1
|
Marcantonio E, Guazzetti D, Coppa C, Battistini L, Sartori A, Bugatti K, Provinciael B, Curti C, Contini A, Vermeire K, Zanardi F. The chiral 5,6-cyclohexane-fused uracil ring-system: A molecular platform with promising activity against SARS-CoV-2. Eur J Med Chem 2025; 286:117302. [PMID: 39884099 DOI: 10.1016/j.ejmech.2025.117302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/10/2025] [Accepted: 01/18/2025] [Indexed: 02/01/2025]
Abstract
The recurrent global exposure to highly challenging viral epidemics, and the still limited spectrum of effective pharmacological options step on the accelerator towards the development of new antiviral medicines. In this work we explored the anti-SARS-CoV-2 potential of a recently launched chiral ring system based on the uracil scaffold fused to carbocycle rings. The asymmetric synthesis of two generations of chiral uracil-based compounds (overall 31 different products), and their in vitro cytotoxicity and antiviral screening against wild-type SARS-CoV-2 in U87.ACE cells allowed us to identify seven non-cytotoxic enantioenriched derivatives exhibiting in vitro EC50 in the 6-37 μM range. Among these compounds, bicyclic uracil 10 showed the best antiviral potency against SARS-CoV-2 (EC50 20A.EU2 = 7.41 μM and EC50 Omicron = 19.4 μM), combined with a favourable selectivity index. Additionally, it exhibited single-digit micromolar inhibition of the isolated SARS-CoV-2 RNA-dependent RNA polymerase (IC50 = 2.1 μM). Starting from a reported cryo-EM structure of RdRp, docking and molecular dynamics simulations were performed to rationalize possible binding modes of the active compounds. Interestingly, no inhibition of viral replication in cells was observed against a wide spectrum of human viruses, while some derivatives, and especially hit compound 10, exhibited specific low micromolar antiviral effect against β-coronavirus OC43. Collectively, these data indicate that this novel uracil-based ring system represents a valid starting point for further development of a new class of RdRp inhibitors to treat SARS-CoV-2 and, potentially, other β-coronavirus infections.
Collapse
Affiliation(s)
- Enrico Marcantonio
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy
| | - Debora Guazzetti
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy
| | - Crescenzo Coppa
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133, Milano, Italy
| | - Lucia Battistini
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy
| | - Andrea Sartori
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy
| | - Kelly Bugatti
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy
| | - Becky Provinciael
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular, Structural and Translational Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Claudio Curti
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy.
| | - Alessandro Contini
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133, Milano, Italy.
| | - Kurt Vermeire
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular, Structural and Translational Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Franca Zanardi
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy.
| |
Collapse
|
2
|
Kuzikov M, Morasso S, Reinshagen J, Wolf M, Monaco V, Cozzolino F, Golič Grdadolnik S, Šket P, Plavec J, Iaconis D, Summa V, Corona A, Paulis A, Esposito F, Tramontano E, Monti M, Beccari AR, Manelfi C, Windshügel B, Gribbon P, Storici P, Zaliani A. Thiol-Reactive or Redox-Active: Revising a Repurposing Screen Led to a New Invalidation Pipeline and Identified a True Noncovalent Inhibitor Against Papain-like Protease from SARS-CoV-2. ACS Pharmacol Transl Sci 2025; 8:66-77. [PMID: 39816795 PMCID: PMC11729419 DOI: 10.1021/acsptsci.4c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/02/2024] [Accepted: 08/27/2024] [Indexed: 01/18/2025]
Abstract
The SARS-CoV-2 papain-like protease PLpro has multiple roles in the viral replication cycle, related to both its polypeptide cleavage function and its ability to antagonize the host immune response. Targeting the PLpro function is recognized as a promising mechanism to modulate viral replication, while supporting host immune responses. However, the development of PLpro-specific inhibitors remains challenging. Comprehensive investigations utilizing enzymatic, binding studies, and cellular assays revealed the previously reported inhibitors to act in an unspecific manner. At present, GRL-0617 and its derivatives remain the best-validated compounds with demonstrated antiviral activity in cells and in mouse models. In this study, we refer to the pitfalls of the redox sensitivity of PLpro. Using a screening-based approach to identify inhibitors of PLpro's proteolytic activity, we made extensive efforts to validate active compounds over a range of conditions and readouts, emphasizing the need for comprehensive orthogonal data when profiling putative PLpro inhibitors. The remaining active compound, CPI-169, was shown to be a noncovalent inhibitor capable of competing with GRL-0617 in NMR-based experiments, suggesting that it occupied a similar binding site and inhibited viral replication in Vero-E6 cells, opening new design opportunities for further development as antiviral agents.
Collapse
Affiliation(s)
- Maria Kuzikov
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Discovery
Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Stefano Morasso
- Protein
Targets for Drug Discovery Lab, Elettra-Sincrotrone
Trieste S.C.p.A., SS 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgeri 1, 34127 Trieste, Italy
| | - Jeanette Reinshagen
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Discovery
Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Markus Wolf
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Discovery
Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Vittoria Monaco
- Department
of Chemical Sciences, University of Naples
“Federico II’, Comunale Cinthia 26, 80126 Naples, Italy
- CEINGE
Advanced-Biotechnologies “Franco Salvatore”, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Flora Cozzolino
- Department
of Chemical Sciences, University of Naples
“Federico II’, Comunale Cinthia 26, 80126 Naples, Italy
- CEINGE
Advanced-Biotechnologies “Franco Salvatore”, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Simona Golič Grdadolnik
- Laboratory
for Molecular Structural Dynamics, National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Primož Šket
- Slovenian
NMR Center, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian
NMR Center, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Daniela Iaconis
- EXSCALATE
- Dompé Farmaceutici SpA, via Tommaso De Amicis 95, 80131 Naples, Italy
| | - Vincenzo Summa
- Department
of Pharmacy, University of Naples “Federico
II”, Via D. Montesano, 49 80131 Naples, Italy
| | - Angela Corona
- Dipartimento
di Scienze della vita e dell’ambiente, Cittadella Universitaria di Monserrato, SS-554, Monserrato, 09042 Cagliari, Italy
| | - Annalaura Paulis
- Dipartimento
di Scienze della vita e dell’ambiente, Cittadella Universitaria di Monserrato, SS-554, Monserrato, 09042 Cagliari, Italy
| | - Francesca Esposito
- Dipartimento
di Scienze della vita e dell’ambiente, Cittadella Universitaria di Monserrato, SS-554, Monserrato, 09042 Cagliari, Italy
| | - Enzo Tramontano
- Dipartimento
di Scienze della vita e dell’ambiente, Cittadella Universitaria di Monserrato, SS-554, Monserrato, 09042 Cagliari, Italy
| | - Maria Monti
- Department
of Chemical Sciences, University of Naples
“Federico II’, Comunale Cinthia 26, 80126 Naples, Italy
- CEINGE
Advanced-Biotechnologies “Franco Salvatore”, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Andrea R. Beccari
- EXSCALATE
- Dompé Farmaceutici SpA, via Tommaso De Amicis 95, 80131 Naples, Italy
| | - Candida Manelfi
- EXSCALATE
- Dompé Farmaceutici SpA, via Tommaso De Amicis 95, 80131 Naples, Italy
| | - Björn Windshügel
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Discovery
Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Philip Gribbon
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Discovery
Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Paola Storici
- Protein
Targets for Drug Discovery Lab, Elettra-Sincrotrone
Trieste S.C.p.A., SS 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Andrea Zaliani
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Discovery
Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| |
Collapse
|
3
|
Garcia-Segura P, Llop-Peiró A, Novau-Ferré N, Mestres-Truyol J, Saldivar-Espinoza B, Pujadas G, Garcia-Vallvé S. SARS-CoV-2 main protease (M-pro) mutational profiling: An insight into mutation coldspots. Comput Biol Med 2025; 184:109344. [PMID: 39531923 DOI: 10.1016/j.compbiomed.2024.109344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/20/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
SARS-CoV-2 and the COVID-19 pandemic have marked a milestone in the history of scientific research worldwide. To ensure that treatments are successful in the mid-long term, it is crucial to characterize SARS-CoV-2 mutations, as they might lead to viral resistance. Data from >5,700,000 SARS-CoV-2 genomes available at GISAID was used to report SARS-CoV-2 mutations. Given the pivotal role of its main protease (M-pro) in virus replication, a detailed analysis of SARS-CoV-2 M-pro mutations was conducted, with particular attention to mutation-resistant residues or mutation coldspots, defined as those residues that have mutated in five or fewer genomes. 32 mutation coldspots were identified, most of which mediate interprotomer interactions or funneling interaction networks from the substrate-binding site towards the dimerization surface and vice versa. Besides, mutation coldspots were virtually conserved in all main proteases from other CoVs. Our results provide valuable information about key residues to M-pro structure that could be useful in rational target-directed drug design and establish a solid groundwork based on mutation analyses for the inhibition of M-pro dimerization, with a potential applicability to future coronavirus outbreaks.
