1
|
Li J, Zhang T, Wu D, He C, Weng H, Zheng T, Liu J, Yao H, Chen J, Ren Y, Zhu Z, Xu J, Xu S. Palladium-Mediated Bioorthogonal System for Prodrug Activation of N-Benzylbenzamide-Containing Tubulin Polymerization Inhibitors for the Treatment of Solid Tumors. J Med Chem 2024; 67:19905-19924. [PMID: 39484713 DOI: 10.1021/acs.jmedchem.4c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Bioorthogonal cleavage reactions have been developed as an intriguing strategy to enhance the safety of chemotherapeutics. Aiming to reduce the toxicity and improve the targeted release properties of the colchicine binding site inhibitors (CBSIs) based on previous work, a series of biologically inert prodrugs were further designed and synthesized through a bioorthogonal prodrug strategy. The therapeutic effects of prodrugs could be "turned-on" once combined with palladium resins. Particularly, prodrug 2b was 68.3-fold less cytotoxic compared to the parent compound, while its cytotoxicity was recovered in situ in the presence of palladium resins. Mechanism studies confirmed that 2b inhibited cell growth in the same manner as CBSIs. More importantly, in vivo efficacy studies demonstrated the efficient activation of 2b by palladium resins, resulting in significant inhibition of tumor growth (63.2%). These results suggest that prodrug 2b with improved safety and targeted release property catalyzed by a Pd-mediated bioorthogonal cleavage reaction deserves further investigation.
Collapse
Affiliation(s)
- Jinlong Li
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Tong Zhang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Di Wu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Chen He
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Haoxiang Weng
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Tiandong Zheng
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Jie Liu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Hong Yao
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Jichao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yansong Ren
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, U.K
| | - Jinyi Xu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Shengtao Xu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
- Department of Hepatobiliary Surgery, The First People's Hospital of Kunshan, Suzhou 215132, P.R. China
| |
Collapse
|
2
|
Ardizzone A, Bulzomì M, De Luca F, Silvestris N, Esposito E, Capra AP. Dihydropyrimidine Dehydrogenase Polymorphism c.2194G>A Screening Is a Useful Tool for Decreasing Gastrointestinal and Hematological Adverse Drug Reaction Risk in Fluoropyrimidine-Treated Patients. Curr Issues Mol Biol 2024; 46:9831-9843. [PMID: 39329936 PMCID: PMC11430620 DOI: 10.3390/cimb46090584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Although the risk of fluoropyrimidine toxicity may be decreased by identifying poor metabolizers with a preemptive dihydropyrimidine dehydrogenase (DPYD) test, following international standards, many patients with wild-type (WT) genotypes for classic variations may still exhibit adverse drug reactions (ADRs). Therefore, the safety of fluoropyrimidine therapy could be improved by identifying new DPYD polymorphisms associated with ADRs. This study was carried out to assess whether testing for the underestimated c.2194G>A (DPYD*6 polymorphism, rs1801160) is useful, in addition to other well-known variants, in reducing the risk of ADRs in patients undergoing chemotherapy treatment. This retrospective study included 132 patients treated with fluoropyrimidine-containing regimens who experienced ADRs such as gastrointestinal, dermatological, hematological, and neurological. All subjects were screened for DPYD variants DPYD2A (IVS14+1G>A, c.1905+1G>A, rs3918290), DPYD13 (c.1679T>G, rs55886062), c.2846A>T (rs67376798), c.1236G>A (rs56038477), and c.2194G>A by real-time polymerase chain reaction (RT-PCR). In this cohort, the heterozygous c.2194G>A variant was present in 26 patients, while 106 individuals were WT; both subgroups were compared for the incidence of ADRs. This assessment revealed a high incidence of gastrointestinal and hematological ADRs in DPYD6 carriers compared to WT. Moreover, we have shown a higher prevalence of ADRs in females compared to males when stratifying c.2194G>A carrier individuals. Considering that c.2194G>A was linked to clinically relevant ADRs, we suggest that this variant should also be assessed preventively to reduce the risk of fluoropyrimidine-related ADRs.
