
|
Muchowicz A, Bartoszewicz A, Zaslona Z. The Exploitation of the Glycosylation Pattern in Asthma: How We Alter Ancestral Pathways to Develop New Treatments. Biomolecules 2024; 14:513. [PMID: 38785919 PMCID: PMC11117584 DOI: 10.3390/biom14050513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
Asthma has reached epidemic levels, yet progress in developing specific therapies is slow. One of the main reasons for this is the fact that asthma is an umbrella term for various distinct subsets. Due to its high heterogeneity, it is difficult to establish biomarkers for each subset of asthma and to propose endotype-specific treatments. This review focuses on protein glycosylation as a process activated in asthma and ways to utilize it to develop novel biomarkers and treatments. We discuss known and relevant glycoproteins whose functions control disease development. The key role of glycoproteins in processes integral to asthma, such as inflammation, tissue remodeling, and repair, justifies our interest and research in the field of glycobiology. Altering the glycosylation states of proteins contributing to asthma can change the pathological processes that we previously failed to inhibit. Special emphasis is placed on chitotriosidase 1 (CHIT1), an enzyme capable of modifying LacNAc- and LacdiNAc-containing glycans. The expression and activity of CHIT1 are induced in human diseased lungs, and its pathological role has been demonstrated by both genetic and pharmacological approaches. We propose that studying the glycosylation pattern and enzymes involved in glycosylation in asthma can help in patient stratification and in developing personalized treatment.
Collapse
Affiliation(s)
| | | | - Zbigniew Zaslona
- Molecure S.A., Zwirki i Wigury 101, 02-089 Warszawa, Poland; (A.M.); (A.B.)
| |
Collapse
|
6
|
Tiemeyer KH, Kuter DJ, Cairo CW, Hollenhorst MA. New insights into the glycobiology of immune thrombocytopenia. Curr Opin Hematol 2023; 30:210-218. [PMID: 37526945 DOI: 10.1097/moh.0000000000000781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
PURPOSE OF REVIEW The platelet surface harbors a lush forest of glycans (carbohydrate polymers) attached to membrane proteins and lipids. Accumulating evidence suggests that these glycans may be relevant to the pathophysiology of immune thrombocytopenia (ITP). Here, we critically evaluate data that point to a possible role for loss of sialic acid in driving platelet clearance in ITP, comment on the potential use of neuraminidase inhibitors for treatment of ITP, and highlight open questions in this area. RECENT FINDINGS Multiple lines of evidence suggest a role for loss of platelet sialic acid in the pathophysiology of thrombocytopenia. Recent work has tested the hypothesis that neuraminidase-mediated cleavage of platelet sialic acid may trigger clearance of platelets in ITP. Some clinical evidence supports efficacy of the viral neuraminidase inhibitor oseltamivir in ITP, which is surprising given its lack of activity against human neuraminidases. SUMMARY Further study of platelet glycobiology in ITP is necessary to fill key knowledge gaps. A deeper understanding of the roles of platelet glycans in ITP pathophysiology will help to guide development of novel therapies.
Collapse
Affiliation(s)
| | - David J Kuter
- Division of Hematology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Marie A Hollenhorst
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Chen QQ, Liu K, Shi N, Ma G, Wang P, Xie HM, Jin SJ, Wei TT, Yu XY, Wang Y, Zhang JY, Li P, Qi LW, Zhang L. Neuraminidase 1 promotes renal fibrosis development in male mice. Nat Commun 2023; 14:1713. [PMID: 36973294 PMCID: PMC10043283 DOI: 10.1038/s41467-023-37450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
The functions of the influenza virus neuraminidase has been well documented but those of the mammalian neuraminidases remain less explored. Here, we characterize the role of neuraminidase 1 (NEU1) in unilateral ureteral obstruction (UUO) and folic acid (FA)-induced renal fibrosis mouse models. We find that NEU1 is significantly upregulated in the fibrotic kidneys of patients and mice. Functionally, tubular epithelial cell-specific NEU1 knockout inhibits epithelial-to-mesenchymal transition, inflammatory cytokines production, and collagen deposition in mice. Conversely, NEU1 overexpression exacerbates progressive renal fibrosis. Mechanistically, NEU1 interacts with TGFβ type I receptor ALK5 at the 160-200aa region and stabilizes ALK5 leading to SMAD2/3 activation. Salvianolic acid B, a component of Salvia miltiorrhiza, is found to strongly bind to NEU1 and effectively protect mice from renal fibrosis in a NEU1-dependent manner. Collectively, this study characterizes a promotor role for NEU1 in renal fibrosis and suggests a potential avenue of targeting NEU1 to treat kidney diseases.
Collapse
Affiliation(s)
- Qian-Qian Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kang Liu
- Department of Nephrology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ning Shi
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Gaoxiang Ma
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China
| | - Peipei Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Hua-Mei Xie
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China
| | - Si-Jia Jin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ting-Ting Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiang-Yu Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Wang
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China
| | - Jun-Yuan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China.
| | - Lei Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
8
|
Keil J, Rafn GR, Turan IM, Aljohani MA, Sahebjam-Atabaki R, Sun XL. Sialidase Inhibitors with Different Mechanisms. J Med Chem 2022; 65:13574-13593. [PMID: 36252951 PMCID: PMC9620260 DOI: 10.1021/acs.jmedchem.2c01258] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Sialidases, or neuraminidases, are enzymes that catalyze the hydrolysis of sialic acid (Sia)-containing molecules, mostly removal of the terminal Sia (desialylation). By desialylation, sialidase can modulate the functionality of the target compound and is thus often involved in biological pathways. Inhibition of sialidases with inhibitors is an important approach for understanding sialidase function and the underlying mechanisms and could serve as a therapeutic approach as well. Transition-state analogues, such as anti-influenza drugs oseltamivir and zanamivir, are major sialidase inhibitors. In addition, difluoro-sialic acids were developed as mechanism-based sialidase inhibitors. Further, fluorinated quinone methide-based suicide substrates were reported. Sialidase product analogue inhibitors were also explored. Finally, natural products have shown competitive inhibiton against viral, bacterial, and human sialidases. This Perspective describes sialidase inhibitors with different mechanisms and their activities and future potential, which include transition-state analogue inhibitors, mechanism-based inhibitors, suicide substrate inhibitors, product analogue inhibitors, and natural product inhibitors.