Collapse
Affiliation(s)
- Pol Garcia-Segura
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Research group in Cheminformatics & Nutrition, Campus de Sescelades, 43007, Tarragona, Spain.
| | - Ariadna Llop-Peiró
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Research group in Cheminformatics & Nutrition, Campus de Sescelades, 43007, Tarragona, Spain.
| | - Nil Novau-Ferré
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Research group in Cheminformatics & Nutrition, Campus de Sescelades, 43007, Tarragona, Spain.
| | - Júlia Mestres-Truyol
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Research group in Cheminformatics & Nutrition, Campus de Sescelades, 43007, Tarragona, Spain.
| | - Bryan Saldivar-Espinoza
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Research group in Cheminformatics & Nutrition, Campus de Sescelades, 43007, Tarragona, Spain.
| | - Gerard Pujadas
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Research group in Cheminformatics & Nutrition, Campus de Sescelades, 43007, Tarragona, Spain
| | - Santiago Garcia-Vallvé
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Research group in Cheminformatics & Nutrition, Campus de Sescelades, 43007, Tarragona, Spain.
| |
Collapse
|
4
|
Jimenez-Campos AG, Maestas LI, Velappan N, Beck B, Ye C, Wernsing K, Mata-Solis Y, Bruno WJ, Bussmann SC, Bradfute S, Baca JT, Rininsland FH. A cell-based Papain-like Protease (PLpro) activity assay for rapid detection of active SARS-CoV-2 infections and antivirals. PLoS One 2024; 19:e0309305. [PMID: 39724215 DOI: 10.1371/journal.pone.0309305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/09/2024] [Indexed: 12/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants are a continuous threat to human life. An urgent need remains for simple and fast tests that reliably detect active infections with SARS-CoV-2 and its variants in the early stage of infection. Here we introduce a simple and rapid activity-based diagnostic (ABDx) test that identifies SARS-CoV-2 infections by measuring the activity of a viral enzyme, Papain-Like protease (PLpro). The test system consists of a peptide that fluoresces when cleaved by SARS PLpro that is active in crude, unprocessed lysates from human tongue scrapes and saliva. Test results are obtained in 30 minutes or less using widely available fluorescence plate readers, or a battery-operated portable instrument for on-site testing. Proof-of-concept was obtained in a study on clinical specimens collected from patients with COVID-19 like symptoms who tested positive (n = 10) or negative (n = 10) with LIAT RT-PCR using nasal mid turbinate swabs. When saliva from these patients was tested with in-house endpoint RT-PCR, 17 were positive and only 5 specimens were negative, of which 2 became positive when tested 5 days later. PLpro activity correlated in 17 of these cases (3 out of 3 negatives and 14 out of 16 positives, with one invalid specimen). Despite the small number of samples, the agreement was significant (p value = 0.01). Two false negatives were detected, one from a sample with a late Ct value of 35 in diagnostic RT-PCR, indicating that an active infection was no longer present. The PLpro assay is easily scalable and expected to detect all viable SARS-CoV-2 variants, making it attractive as a screening and surveillance tool. Additionally, we show feasibility of the platform as a new homogeneous phenotypic assay for rapid screening of SARS-CoV-2 antiviral drugs and neutralizing antibodies.
Collapse
Affiliation(s)
- Anahi G Jimenez-Campos
- University of New Mexico Health Sciences Center, Department of Emergency Medicine, Albuquerque, New Mexico, United States of America
| | - Lucas I Maestas
- University of New Mexico Health Sciences Center, Department of Emergency Medicine, Albuquerque, New Mexico, United States of America
| | - Nileena Velappan
- Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Brian Beck
- MicroBiologics, St. Cloud, MN, United States of America
| | - Chunyan Ye
- Health Science Center, Center for Global Health and Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | | | | | | | - Silas C Bussmann
- University of New Mexico Health Sciences Center, Department of Emergency Medicine, Albuquerque, New Mexico, United States of America
| | - Steven Bradfute
- Health Science Center, Center for Global Health and Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Justin T Baca
- University of New Mexico Health Sciences Center, Department of Emergency Medicine, Albuquerque, New Mexico, United States of America
| | | |
Collapse
|
5
|
Shinohara K, Kobayakawa T, Tsuji K, Takamatsu Y, Mitsuya H, Tamamura H. Naphthalen-1-ylethanamine-containing small molecule inhibitors of the papain-like protease of SARS-CoV-2. Eur J Med Chem 2024; 280:116963. [PMID: 39442336 DOI: 10.1016/j.ejmech.2024.116963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has not yet been eradicated. SARS-CoV-2 has two types of proteases, a main protease (Mpro) and a papain-like protease (PLpro), which together process two translated non-structural polyproteins, pp1a and pp1ab, to produce functional viral proteins. In this study, effective inhibitors against PLpro of SARS-CoV-2 were designed and synthesized using GRL-0048 as a lead. A docking simulation of GRL-0048 and SARS-CoV-2 PLpro showed that GRL-0048 noncovalently interacts with PLpro, and there is a newly identified binding pocket in PLpro. Structure-activity relationship studies were next performed on GRL-0048, resulting in the development of several inhibitors, specifically compounds 1, 2b, and 3h, that have more potent inhibitory activity than GRL-0048.