Collapse
Affiliation(s)
- Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.A.); (M.B.); (F.D.L.); (A.P.C.)
| | - Maria Bulzomì
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.A.); (M.B.); (F.D.L.); (A.P.C.)
| | - Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.A.); (M.B.); (F.D.L.); (A.P.C.)
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy;
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.A.); (M.B.); (F.D.L.); (A.P.C.)
- Genetics and Pharmacogenetics Unit, “Gaetano Martino” University Hospital, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.A.); (M.B.); (F.D.L.); (A.P.C.)
| |
Collapse
|
3
|
van de L'Isle M, Croke S, Valero T, Unciti‐Broceta A. Development of Biocompatible Cu(I)-Microdevices for Bioorthogonal Uncaging and Click Reactions. Chemistry 2024; 30:e202400611. [PMID: 38512657 PMCID: PMC11497292 DOI: 10.1002/chem.202400611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Transition-metal-catalyzed bioorthogonal reactions emerged a decade ago as a novel strategy to implement spatiotemporal control over enzymatic functions and pharmacological interventions. The use of this methodology in experimental therapy is driven by the ambition of improving the tolerability and PK properties of clinically-used therapeutic agents. The preclinical potential of bioorthogonal catalysis has been validated in vitro and in vivo with the in situ generation of a broad range of drugs, including cytotoxic agents, anti-inflammatory drugs and anxiolytics. In this article, we report our investigations towards the preparation of solid-supported Cu(I)-microdevices and their application in bioorthogonal uncaging and click reactions. A range of ligand-functionalized polymeric devices and off-on Cu(I)-sensitive sensors were developed and tested under conditions compatible with life. Last, we present a preliminary exploration of their use for the synthesis of PROTACs through CuAAC assembly of two heterofunctional mating units.
Collapse
Affiliation(s)
- Melissa van de L'Isle
- Edinburgh Cancer ResearchInstitute of Genetics & CancerUniversity of EdinburghCrewe Road SouthEdinburghEH4 2XRUK
| | - Stephen Croke
- Edinburgh Cancer ResearchInstitute of Genetics & CancerUniversity of EdinburghCrewe Road SouthEdinburghEH4 2XRUK
| | - Teresa Valero
- Edinburgh Cancer ResearchInstitute of Genetics & CancerUniversity of EdinburghCrewe Road SouthEdinburghEH4 2XRUK
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of Chemistry applied to Biomedicine and the EnvironmentFaculty of PharmacyUniversity of GranadaCampus de Cartuja s/n18071GranadaSpain
- GENYOCentre for Genomics and Oncological ResearchPfizer/University of Granada/Andalusian Regional GovernmentAvda. Ilustración 11418016GranadaSpain
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
| | - Asier Unciti‐Broceta
- Edinburgh Cancer ResearchInstitute of Genetics & CancerUniversity of EdinburghCrewe Road SouthEdinburghEH4 2XRUK
| |
Collapse
|
4
|
Braun J, Ortega-Liebana MC, Unciti-Broceta A, Sieber SA. A Pd-labile fluoroquinolone prodrug efficiently prevents biofilm formation on coated surfaces. Org Biomol Chem 2024; 22:1998-2002. [PMID: 38375536 DOI: 10.1039/d4ob00014e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Surface-adhered bacteria on implants represent a major challenge for antibiotic treatment. We introduce hydrogel-coated surfaces loaded with tailored Pd-nanosheets which catalyze the release of antibiotics from inactive prodrugs. Masked and antibiotically inactive fluoroquinolone analogs were efficiently activated at the surface and prevented the formation of Staphylococcus aureus biofilms.