Collapse
Affiliation(s)
- Joseph
M. Keil
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Garrett R. Rafn
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Isaac M. Turan
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Majdi A. Aljohani
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Reza Sahebjam-Atabaki
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Xue-Long Sun
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| |
Collapse
|
9
|
Heimerl M, Gausepohl T, Mueller JH, Ricke-Hoch M. Neuraminidases-Key Players in the Inflammatory Response after Pathophysiological Cardiac Stress and Potential New Therapeutic Targets in Cardiac Disease. BIOLOGY 2022; 11:biology11081229. [PMID: 36009856 PMCID: PMC9405403 DOI: 10.3390/biology11081229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 05/24/2023]
Abstract
Glycoproteins and glycolipids on the cell surfaces of vertebrates and higher invertebrates contain α-keto acid sugars called sialic acids, terminally attached to their glycan structures. The actual level of sialylation, regulated through enzymatic removal of the latter ones by NEU enzymes, highly affects protein-protein, cell-matrix and cell-cell interactions. Thus, their regulatory features affect a large number of different cell types, including those of the immune system. Research regarding NEUs within heart and vessels provides new insights of their involvement in the development of cardiovascular pathologies and identifies mechanisms on how inhibiting NEU enzymes can have a beneficial effect on cardiac remodelling and on a number of different cardiac diseases including CMs and atherosclerosis. In this regard, a multitude of clinical studies demonstrated the potential of N-acetylneuraminic acid (Neu5Ac) to serve as a biomarker following cardiac diseases. Anti-influenza drugs i.e., zanamivir and oseltamivir are viral NEU inhibitors, thus, they block the enzymatic activity of NEUs. When considering the improvement in cardiac function in several different cardiac disease animal models, which results from NEU reduction, the inhibition of NEU enzymes provides a new potential therapeutic treatment strategy to treat cardiac inflammatory pathologies, and thus, administrate cardioprotection.
Collapse
|
10
|
Lillehoj EP, Luzina IG, Atamas SP. Mammalian Neuraminidases in Immune-Mediated Diseases: Mucins and Beyond. Front Immunol 2022; 13:883079. [PMID: 35479093 PMCID: PMC9035539 DOI: 10.3389/fimmu.2022.883079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Mammalian neuraminidases (NEUs), also known as sialidases, are enzymes that cleave off the terminal neuraminic, or sialic, acid resides from the carbohydrate moieties of glycolipids and glycoproteins. A rapidly growing body of literature indicates that in addition to their metabolic functions, NEUs also regulate the activity of their glycoprotein targets. The simple post-translational modification of NEU protein targets-removal of the highly electronegative sialic acid-affects protein folding, alters protein interactions with their ligands, and exposes or covers proteolytic sites. Through such effects, NEUs regulate the downstream processes in which their glycoprotein targets participate. A major target of desialylation by NEUs are mucins (MUCs), and such post-translational modification contributes to regulation of disease processes. In this review, we focus on the regulatory roles of NEU-modified MUCs as coordinators of disease pathogenesis in fibrotic, inflammatory, infectious, and autoimmune diseases. Special attention is placed on the most abundant and best studied NEU1, and its recently discovered important target, mucin-1 (MUC1). The role of the NEU1 - MUC1 axis in disease pathogenesis is discussed, along with regulatory contributions from other MUCs and other pathophysiologically important NEU targets.
Collapse
Affiliation(s)
- Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Irina G. Luzina
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Research Service, Baltimore Veterans Affairs (VA) Medical Center, Baltimore, MD, United States
| | - Sergei P. Atamas
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
11
|
Yu L, Peng J, Mineo C. Lipoprotein sialylation in atherosclerosis: Lessons from mice. Front Endocrinol (Lausanne) 2022; 13:953165. [PMID: 36157440 PMCID: PMC9498574 DOI: 10.3389/fendo.2022.953165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Sialylation is a dynamically regulated modification, which commonly occurs at the terminal of glycan chains in glycoproteins and glycolipids in eukaryotic cells. Sialylation plays a key role in a wide array of biological processes through the regulation of protein-protein interactions, intracellular localization, vesicular trafficking, and signal transduction. A majority of the proteins involved in lipoprotein metabolism and atherogenesis, such as apolipoproteins and lipoprotein receptors, are sialylated in their glycan structures. Earlier studies in humans and in preclinical models found a positive correlation between low sialylation of lipoproteins and atherosclerosis. More recent works using loss- and gain-of-function approaches in mice have revealed molecular and cellular mechanisms by which protein sialylation modulates causally the process of atherosclerosis. The purpose of this concise review is to summarize these findings in mouse models and to provide mechanistic insights into lipoprotein sialylation and atherosclerosis.
Collapse
Affiliation(s)
- Liming Yu
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jun Peng
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Chieko Mineo,
| |
Collapse
|