Collapse
Affiliation(s)
- Kouki Shinohara
- Department of Medicinal Chemistry, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Takuya Kobayakawa
- Department of Medicinal Chemistry, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Kohei Tsuji
- Department of Medicinal Chemistry, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Yuki Takamatsu
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo, 162-8655, Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States; Department of Clinical Sciences, Kumamoto University Hospital, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, Chiyoda-ku, Tokyo, 101-0062, Japan.
| |
Collapse
|
6
|
Sousa BP, Mottin M, Seanego D, Jurisch CD, Rodrigues BSA, da Silva VLS, Andrade MA, Morais GS, Boerin DF, Froes TQ, Motta FN, Nonato MC, Bastos IDM, Chibale K, Gessner RK, Andrade CH. Discovery of Non-Covalent Inhibitors for SARS-CoV-2 PLpro: Integrating Virtual Screening, Synthesis, and Experimental Validation. ACS Med Chem Lett 2024; 15:2140-2149. [PMID: 39691531 PMCID: PMC11647681 DOI: 10.1021/acsmedchemlett.4c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
The SARS-CoV-2 pandemic has significantly challenged global public health, highlighting the need for effective therapeutic options. This study focuses on the papain-like protease (PLpro) of SARS-CoV-2, which is a critical enzyme for viral polyprotein processing, maturation, and immune evasion. We employed a combined approach that began with computational models in a virtual screening campaign, prioritizing compounds from our in-house chemical library against PLpro. Out of 81 virtual hits evaluated through enzymatic and biophysical assays, we identified a modest inhibitor featuring a naphthyridine core with an IC50 of 73.61 μM and a K i of 22 μM. Expanding our exploration, we synthesized and assessed 30 naphthyridine analogues, three of which emerged as promising noncovalent, nonpeptidomimetic inhibitors with IC50 values between 15.06 and 51.81 μM. Furthermore, in vitro ADMET assays revealed these compounds to possess moderate aqueous solubility, low cytotoxicity, and high microsomal stability, making them excellent candidates for further development targeting SARS-CoV-2 PLpro.
Collapse
Affiliation(s)
- Bruna
K. P. Sousa
- Center
for the Research and Advancement in Fragments and Molecular Targets
(CRAFT), Faculdade de Ciências Farmaceuticas de Ribeirão
Preto, Universidade de São Paulo, Ribeirão Preto, São
Paulo 05508-070, Brazil
- Laboratory
for Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Goiás 74690-900, Brazil
| | - Melina Mottin
- Center
for the Research and Advancement in Fragments and Molecular Targets
(CRAFT), Faculdade de Ciências Farmaceuticas de Ribeirão
Preto, Universidade de São Paulo, Ribeirão Preto, São
Paulo 05508-070, Brazil
- Laboratory
for Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Goiás 74690-900, Brazil
- Pathogen-Host
Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 73345-010, Brazil
| | - Donald Seanego
- Holistic
Drug Discovery and Development Centre (H3D), University of Cape Town, Cape Town 7701, South Africa
| | - Christopher D. Jurisch
- Holistic
Drug Discovery and Development Centre (H3D), University of Cape Town, Cape Town 7701, South Africa
| | - Beatriz S. A. Rodrigues
- Pathogen-Host
Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 73345-010, Brazil
| | - Verônica L. S. da Silva
- Pathogen-Host
Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 73345-010, Brazil
| | - Milene Aparecida Andrade
- Pathogen-Host
Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 73345-010, Brazil
| | - Gilberto S. Morais
- Pathogen-Host
Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 73345-010, Brazil
| | - Diogo F. Boerin
- Center
for the Research and Advancement in Fragments and Molecular Targets
(CRAFT), Faculdade de Ciências Farmaceuticas de Ribeirão
Preto, Universidade de São Paulo, Ribeirão Preto, São
Paulo 05508-070, Brazil
- Laboratório
de Cristalografia de Proteínas, Faculdade de Ciências
Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 05508-070, Brazil
| | - Thamires Q. Froes
- Center
for the Research and Advancement in Fragments and Molecular Targets
(CRAFT), Faculdade de Ciências Farmaceuticas de Ribeirão
Preto, Universidade de São Paulo, Ribeirão Preto, São
Paulo 05508-070, Brazil
- Laboratório
de Cristalografia de Proteínas, Faculdade de Ciências
Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 05508-070, Brazil
| | - Flávia Nader Motta
- Pathogen-Host
Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 73345-010, Brazil
- Faculdade
de Ceilândia, Universidade de Brasília, Brasília, Distrito
Federal 73345-010, Brazil
| | - M. Cristina Nonato
- Center
for the Research and Advancement in Fragments and Molecular Targets
(CRAFT), Faculdade de Ciências Farmaceuticas de Ribeirão
Preto, Universidade de São Paulo, Ribeirão Preto, São
Paulo 05508-070, Brazil
- Laboratório
de Cristalografia de Proteínas, Faculdade de Ciências
Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 05508-070, Brazil
| | - Izabela D. M. Bastos
- Pathogen-Host
Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 73345-010, Brazil
| | - Kelly Chibale
- Holistic
Drug Discovery and Development Centre (H3D), University of Cape Town, Cape Town 7701, South Africa
- South
African Medical Research Council Drug Discovery and Development Research
Unit, University of Cape Town, Cape Town 7701, South Africa
- Institute
of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7701, South Africa
| | - Richard K. Gessner
- Holistic
Drug Discovery and Development Centre (H3D), University of Cape Town, Cape Town 7701, South Africa
| | - Carolina Horta Andrade
- Center
for the Research and Advancement in Fragments and Molecular Targets
(CRAFT), Faculdade de Ciências Farmaceuticas de Ribeirão
Preto, Universidade de São Paulo, Ribeirão Preto, São
Paulo 05508-070, Brazil
- Laboratory
for Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Goiás 74690-900, Brazil
- Center
for Excellence in Artificial Intelligence (CEIA), Instituto de Informática, Universidade Federal de Goiás, Goiânia, Goiás 74690-900, Brazil
| |
Collapse
|
7
|
Li M, Bei ZC, Yuan Y, Wang B, Zhang D, Xu L, Zhao L, Xu Q, Song Y. In-cell bioluminescence resonance energy transfer (BRET)-based assay uncovers ceritinib and CA-074 as SARS-CoV-2 papain-like protease inhibitors. J Enzyme Inhib Med Chem 2024; 39:2387417. [PMID: 39163165 PMCID: PMC11338211 DOI: 10.1080/14756366.2024.2387417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Papain-like protease (PLpro) is an attractive anti-coronavirus target. The development of PLpro inhibitors, however, is hampered by the limitations of the existing PLpro assay and the scarcity of validated active compounds. We developed a novel in-cell PLpro assay based on BRET and used it to evaluate and discover SARS-CoV-2 PLpro inhibitors. The developed assay demonstrated remarkable sensitivity for detecting the reduction of intracellular PLpro activity while presenting high reliability and performance for inhibitor evaluation and high-throughput screening. Using this assay, three protease inhibitors were identified as novel PLpro inhibitors that are structurally disparate from those previously known. Subsequent enzymatic assays and ligand-protein interaction analysis based on molecular docking revealed that ceritinib directly inhibited PLpro, showing high geometric complementarity with the substrate-binding pocket in PLpro, whereas CA-074 methyl ester underwent intracellular hydrolysis, exposing a free carboxyhydroxyl group essential for hydrogen bonding with G266 in the BL2 groove, resulting in PLpro inhibition.