Collapse
Affiliation(s)
- Josef Braun
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Ernst-Otto-Fischer Strasse 8, 85748 Garching bei München, Germany.
| | - M Carmen Ortega-Liebana
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XR Edinburgh, UK
- CRUK Scotland Centre, UK
- Department of Medicinal & Organic Chemistry and Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- GENYO, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Asier Unciti-Broceta
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XR Edinburgh, UK
- CRUK Scotland Centre, UK
| | - Stephan A Sieber
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Ernst-Otto-Fischer Strasse 8, 85748 Garching bei München, Germany.
| |
Collapse
|
5
|
Ma Y, Zhou Y, Long J, Sun Q, Luo Z, Wang W, Hou T, Yin L, Zhao L, Peng J, Ding Y. A High-Efficiency Bioorthogonal Tumor-Membrane Reactor for In Situ Selective and Sustained Prodrug Activation. Angew Chem Int Ed Engl 2024; 63:e202318372. [PMID: 38205971 DOI: 10.1002/anie.202318372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024]
Abstract
The site-specific activation of bioorthogonal prodrugs has provided great opportunities for reducing the severe side effects of chemotherapy. However, the precise control of activation location, sustained drug production at the target site, and high bioorthogonal reaction efficiency in vivo remain great challenges. Here, we propose the construction of tumor cell membrane reactors in vivo to solve the above problems. Specifically, tumor-targeted liposomes with efficient membrane fusion capabilities are generated to install the bioorthogonal trigger, the amphiphilic tetrazine derivative, on the surface of tumor cells. These predecorated tumor cells act as many living reactors, transforming the tumor into a "drug factory" that in situ activates an externally delivered bioorthogonal prodrug, for example intratumorally injected transcyclooctene-caged doxorubicin. In contrast to the rapid elimination of cargo that is encapsulated and delivered by liposomes, these reactors permit stable retention of bioorthogonal triggers in tumor for 96 h after a single dose of liposomes via intravenous injection, allowing sustained generation of doxorubicin. Interestingly, an additional supplement of liposomes will compensate for the trigger consumed by the reaction and significantly improve the efficiency of the local reaction. This strategy provides a solution to the efficacy versus safety dilemma of tumor chemotherapy.
Collapse
Affiliation(s)
- Yu Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211112, China
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yunyun Zhou
- State Key Laboratory of Natural Medicine, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Jiaqin Long
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211112, China
| | - Qi Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211112, China
| | - Zijiang Luo
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211112, China
| | - Wenjie Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211112, China
| | - Ting Hou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211112, China
| | - Li Yin
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211112, China
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicine, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicine, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Ya Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211112, China
| |
Collapse
|
6
|
Deng L, Sathyan A, Adam C, Unciti-Broceta A, Sebastian V, Palmans ARA. Enhanced Efficiency of Pd(0)-Based Single Chain Polymeric Nanoparticles for in Vitro Prodrug Activation by Modulating the Polymer's Microstructure. NANO LETTERS 2024; 24:2242-2249. [PMID: 38346395 PMCID: PMC10885199 DOI: 10.1021/acs.nanolett.3c04466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Bioorthogonal catalysis employing transition metal catalysts is a promising strategy for the in situ synthesis of imaging and therapeutic agents in biological environments. The transition metal Pd has been widely used as a bioorthogonal catalyst, but bare Pd poses challenges in water solubility and catalyst stability in cellular environments. In this work, Pd(0) loaded amphiphilic polymeric nanoparticles are applied to shield Pd in the presence of living cells for the in situ generation of a fluorescent dye and anticancer drugs. Pd(0) loaded polymeric nanoparticles prepared by the reduction of the corresponding Pd(II)-polymeric nanoparticles are highly active in the deprotection of pro-rhodamine dye and anticancer prodrugs, giving significant fluorescence enhancement and toxigenic effects, respectively, in HepG2 cells. In addition, we show that the microstructure of the polymeric nanoparticles for scaffolding Pd plays a critical role in tuning the catalytic efficiency, with the use of the ligand triphenylphosphine as a key factor for improving the catalyst stability in biological environments.
Collapse
Affiliation(s)
- Linlin Deng
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anjana Sathyan
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Catherine Adam
- Edinburgh Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Asier Unciti-Broceta
- Edinburgh Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Víctor Sebastian
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department of Chemical and Environmental Engineering, Universidad de Zaragoza, Campus Rio Ebro, 50018 Zaragoza, Spain
- Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Anja R A Palmans
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
7
|
Zhang X, Liu Y, Jiang M, Mas-Rosario JA, Fedeli S, Cao-Milan R, Liu L, Winters KJ, Hirschbiegel CM, Nabawy A, Huang R, Farkas ME, Rotello VM. Polarization of macrophages to an anti-cancer phenotype through in situ uncaging of a TLR 7/8 agonist using bioorthogonal nanozymes. Chem Sci 2024; 15:2486-2494. [PMID: 38362405 PMCID: PMC10866364 DOI: 10.1039/d3sc06431j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/23/2023] [Indexed: 02/17/2024] Open
Abstract
Macrophages are plastic cells of the immune system that can be broadly classified as having pro-inflammatory (M1-like) or anti-inflammatory (M2-like) phenotypes. M2-like macrophages are often associated with cancers and can promote cancer growth and create an immune-suppressive tumor microenvironment. Repolarizing macrophages from M2-like to M1-like phenotype provides a crucial strategy for anticancer immunotherapy. Imiquimod is an FDA-approved small molecule that can polarize macrophages by activating toll-like receptor 7/8 (TLR 7/8) located inside lysosomes. However, the non-specific inflammation that results from the drug has limited its systemic application. To overcome this issue, we report the use of gold nanoparticle-based bioorthogonal nanozymes for the conversion of an inactive, imiquimod-based prodrug to an active compound for macrophage re-education from anti- to pro-inflammatory phenotypes. The nanozymes were delivered to macrophages through endocytosis, where they uncaged pro-imiquimod in situ. The generation of imiquimod resulted in the expression of pro-inflammatory cytokines. The re-educated M1-like macrophages feature enhanced phagocytosis of cancer cells, leading to efficient macrophage-based tumor cell killing.
Collapse
Affiliation(s)
- Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Yuanchang Liu
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Javier A Mas-Rosario
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst 230 Stockbridge Road Amherst Massachusetts 01003 USA
| | - Stefano Fedeli
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Roberto Cao-Milan
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Liang Liu
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Kyle J Winters
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | | | - Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Michelle E Farkas
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst 230 Stockbridge Road Amherst Massachusetts 01003 USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst 230 Stockbridge Road Amherst Massachusetts 01003 USA
| |
Collapse
|
8
|
Li Q, Xu J. Research on the Inhibitory Effect of Doxorubicin-loaded Liposomes Targeting GFAP for Glioma Cells. Anticancer Agents Med Chem 2024; 24:177-184. [PMID: 37936466 DOI: 10.2174/0118715206265311231030102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/12/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Glioma is the most common and devastating brain tumor. In recent years, doxorubicin (DOX) is one of the drugs used in the treatment of gliomas, but it has side effects and poor clinical outcomes. Therefore, the delivery of drugs to the tumor site by targeted transport is a new approach to tumor treatment. OBJECTIVE This study focuses on the anti-tumor effects of GFAP-modified drug-carrying liposomes loaded with DOX (GFAP-DOX-LPs) on gliomas. METHODS GFAP-DOX-LPs were prepared by solvent evaporation method. After characterization analysis of GFAP-DOX-LPs, the encapsulation efficiency, the drug loading capacity and in vitro release performance were determined. Then, the MTT method was used to investigate the cytotoxicity and proliferative behavior of U251 and U87 cell lines. After that, flow cytometry was used to investigate the effect of the drug administration group on tumor cell apoptosis. Eventually, the anti-tumor activity was tested in vivo. RESULTS The average particle size of GFAP-DOX-LPs was determined to be 116.3 ± 6.2 nm, and the average potential was displayed as 22.8 ± 7.2 mv. Besides, the morphology of the particle indicated a spherical shape. The encapsulation rate and drug loading were calculated and determined, which were 91.84 ± 0.41% and 9.27 ± 0.55%. In an acidic medium, the DOX release rate reached about 87%. GFAP-DOX-LPs could target glioma cells with low cytotoxicity and inhibit glioma cell proliferation with high efficiency, resulting in promoting apoptosis. The anti-tumor effect of GFAP-DOX-LPs was significantly enhanced. At the same time, the number of GFAPpositive cells in tumor tissues was significantly lower after treatment. Therefore, the overall survival time could be significantly prolonged. CONCLUSION The prepared GFAP-DOX-LPs had good targeting and glioma cell inhibition ability. This demonstrated the promising application of the prepared liposomes in tumor targeting, especially in the field of targeted drug delivery for the treatment of brain tumor.