Collapse
Affiliation(s)
- Mei Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Zhu-Chun Bei
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yongtian Yuan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Baogang Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Dongna Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Likun Xu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Liangliang Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Qin Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yabin Song
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Nemčovičová I, Lopušná K, Štibrániová I, Benedetti F, Berti F, Felluga F, Drioli S, Vidali M, Katrlík J, Pažitná L, Holazová A, Blahutová J, Lenhartová S, Sláviková M, Klempa B, Ondrejovič M, Chmelová D, Legerská B, Miertuš S, Klacsová M, Uhríková D, Kerti L, Frecer V. Identification and evaluation of antiviral activity of novel compounds targeting SARS-CoV-2 virus by enzymatic and antiviral assays, and computational analysis. J Enzyme Inhib Med Chem 2024; 39:2301772. [PMID: 38221792 PMCID: PMC10791089 DOI: 10.1080/14756366.2024.2301772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024] Open
Abstract
The viral genome of the SARS-CoV-2 coronavirus, the aetiologic agent of COVID-19, encodes structural, non-structural, and accessory proteins. Most of these components undergo rapid genetic variations, though to a lesser extent the essential viral proteases. Consequently, the protease and/or deubiquitinase activities of the cysteine proteases Mpro and PLpro became attractive targets for the design of antiviral agents. Here, we develop and evaluate new bis(benzylidene)cyclohexanones (BBC) and identify potential antiviral compounds. Three compounds were found to be effective in reducing the SARS-CoV-2 load, with EC50 values in the low micromolar concentration range. However, these compounds also exhibited inhibitory activity IC50 against PLpro at approximately 10-fold higher micromolar concentrations. Although originally developed as PLpro inhibitors, the comparison between IC50 and EC50 of BBC indicates that the mechanism of their in vitro antiviral activity is probably not directly related to inhibition of viral cysteine proteases. In conclusion, our study has identified new potential noncytotoxic antiviral compounds suitable for in vivo testing and further improvement.
Collapse
Affiliation(s)
- Ivana Nemčovičová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarína Lopušná
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Iveta Štibrániová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Fabio Benedetti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Fulvia Felluga
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Sara Drioli
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Mattia Vidali
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Pažitná
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alena Holazová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Blahutová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Simona Lenhartová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Sláviková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Boris Klempa
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
- ICARST n.o, Bratislava, Slovakia
| | - Daniela Chmelová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Barbora Legerská
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
- ICARST n.o, Bratislava, Slovakia
| | - Mária Klacsová
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Daniela Uhríková
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Lukáš Kerti
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Vladimír Frecer
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| |
Collapse
|
9
|
Welch SR, Bilello JP, Carter K, Delang L, Dirr L, Durantel D, Feng JY, Gowen BB, Herrero LJ, Janeba Z, Kleymann G, Lee AA, Meier C, Moffat J, Schang LM, Schiffer JT, Seley-Radtke KL, Sheahan TP, Spengler JR. Meeting report of the 37th International Conference on Antiviral Research in Gold Coast, Australia, May 20-24, 2024, organized by the International Society for Antiviral Research. Antiviral Res 2024; 232:106037. [PMID: 39542140 DOI: 10.1016/j.antiviral.2024.106037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
The 37th International Conference on Antiviral Research (ICAR) was held in Gold Coast, Australia, May 20-24, 2024. ICAR 2024 featured over 75 presentations along with two poster sessions and special events, including those specifically tailored for trainees and early-career scientists. The meeting served as a platform for the exchange of cutting-edge research, with presentations and discussions covering novel antiviral compounds, vaccine development, clinical trials, and therapeutic advancements. A comprehensive array of topics in antiviral science was covered, from the latest breakthroughs in antiviral drug development to innovative strategies for combating emerging viral threats. The keynote presentations provided fascinating insight into two diverse areas fundamental to medical countermeasure development and use, including virus emergence at the human-animal interface and practical considerations for bringing antivirals to the clinic. Additional sessions addressed a variety of timely post-pandemic topics, such as the hunt for broad spectrum antivirals, combination therapy, pandemic preparedness, application of in silico tools and AI in drug discovery, the virosphere, and more. Here, we summarize all the presentations and special sessions of ICAR 2024 and introduce the 38th ICAR, which will be held in Las Vegas, USA, March 17-21, 2025.
Collapse
Affiliation(s)
- Stephen R Welch
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | | - Leen Delang
- Virus-Host Interactions & Therapeutic Approaches Research Group, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Larissa Dirr
- Institute for Biomedicine and Glycomics, Griffith University, Southport, QLD, Australia
| | - David Durantel
- Centre International de Recherche en Infectiologie (CIRI), Inserm_U1111, CNRS_UMR5308, Université Claude Bernard Lyon 1, F-69007, Lyon, France
| | - Joy Y Feng
- Division of the Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Brian B Gowen
- Institute for Antiviral Research and Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Lara J Herrero
- Institute for Biomedicine and Glycomics, Griffith University, Southport, QLD, Australia
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague, Czech Republic
| | - Gerald Kleymann
- Innovative Molecules GmbH, Lipowsky Str. 10, 81373, Munich, Bavaria, Germany
| | | | - Chris Meier
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, University of Hamburg, Martin-Luther-King-Platz 6, Hamburg, Germany
| | - Jennifer Moffat
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Luis M Schang
- Baker Institute and Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Joshua T Schiffer
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, WA, USA; Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Katherine L Seley-Radtke
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
10
|
Tan B, Liang X, Ansari A, Jadhav P, Tan H, Li K, Ruiz FX, Arnold E, Deng X, Wang J. Structure-Based Design of Covalent SARS-CoV-2 Papain-like Protease Inhibitors. J Med Chem 2024; 67:20399-20420. [PMID: 39499574 DOI: 10.1021/acs.jmedchem.4c01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The COVID-19 pandemic is caused by SARS-CoV-2, a highly transmissible and pathogenic RNA betacoronavirus. Like other RNA viruses, SARS-CoV-2 continues to evolve with or without drug selection pressure, and many variants have emerged since the beginning of the pandemic. The papain-like protease, PLpro, is a cysteine protease that cleaves viral polyproteins as well as ubiquitin and ISG15 modifications from host proteins. Leveraging our recently discovered Val70Ub binding site in PLpro, we designed covalent PLpro inhibitors by connecting cysteine reactive warheads to the biarylphenyl PLpro inhibitors via flexible linkers. Several leads displayed potent enzymatic inhibition (IC50 = 0.1-0.3 μM) and antiviral activity (EC50 = 0.09-0.96 μM). Fumaramide inhibitors Jun13567 (15), Jun13728 (16), and Jun13714 (18) showed favorable in vivo pharmacokinetic properties with intraperitoneal injection. The X-ray crystal structure of PLpro with Jun13567 (15) validated our design strategy, revealing covalent conjugation between the catalytic Cys111 and the fumaramide warhead. The results suggest these covalent PLpro inhibitors are promising SARS-CoV-2 antiviral drug candidates.