Collapse
Affiliation(s)
- Qifeng Li
- Department of Neurosurgery, Hangzhou Children's Hospital, Hangzhou, 310000, China
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiaming Xu
- Department of Neurosurgery, Hangzhou Children's Hospital, Hangzhou, 310000, China
| |
Collapse
|
9
|
Liu X, Huang T, Chen Z, Yang H. Progress in controllable bioorthogonal catalysis for prodrug activation. Chem Commun (Camb) 2023; 59:12548-12559. [PMID: 37791560 DOI: 10.1039/d3cc04286c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Bioorthogonal catalysis, a class of catalytic reactions that are mediated by abiotic metals and proceed in biological environments without interfering with native biochemical reactions, has gained ever-increasing momentum in prodrug delivery over the past few decades. Albeit great progress has been attained in developing new bioorthogonal catalytic reactions and optimizing the catalytic performance of transition metal catalysts (TMCs), the use of TMCs to activate chemotherapeutics at the site of interest in vivo remains a challenging endeavor. To translate the bioorthogonal catalysis-mediated prodrug activation paradigm from flasks to animals, TMCs with targeting capability and stimulus-responsive behavior have been well-designed to perform chemical transformations in a controlled manner within highly complex biochemical systems, rendering on-demand drug activation to mitigate off-target toxicity. Here, we review the recent advances in the development of controllable bioorthogonal catalysis systems, with an emphasis on different strategies for engineering TMCs to achieve precise control over prodrug activation. Furthermore, we outline the envisaged challenges and discuss future directions of controllable bioorthogonal catalysis for disease therapy.
Collapse
Affiliation(s)
- Xia Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, and Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Tingjing Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, and Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Zhaowei Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, and Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China.
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, and Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| |
Collapse
|
10
|
Sathyan A, Loman T, Deng L, Palmans ARA. Amphiphilic polymeric nanoparticles enable homogenous rhodium-catalysed NH insertion reactions in living cells. NANOSCALE 2023. [PMID: 37470373 DOI: 10.1039/d3nr02581k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Rh-catalysed NH carbene insertion reactions were exported to living cells with help of amphiphilic polymeric nanoparticles. Hereto, hydrophobic dirhodium carboxylate catalysts were efficiently encapsulated in amphiphilic polymeric nanoparticles comprising dodecyl and Jeffamine as side grafts. The developed catalytic nanoparticles promoted NH carbene insertions between α-keto diazocarbenes and 2,3-diaminonaphthalene, followed by intramolecular cyclisation to form fluorescent or biologically active benzoquinoxalines. These reactions were studied in reaction media of varying complexity. The best-performing catalyst was exported to HeLa cells, where fluorescent and cytotoxic benzoquinoxalines were synthesized in situ at low catalyst loading within a short time. Most of the developed bioorthogonal transition metal catalysts reported to date are easily deactivated by the reactive biomolecules in living cells, limiting their applications. The high catalytic efficiency of the Rh-based polymeric nanoparticles reported here opens the door to expanding the repertoire of bioorthogonal reactions and is therefore promising for biomedical applications.
Collapse
Affiliation(s)
- Anjana Sathyan
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, The Netherlands.
| | - Tessa Loman
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, The Netherlands.
| | - Linlin Deng
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, The Netherlands.
| | - Anja R A Palmans
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, The Netherlands.
| |
Collapse
|
11
|
Zhang X, Liu Y, Doungchawee J, Castellanos-García LJ, Sikora KN, Jeon T, Goswami R, Fedeli S, Gupta A, Huang R, Hirschbiegel CM, Cao-Milán R, Majhi PKD, Cicek YA, Liu L, Jerry DJ, Vachet RW, Rotello VM. Bioorthogonal nanozymes for breast cancer imaging and therapy. J Control Release 2023; 357:31-39. [PMID: 36948419 PMCID: PMC10164715 DOI: 10.1016/j.jconrel.2023.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/23/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
Bioorthogonal catalysis via transition metal catalysts (TMCs) enables the generation of therapeutics locally through chemical reactions not accessible by biological systems. This localization can enhance the efficacy of anticancer treatment while minimizing off-target effects. The encapsulation of TMCs into nanomaterials generates "nanozymes" to activate imaging and therapeutic agents. Here, we report the use of cationic bioorthogonal nanozymes to create localized "drug factories" for cancer therapy in vivo. These nanozymes remained present at the tumor site at least seven days after a single injection due to the interactions between cationic surface ligands and negatively charged cell membranes and tissue components. The prodrug was then administered systemically, and the nanozymes continuously converted the non-toxic molecules into active drugs locally. This strategy substantially reduced the tumor growth in an aggressive breast cancer model, with significantly reduced liver damage compared to traditional chemotherapy.
Collapse
Affiliation(s)
- Xianzhi Zhang
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Yuanchang Liu
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Jeerapat Doungchawee
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | | | - Kristen N Sikora
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Taewon Jeon
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, MA 01003, USA
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Stefano Fedeli
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Aarohi Gupta
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | | | - Roberto Cao-Milán
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Prabin K D Majhi
- Department of Veterinary and Animal Science, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, MA 01003, USA
| | - Yagiz Anil Cicek
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Liang Liu
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - D Joseph Jerry
- Department of Veterinary and Animal Science, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, MA 01003, USA
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA.
| |
Collapse
|
12
|
Sathyan A, Deng L, Loman T, Palmans AR. Bio-orthogonal catalysis in complex media: Consequences of using polymeric scaffold materials on catalyst stability and activity. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
13
|
Sousa-Castillo A, Mariño-López A, Puértolas B, Correa-Duarte MA. Nanostructured Heterogeneous Catalysts for Bioorthogonal Reactions. Angew Chem Int Ed Engl 2023; 62:e202215427. [PMID: 36479797 DOI: 10.1002/anie.202215427] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Bioorthogonal chemistry has inspired a new subarea of chemistry providing a powerful tool to perform novel biocompatible chemospecific reactions in living systems. Following the premise that they do not interfere with biological functions, bioorthogonal reactions are increasingly applied in biomedical research, particularly with respect to genetic encoding systems, fluorogenic reactions for bioimaging, and cancer therapy. This Minireview compiles recent advances in the use of heterogeneous catalysts for bioorthogonal reactions. The synthetic strategies of Pd-, Au-, and Cu-based materials, their applicability in the activation of caged fluorophores and prodrugs, and the possibilities of using external stimuli to release therapeutic substances at a specific location in a diseased tissue are discussed. Finally, we highlight frontiers in the field, identifying challenges, and propose directions for future development in this emerging field.