Collapse
Affiliation(s)
- Bin Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Xueying Liang
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Ahmadullah Ansari
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Prakash Jadhav
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Francesc Xavier Ruiz
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Xufang Deng
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, United States
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
11
|
Lu Y, Yang Q, Ran T, Zhang G, Li W, Zhou P, Tang J, Dai M, Zhong J, Chen H, He P, Zhou A, Xue B, Chen J, Zhang J, Yang S, Wu K, Wu X, Tang M, Zhang WK, Guo D, Chen X, Chen H, Shang J. Discovery of orally bioavailable SARS-CoV-2 papain-like protease inhibitor as a potential treatment for COVID-19. Nat Commun 2024; 15:10169. [PMID: 39580525 PMCID: PMC11585628 DOI: 10.1038/s41467-024-54462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/07/2024] [Indexed: 11/25/2024] Open
Abstract
The RNA-dependent RNA polymerase (RdRp), 3C-like protease (3CLpro), and papain-like protease (PLpro) are pivotal components in the viral life cycle of SARS-CoV-2, presenting as promising therapeutic targets. Currently, all FDA-approved antiviral drugs against SARS-CoV-2 are RdRp or 3CLpro inhibitors. However, the mutations causing drug resistance have been observed in RdRp and 3CLpro from SARS-CoV-2, which makes it necessary to develop antivirals with novel mechanisms. Through the application of a structure-based drug design (SBDD) approach, we discover a series of novel potent non-covalent PLpro inhibitors with remarkable in vitro potency and in vivo PK properties. The co-crystal structures of PLpro with lead compounds reveal that the residues D164 and Q269 around the S2 site are critical for improving the inhibitor's potency. The lead compound GZNL-P36 not only inhibits SARS-CoV-2 and its variants at the cellular level with EC50 ranging from 58.2 nM to 306.2 nM, but also inhibits HCoV-NL63 and HCoV-229E with EC50 of 81.6 nM and 2.66 μM, respectively. Oral administration of the GZNL-P36 results in significantly improved survival and notable reductions in lung viral loads and lesions in SARS-CoV-2 infection mouse model, consistent with RNA-seq data analysis. Our results indicate that PLpro inhibitors represent a promising SARS-CoV-2 therapy.
Collapse
Affiliation(s)
- Yongzhi Lu
- Guangzhou National Laboratory, Guangzhou, 510005, China
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qi Yang
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ting Ran
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Guihua Zhang
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Wenqi Li
- Guangzhou National Laboratory, Guangzhou, 510005, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peiqi Zhou
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Jielin Tang
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Minxian Dai
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Jinpeng Zhong
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Hua Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Pan He
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Anqi Zhou
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, 511436, China
| | - Bao Xue
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Jiayi Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiyun Zhang
- Guangzhou National Laboratory, Guangzhou, 510005, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Sidi Yang
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Kunzhong Wu
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xinyu Wu
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Miru Tang
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Wei K Zhang
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Deyin Guo
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Hongming Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China.
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Jinsai Shang
- Guangzhou National Laboratory, Guangzhou, 510005, China.
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
12
|
Liu ZQ. How many organic small molecules might be used to treat COVID-19? From natural products to synthetic agents. Eur J Med Chem 2024; 278:116788. [PMID: 39236494 DOI: 10.1016/j.ejmech.2024.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
A large scale of pandemic coronavirus disease (COVID-19) in the past five years motivates a great deal of endeavors donating to the exploration on therapeutic drugs against COVID-19 as well as other diseases caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein is an overview on the organic small molecules that are potentially employed to treat COVID-19 and other SARS-CoV-2-related diseases. These organic small molecules are accessed from both natural resources and synthetic strategies. Notably, typical natural products presented herein consist of polyphenols, lignans, alkaloids, terpenoids, and peptides, which exert an advantage for the further discovery of novel anti-COVID-19 drugs from plant herbs. On the other hand, synthetic prodrugs are composed of a series of inhibitors towards RNA-dependent RNA polymerase (RdRp), main protease (Mpro), 3-chymotrypsin-like cysteine protease (3CLpro), spike protein, papain-like protease (PLpro) of the SARS-CoV-2 as well as the angiotensin-converting enzyme 2 (ACE2) in the host cells. Synthetic strategies are worth taken into consideration because they are beneficial for designing novel anti-COVID-19 drugs in the coming investigations. Although examples collected herein are just a drop in the bucket, developments of organic small molecules against coronavirus infections are believed to pave a promising way for the discovery of multi-targeted therapeutic drugs against not only COVID-19 but also other virus-mediated diseases.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, No.2519 Jiefang Road, Changchun, 130021, People's Republic of China.
| |
Collapse
|
13
|
Li X, Song Y. Perspective for Drug Discovery Targeting SARS Coronavirus Methyltransferases: Function, Structure and Inhibition. J Med Chem 2024; 67:18642-18655. [PMID: 39478665 PMCID: PMC11787806 DOI: 10.1021/acs.jmedchem.4c01749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Severe acute respiratory syndrome-associated coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is highly contagious and caused a catastrophic pandemic. It has infected billions of people worldwide with >6 million deaths. With expedited development of effective vaccines and antiviral drugs, there have been significantly reduced SARS-CoV-2 infections and associated mortalities and morbidities. The virus is closely related to SARS-CoV, which emerged in 2003 and infected several thousand people with a higher mortality rate of ∼10%. Because of continued viral evolution and drug-induced resistance, as well as the possibility of a new coronavirus in the future, studies for new therapies are needed. The viral methyltransferases play critical roles in SARS coronavirus replication and are therefore promising drug targets. This review summarizes the function, structure and inhibition of methyltransferases of SARS-CoV-2 and SARS-CoV. Challenges and perspectives of targeting the viral methyltransferases to treat viral infections are discussed.
Collapse
Affiliation(s)
- Xin Li
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Yongcheng Song
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
14
|
Kerti L, Frecer V. Design of inhibitors of SARS-CoV-2 papain-like protease deriving from GRL0617: Structure-activity relationships. Bioorg Med Chem 2024; 113:117909. [PMID: 39288705 DOI: 10.1016/j.bmc.2024.117909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
The unique and complex structure of papain-like protease (PLpro) of the SARS-CoV-2 virus represents a difficult challenge for antiviral development, yet it offers a compelling validated target for effective therapy of COVID-19. The surge in scientific interest in inhibiting this cysteine protease emerged after its demonstrated connection to the cytokine storm in patients with COVID-19 disease. Furthermore, the development of new inhibitors against PLpro may also be beneficial for the treatment of respiratory infections caused by emerging coronavirus variants of concern. This review article provides a comprehensive overview of PLpro inhibitors, focusing on the structural framework of the known inhibitor GRL0617 and its analogs. We categorize PLpro inhibitors on the basis of their structures and binding site: Glu167 containing site, BL2 groove, Val70Ub site, and Cys111 containing catalytic site. We summarize and evaluate the majority of GRL0617-like inhibitors synthesized so far, highlighting their published biochemical parameters, which reflect their efficacy. Published research has shown that strategic modifications to GRL0617, such as decorating the naphthalene ring, extending the aromatic amino group or the orthomethyl group, can substantially decrease the IC50 from micromolar up to nanomolar concentration range. Some advantageous modifications significantly enhance inhibitory activity, paving the way for the development of new potent compounds. Our review places special emphasis on structures that involve direct modifications to the GRL0617 scaffold, including piperidine carboxamides and modified benzylmethylnaphthylethanamines (Jun9 scaffold). All these compounds are believed to inhibit the proteolytic, deubiquitination, and deISGylation activity of PLpro, biochemical processes linked to the severe progression of COVID-19. Finally, we summarize the development efforts for SARS-CoV-2 PLpro inhibitors, in detailed structure-activity relationships diagrams. This aims to inform and inspire future research in the search for potent antiviral agents against PLpro of current and emerging coronavirus threats.