Collapse
|
14
|
Scorpion Venom Peptide Smp24 Revealed Apoptotic and Antiangiogenic Activities in Solid-Ehrlich Carcinoma Bearing Mice. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
AbstractScorpion venom contains various peptides that could be utilized to treat various diseases, including cancer. This study aimed to evaluate the anti-cancer activity of scorpion venom peptide (Smp24) using a solid Ehrlich Carcinoma (SEC) mice model. SEC model was established by subcutaneous transplantation of SEC cells into Swiss albino female mice afterward subcutaneous injection of the Smp24 peptide compared to 5-Fluorouracil (5-FU) as a standard drug. Various biochemical, hematological, histopathological, immunohistochemical, and molecular (western blotting and RT-PCR) assays were performed to evaluate the antitumor activity of Smp24. Results revealed that Smp24 peptide significantly reduced tumor volume. Interestingly, Smp24 peptide significantly restored normal body functions in cancer-treated groups by maintaining HB, RBC’s, and WBC’s levels, reducing the elevated serum ALT and AST, and increasing total protein and albumin as well as enhancing antioxidant status through reducing the level of MDA and NO and elevating GSH, SOD, and CAT levels. Moreover, it restored the normal morphology of the liver and kidney tissues and improved hematological parameters in cancer-treated animals. Smp24 induced apoptosis in SEC cells, through upregulation of caspase-3 and BAX and the downregulation of VEGF, Bcl-2, p53, PCNA, and Ki67. Moreover, results exhibited the apoptotic and antiangiogenic effects of Smp24 against SEC cancer cells. These findings supported our previous results about the anti-cancer efficacy of Smp24 and made it a good candidate for developing effective and safe anti-cancer agents.
Collapse
|
15
|
Rubio-Ruiz B, Pérez-López AM, Uson L, Ortega-Liebana MC, Valero T, Arruebo M, Hueso JL, Sebastian V, Santamaria J, Unciti-Broceta A. In Cellulo Bioorthogonal Catalysis by Encapsulated AuPd Nanoalloys: Overcoming Intracellular Deactivation. NANO LETTERS 2023; 23:804-811. [PMID: 36648322 PMCID: PMC9912372 DOI: 10.1021/acs.nanolett.2c03593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Bioorthogonal metallocatalysis has opened up a xenobiotic route to perform nonenzymatic catalytic transformations in living settings. Despite their promising features, most metals are deactivated inside cells by a myriad of reactive biomolecules, including biogenic thiols, thereby limiting the catalytic functioning of these abiotic reagents. Here we report the development of cytocompatible alloyed AuPd nanoparticles with the capacity to elicit bioorthogonal depropargylations with high efficiency in biological media. We also show that the intracellular catalytic performance of these nanoalloys is significantly enhanced by protecting them following two different encapsulation methods. Encapsulation in mesoporous silica nanorods resulted in augmented catalyst reactivity, whereas the use of a biodegradable PLGA matrix increased nanoalloy delivery across the cell membrane. The functional potential of encapsulated AuPd was demonstrated by releasing the potent chemotherapy drug paclitaxel inside cancer cells. Nanoalloy encapsulation provides a novel methodology to develop nanoreactors capable of mediating new-to-life reactions in cells.
Collapse
Affiliation(s)
- Belén Rubio-Ruiz
- Edinburgh
Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
- Department
of Medicinal and Organic Chemistry and Unit of Excellence in Chemistry
Applied to Biomedicine and Environment, Faculty of Pharmacy, Campus
Cartuja s/n, University of Granada, 18071 Granada, Spain
- GENYO,
Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain
| | - Ana M. Pérez-López
- Edinburgh
Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
- TU
Berlin, Institut für
Biotechnologie, Aufgang
17-1, Level 4, Raum 472, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Laura Uson
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Department
of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50018 Zaragoza, Spain
| | - M. Carmen Ortega-Liebana
- Edinburgh
Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
- Department
of Medicinal and Organic Chemistry and Unit of Excellence in Chemistry
Applied to Biomedicine and Environment, Faculty of Pharmacy, Campus
Cartuja s/n, University of Granada, 18071 Granada, Spain
- GENYO,
Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain
| | - Teresa Valero
- Edinburgh
Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
- Department
of Medicinal and Organic Chemistry and Unit of Excellence in Chemistry
Applied to Biomedicine and Environment, Faculty of Pharmacy, Campus
Cartuja s/n, University of Granada, 18071 Granada, Spain
- GENYO,
Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain
| | - Manuel Arruebo
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Department
of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50018 Zaragoza, Spain
- Networking
Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-
BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jose L. Hueso
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Department
of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50018 Zaragoza, Spain
- Networking
Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-
BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Victor Sebastian
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Department
of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50018 Zaragoza, Spain
- Networking
Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-
BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jesus Santamaria
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Department
of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50018 Zaragoza, Spain
- Networking
Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-
BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Asier Unciti-Broceta
- Edinburgh
Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| |
Collapse
|
16
|
Verma H, Narendra G, Raju B, Singh PK, Silakari O. Dihydropyrimidine Dehydrogenase-Mediated Resistance to 5-Fluorouracil: Mechanistic Investigation and Solution. ACS Pharmacol Transl Sci 2022; 5:1017-1033. [PMID: 36407958 PMCID: PMC9667542 DOI: 10.1021/acsptsci.2c00117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/29/2022]
Abstract
5-Fluorouracil (5-FU) is one of the most widely used chemotherapeutics for the treatment of cancers associated with the aerodigestive tract, breast, and colorectal system. The efficacy of 5-FU is majorly affected by dihydropyrimidine dehydrogenase (DPD) as it degrades more than 80% of administered 5-FU into an inactive metabolite, dihydrofluorouracil. Herein we discuss the molecular mechanism of this inactivation by analyzing the interaction pattern and electrostatic complementarity of the DPD-5-FU complex. The basis of DPD overexpression in cancer cell lines due to significantly distinct levels of the miRNAs (miR-134, miR-27b, and miR-27a) compared to normal cells has also been outlined. Additionally, some kinases including sphingosine kinase 2 (SphK2) have been reported to correlate with DPD expression. Currently, to address this problem various strategies are reported in the literature, including 5-FU analogues (bypass the DPD-mediated inactivation), DPD downregulators (regulate the DPD expression levels in tumors), inhibitors (as promising adjuvants), and formulation development loaded with 5-FU (liposomes, nanoparticles, nanogels, etc.), which are briefly discussed in this Review.
Collapse
Affiliation(s)
- Himanshu Verma
- Molecular
Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab147002, India
| | - Gera Narendra
- Molecular
Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab147002, India
| | - Baddipadige Raju
- Molecular
Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab147002, India
| | - Pankaj Kumar Singh
- Integrative
Physiology and Pharmacology, Institute of Biomedicine, Faculty of
Medicine, University of Turku, FI-20520Turku, Finland
| | - Om Silakari
- Molecular
Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab147002, India
| |
Collapse
|
17
|
Das R, Hardie J, Joshi BP, Zhang X, Gupta A, Luther DC, Fedeli S, Farkas ME, Rotello VM. Macrophage-Encapsulated Bioorthogonal Nanozymes for Targeting Cancer Cells. JACS AU 2022; 2:1679-1685. [PMID: 35911454 PMCID: PMC9327086 DOI: 10.1021/jacsau.2c00247] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Macrophages migrate to tumor sites by following chemoattractant gradients secreted by tumor cells, providing a truly active targeting strategy for cancer therapy. However, macrophage-based delivery faces challenges of cargo loading, control of release, and effects of the payload on the macrophage vehicle. We present a strategy that employs bioorthogonal "nanozymes" featuring transition metal catalysts (TMCs) to provide intracellular "factories" for the conversion of prodyes and prodrugs into imaging agents and chemotherapeutics. These nanozymes solubilize and stabilize the TMCs by embedding them into self-assembled monolayer coating gold nanoparticles. Nanozymes delivered into macrophages were intracellularly localized and retained activity even after prolonged (72 h) incubation. Significantly, nanozyme-loaded macrophages maintained their inherent migratory ability toward tumor cell chemoattractants, efficiently killing cancer cells in cocultures. This work establishes the potential of nanozyme-loaded macrophages for tumor site activation of prodrugs, providing readily tunable dosages and delivery rates while minimizing off-target toxicity of chemotherapeutics.
Collapse
|
18
|
Shi X, Deng Y, Liu X, Gao G, Wang R, Liang G. An aminopeptidase N-activatable chemiluminescence probe for image-guided surgery and metastasis tracking of tumor. Biosens Bioelectron 2022; 208:114212. [DOI: 10.1016/j.bios.2022.114212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022]
|