Collapse
Affiliation(s)
- Lukas Kerti
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, SK-83232 Bratislava, Slovakia
| | - Vladimir Frecer
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, SK-83232 Bratislava, Slovakia.
| |
Collapse
|
15
|
Soliman SSM, Hamoda AM, Nayak Y, Mostafa A, Hamdy R. Novel compounds with dual inhibition activity against SARS-CoV-2 critical enzymes RdRp and human TMPRSS2. Eur J Med Chem 2024; 276:116671. [PMID: 39004019 DOI: 10.1016/j.ejmech.2024.116671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
COVID-19 caused major worldwide problems. The spread of variants and limited treatment encouraged the design of novel anti-SARS-CoV-2 compounds. A series of compounds RH1-23 were designed to dually target RNA-dependent RNA polymerase (RdRp) and transmembrane serine protease 2 (TMPRSS2). Compared to remdesivir, in vitro screening indicated the highest selectivity and potent activity of RH11-13 with half maximum inhibitory concentration (IC50) 3.9, 5.7, and 19.72 nM, respectively. RH11-12 showed superior inhibition activity against TMPRSS2 and RdRP with IC50 (1.7 and 4.2), and (6.1 and 4.42) nM, respectively. WaterMap analysis and molecular dynamics studies demonstrated the superior enzyme binding activity of RH11 and RH12. On Vero-E6 cells, RH11 and RH12 significantly inhibited the viral replication with 66 % and 63.2 %, and viral adsorption with 44 % and 65 %, alongside virucidal effect with 51.40 % and 90.5 %, respectively. Furthermore, the potent activity of RH12 was tested on TMPRSS2-expressing cells (Calu-3) compared to camostat. RH12 exhibited selectivity index (26.05) similar to camostat (28.01) and comparable to its SI on Vero-E6 cells (22.6). RH12 demonstrated also a significant inhibition of the viral adsorption on Calu-3 cells with 60 % inhibition at 30 nM. The designed compounds exhibited good physiochemical properties. These findings indicate a broad-spectrum antiviral efficacy of the designed compounds, particularly RH12, with a promise for further development.
Collapse
Affiliation(s)
- Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Alshaimaa M Hamoda
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt; Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, 78227, United States
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
16
|
Nazir F, John Kombe Kombe A, Khalid Z, Bibi S, Zhang H, Wu S, Jin T. SARS-CoV-2 replication and drug discovery. Mol Cell Probes 2024; 77:101973. [PMID: 39025272 DOI: 10.1016/j.mcp.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions of people and continues to wreak havoc across the globe. This sudden and deadly pandemic emphasizes the necessity for anti-viral drug development that can be rapidly administered to reduce morbidity, mortality, and virus propagation. Thus, lacking efficient anti-COVID-19 treatment, and especially given the lengthy drug development process as well as the critical death tool that has been associated with SARS-CoV-2 since its outbreak, drug repurposing (or repositioning) constitutes so far, the ideal and ready-to-go best approach in mitigating viral spread, containing the infection, and reducing the COVID-19-associated death rate. Indeed, based on the molecular similarity approach of SARS-CoV-2 with previous coronaviruses (CoVs), repurposed drugs have been reported to hamper SARS-CoV-2 replication. Therefore, understanding the inhibition mechanisms of viral replication by repurposed anti-viral drugs and chemicals known to block CoV and SARS-CoV-2 multiplication is crucial, and it opens the way for particular treatment options and COVID-19 therapeutics. In this review, we highlighted molecular basics underlying drug-repurposing strategies against SARS-CoV-2. Notably, we discussed inhibition mechanisms of viral replication, involving and including inhibition of SARS-CoV-2 proteases (3C-like protease, 3CLpro or Papain-like protease, PLpro) by protease inhibitors such as Carmofur, Ebselen, and GRL017, polymerases (RNA-dependent RNA-polymerase, RdRp) by drugs like Suramin, Remdesivir, or Favipiravir, and proteins/peptides inhibiting virus-cell fusion and host cell replication pathways, such as Disulfiram, GC376, and Molnupiravir. When applicable, comparisons with SARS-CoV inhibitors approved for clinical use were made to provide further insights to understand molecular basics in inhibiting SARS-CoV-2 replication and draw conclusions for future drug discovery research.
Collapse
Affiliation(s)
- Farah Nazir
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zunera Khalid
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shaheen Bibi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Anhui, China
| | - Hongliang Zhang
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China
| | - Songquan Wu
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China.
| | - Tengchuan Jin
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China; Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Anhui, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China; Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
17
|
Patel DK, Kumar H, Sobhia ME. Exploring the binding dynamics of covalent inhibitors within active site of PL pro in SARS-CoV-2. Comput Biol Chem 2024; 112:108132. [PMID: 38959551 DOI: 10.1016/j.compbiolchem.2024.108132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
In the global fight against the COVID-19 pandemic caused by the highly transmissible SARS-CoV-2 virus, the search for potent medications is paramount. With a focused investigation on the SARS-CoV-2 papain-like protease (PLpro) as a promising therapeutic target due to its pivotal role in viral replication and immune modulation, the catalytic triad of PLpro comprising Cys111, His272, and Asp286, highlights Cys111 as an intriguing nucleophilic center for potential covalent bonds with ligands. The detailed analysis of the binding site unveils crucial interactions with both hydrophobic and polar residues, demonstrating the structural insights of the cavity and deepening our understanding of its molecular landscape. The sequence of PLpro among variants of concern (Alpha, Beta, Gamma, Delta and Omicron) and the recent variant of interest, JN.1, remains conserved with no mutations at the active site. Moreover, a thorough exploration of apo, non-covalently bound, and covalently bound PLpro conformations exposes significant conformational changes in loop regions, offering invaluable insights into the intricate dynamics of ligand-protein complex formation. Employing strategic in silico medication repurposing, this study swiftly identifies potential molecules for target inhibition. Within the domain of covalent docking studies and molecular dynamics, using reported inhibitors and clinically tested molecules elucidate the formation of stable covalent bonds with the cysteine residue, laying a robust foundation for potential therapeutic applications. These details not only deepen our comprehension of PLpro inhibition but also play a pivotal role in shaping the dynamic landscape of COVID-19 treatment strategies.
Collapse
Affiliation(s)
- Deepesh Kumar Patel
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Harish Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India.
| |
Collapse
|
18
|
Oneto A, Hamwi GA, Schäkel L, Krüger N, Sylvester K, Petry M, Shamleh RA, Pillaiyar T, Claff T, Schiedel AC, Sträter N, Gütschow M, Müller CE. Nonpeptidic Irreversible Inhibitors of SARS-CoV-2 Main Protease with Potent Antiviral Activity. J Med Chem 2024; 67:14986-15011. [PMID: 39146284 DOI: 10.1021/acs.jmedchem.4c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
SARS-CoV-2 infections pose a high risk for vulnerable patients. In this study, we designed benzoic acid halopyridyl esters bearing a variety of substituents as irreversible inhibitors of the main viral protease (Mpro). Altogether, 55 benzoyl chloro/bromo-pyridyl esters were synthesized, with broad variation of the substitution pattern on the benzoyl moiety. A workflow was employed for multiparametric optimization, including Mpro inhibition assays of SARS-CoV-2 and related pathogenic coronaviruses, the duration of enzyme inhibition, the compounds' stability versus glutathione, cytotoxicity, and antiviral activity. Several compounds showed IC50 values in the low nanomolar range, kinact/Ki values of >100,000 M-1 s-1 and high antiviral activity. High-resolution X-ray cocrystal structures indicated an important role of ortho-fluorobenzoyl substitution, forming a water network that stabilizes the inhibitor-bound enzyme. The most potent antiviral compound was the p-ethoxy-o-fluorobenzoyl chloropyridyl ester (PSB-21110, 29b, MW 296 g/mol; EC50 2.68 nM), which may serve as a lead structure for broad-spectrum anticoronaviral therapeutics.
Collapse
Affiliation(s)
- Angelo Oneto
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Ghazl Al Hamwi
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Laura Schäkel
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Nadine Krüger
- Platform Infection Models, German Primate Center, Leibniz Institute for Primate Research Göttingen, Kellnerweg 4, Göttingen 37077, Germany
| | - Katharina Sylvester
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Marvin Petry
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Rasha Abu Shamleh
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Thanigaimalai Pillaiyar
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Tobias Claff
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Anke C Schiedel
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Norbert Sträter
- Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, Leipzig 04103, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Christa E Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| |
Collapse
|
19
|
Jiang H, Li W, Zhou X, Zhang J, Li J. Crystal structures of coronaviral main proteases in complex with the non-covalent inhibitor X77. Int J Biol Macromol 2024; 276:133706. [PMID: 38981557 DOI: 10.1016/j.ijbiomac.2024.133706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
Main proteases (Mpros) are a class of conserved cysteine hydrolases among coronaviruses and play a crucial role in viral replication. Therefore, Mpros are ideal targets for the development of pan-coronavirus drugs. X77, previously developed against SARS-CoV Mpro, was repurposed as a non-covalent tight binder inhibitor against SARS-CoV-2 Mpro during COVID-19 pandemic. Many novel inhibitors with favorable efficacy have been discovered using X77 as a reference, suggesting that X77 could be a valuable scaffold for drug design. However, the broad-spectrum performance of X77 and underlying mechanism remain less understood. Here, we reported the crystal structures of Mpros from SARS-CoV-2, SARS-CoV, and MERS-CoV, and several Mpro mutants from SARS-CoV-2 variants bound to X77. A detailed analysis of these structures revealed key structural determinants essential for interaction and elucidated the binding modes of X77 with different coronaviral Mpros. The potencies of X77 against these investigated Mpros were further evaluated through molecular dynamic simulation and binding free energy calculation. These data provide molecular insights into broad-spectrum inhibition against coronaviral Mpros by X77 and the similarities and differences of X77 when bound to various Mpros, which will promote X77-based design of novel antivirals with broad-spectrum efficacy against different coronaviruses and SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Haihai Jiang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Wenwen Li
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Xuelan Zhou
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Jin Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jian Li
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
20
|
Yang M, Kim M, Zhan P. Jun12682, a potent SARS-CoV-2 papain-like protease inhibitor with exceptional antiviral efficacy in mice. Acta Pharm Sin B 2024; 14:4189-4192. [PMID: 39309490 PMCID: PMC11413657 DOI: 10.1016/j.apsb.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 09/25/2024] Open
Affiliation(s)
- Mianling Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| |
Collapse
|
21
|
Taylor A, Amporndanai K, Rietz TA, Zhao B, Thiruvaipati A, Wei Q, South TM, Crow MM, Apakama C, Sensintaffar JL, Phan J, Lee T, Fesik SW. Fragment-Based Screen of SARS-CoV-2 Papain-like Protease (PL pro). ACS Med Chem Lett 2024; 15:1351-1357. [PMID: 39140055 PMCID: PMC11318101 DOI: 10.1021/acsmedchemlett.4c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Coronaviruses have been responsible for numerous viral outbreaks in the past two decades due to the high transmission rate of this family of viruses. The deadliest outbreak is the recent Covid-19 pandemic, which resulted in over 7 million deaths worldwide. SARS-CoV-2 papain-like protease (PLPro) plays a key role in both viral replication and host immune suppression and is highly conserved across the coronavirus family, making it an ideal drug target. Herein we describe a fragment-based screen against PLPro using protein-observed NMR experiments, identifying 77 hit fragments. Analyses of NMR perturbation patterns and X-ray cocrystallized structures reveal fragments bind to two distinct regions of the protein. Importantly none of the fragments identified belong to the same chemical class as the few reported inhibitors, allowing for the discovery of a novel class of PLPro inhibitors.
Collapse
Affiliation(s)
- Ashley
J. Taylor
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Kangsa Amporndanai
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Tyson A. Rietz
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Bin Zhao
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Anusha Thiruvaipati
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Qiangqiang Wei
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Taylor M. South
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Mackenzie M. Crow
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Chideraa Apakama
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
| | - John L. Sensintaffar
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Jason Phan
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Taekyu Lee
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Stephen W. Fesik
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-6600, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
22
|
Brewitz L, Schofield CJ. Fixing the Achilles Heel of Pfizer's Paxlovid for COVID-19 Treatment. J Med Chem 2024; 67:11656-11661. [PMID: 38967233 DOI: 10.1021/acs.jmedchem.4c01342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Nirmatrelvir (PF-07321332), a first-in-class inhibitor of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) main protease (Mpro), was developed by Pfizer under intense pressure during the pandemic to treat COVID-19. A weakness of nirmatrelvir is its limited metabolic stability, which led to the development of a combination therapy (paxlovid), involving coadministration of nirmatrelvir with the cytochrome P450 inhibitor ritonavir. However, limitations in tolerability of the ritonavir component reduce the scope of paxlovid. In response to these limitations, researchers at Pfizer have now developed the second-generation Mpro inhibitor PF-07817883 (ibuzatrelvir). Structurally related to nirmatrelvir, including with the presence of a trifluoromethyl group, albeit located differently, ibuzatrelvir manifests enhanced oral bioavailability, so it does not require coadministration with ritonavir. The development of ibuzatrelvir is an important milestone, because it is expected to enhance the treatment of COVID-19 without the drawbacks associated with ritonavir. Given the success of paxlovid in treating COVID-19, it is likely that ibuzatrelvir will be granted approval as an improved drug for treatment of COVID-19 infections, so complementing vaccination efforts and improving pandemic preparedness. The development of nirmatrelvir and ibuzatrelvir dramatically highlights the power of appropriately resourced modern medicinal chemistry to very rapidly enable the development of breakthrough medicines. Consideration of how analogous approaches can be used to develop similarly breakthrough medicines for infectious diseases such as tuberculosis and malaria is worthwhile.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| |
Collapse
|
23
|
Zheng M, Feng B, Zhang Y, Liu X, Zhao N, Liu H, Xu Z, He X, Qu Z, Chen S, Jiang Z, Cheng X, Liu H, Zang Y, Zhao L, Zheng J, Zhang L, Li J, Zhou Y. Discovery and characterization of novel potent non-covalent small molecule inhibitors targeting papain-like protease from SARS-CoV-2. Acta Pharm Sin B 2024; 14:3286-3290. [PMID: 39027261 PMCID: PMC11252453 DOI: 10.1016/j.apsb.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 07/20/2024] Open
Affiliation(s)
- Miao Zheng
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Feng
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang 110016, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yumin Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xin Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zichao Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinheng He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyan Qu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shizhao Chen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhidong Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, and University of Chinese Academy of Sciences, Beijing 100049, China
- Lingang Laboratory, Shanghai 200031, China
| | - Xi Cheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zang
- Lingang Laboratory, Shanghai 200031, China
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jie Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Jia Li
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang 110016, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, and University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yu Zhou
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, and University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
24
|
Li Y, Lu SM, Wang JL, Yao HP, Liang LG. Progress in SARS-CoV-2, diagnostic and clinical treatment of COVID-19. Heliyon 2024; 10:e33179. [PMID: 39021908 PMCID: PMC11253070 DOI: 10.1016/j.heliyon.2024.e33179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Background Corona Virus Disease 2019(COVID-19)is a global pandemic novel coronavirus infection disease caused by Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Although rapid, large-scale testing plays an important role in patient management and slowing the spread of the disease. However, there has been no good and widely used drug treatment for infection and transmission of SARS-CoV-2. Key findings Therefore, this review updates the body of knowledge on viral structure, infection routes, detection methods, and clinical treatment, with the aim of responding to the large-section caused by SARS-CoV-2. This paper focuses on the structure of SARS-CoV-2 viral protease, RNA polymerase, serine protease and main proteinase-like protease as well as targeted antiviral drugs. Conclusion In vitro or clinical trials have been carried out to provide deeper thinking for the pathogenesis, clinical diagnosis, vaccine development and treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Si-Ming Lu
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Clinical in Vitro Diagnostic Techniques, Hangzhou, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Jia-Long Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Guo Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
25
|
Li CW, Chao TL, Lai CL, Lin CC, Pan MYC, Cheng CL, Kuo CJ, Wang LHC, Chang SY, Liang PH. Systematic Studies on the Anti-SARS-CoV-2 Mechanisms of Tea Polyphenol-Related Natural Products. ACS OMEGA 2024; 9:23984-23997. [PMID: 38854515 PMCID: PMC11154727 DOI: 10.1021/acsomega.4c02392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
The causative pathogen of COVID-19, severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), utilizes the receptor-binding domain (RBD) of the spike protein to bind to human receptor angiotensin-converting enzyme 2 (ACE2). Further cleavage of spike by human proteases furin, TMPRSS2, and/or cathepsin L facilitates viral entry into the host cells for replication, where the maturation of polyproteins by 3C-like protease (3CLpro) and papain-like protease (PLpro) yields functional nonstructural proteins (NSPs) such as RNA-dependent RNA polymerase (RdRp) to synthesize mRNA of structural proteins. By testing the tea polyphenol-related natural products through various assays, we found that the active antivirals prevented SARS-CoV-2 entry by blocking the RBD/ACE2 interaction and inhibiting the relevant human proteases, although some also inhibited the viral enzymes essential for replication. Due to their multitargeting properties, these compounds were often misinterpreted for their antiviral mechanisms. In this study, we provide a systematic protocol to check and clarify their anti-SARS-CoV-2 mechanisms, which should be applicable for all of the antivirals.
Collapse
Affiliation(s)
- Chen-Wei Li
- Institute
of Biochemical Sciences, National Taiwan
University, Taipei 10617, Taiwan
| | - Tai-Ling Chao
- Department
of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei 10048, Taiwan
| | - Chin-Lan Lai
- Institute
of Biochemical Sciences, National Taiwan
University, Taipei 10617, Taiwan
| | - Cheng-Chin Lin
- Institute
of Biochemical Sciences, National Taiwan
University, Taipei 10617, Taiwan
| | - Max Yu-Chen Pan
- Institute
of Molecular and Cellular Biology, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chieh-Ling Cheng
- Institute
of Biochemical Sciences, National Taiwan
University, Taipei 10617, Taiwan
| | - Chih-Jung Kuo
- Department
of Veterinary Medicine, National Chung Hsing
University, Taichung 40227, Taiwan
| | - Lily Hui-Ching Wang
- Institute
of Molecular and Cellular Biology, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sui-Yuan Chang
- Department
of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei 10048, Taiwan
- Department
of Laboratory Medicine, National Taiwan
University Hospital, Taipei 10002, Taiwan
| | - Po-Huang Liang
- Institute
of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute
of Biochemical Sciences, National Taiwan
University, Taipei 10617, Taiwan
| |
Collapse
|
26
|
Iglesias-Caballero M, Mas V, Vázquez-Morón S, Vázquez M, Camarero-Serrano S, Cano O, Palomo C, Ruano MJ, Cano-Gómez C, Infantes-Lorenzo JA, Campoy A, Agüero M, Pozo F, Casas I. Genomic Context of SARS-CoV-2 Outbreaks in Farmed Mink in Spain during Pandemic: Unveiling Host Adaptation Mechanisms. Int J Mol Sci 2024; 25:5499. [PMID: 38791536 PMCID: PMC11122236 DOI: 10.3390/ijms25105499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects various mammalian species, with farmed minks experiencing the highest number of outbreaks. In Spain, we analyzed 67 whole genome sequences and eight spike sequences from 18 outbreaks, identifying four distinct lineages: B.1, B.1.177, B.1.1.7, and AY.98.1. The potential risk of transmission to humans raises crucial questions about mutation accumulation and its impact on viral fitness. Sequencing revealed numerous not-lineage-defining mutations, suggesting a cumulative mutation process during the outbreaks. We observed that the outbreaks were predominantly associated with different groups of mutations rather than specific lineages. This clustering pattern by the outbreaks could be attributed to the rapid accumulation of mutations, particularly in the ORF1a polyprotein and in the spike protein. Notably, the mutations G37E in NSP9, a potential host marker, and S486L in NSP13 were detected. Spike protein mutations may enhance SARS-CoV-2 adaptability by influencing trimer stability and binding to mink receptors. These findings provide valuable insights into mink coronavirus genetics, highlighting both host markers and viral transmission dynamics within communities.
Collapse
Affiliation(s)
- María Iglesias-Caballero
- Reference and Research Laboratory for Respiratory Virus, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain; (V.M.); (S.V.-M.); (F.P.)
| | - Vicente Mas
- Reference and Research Laboratory for Respiratory Virus, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain; (V.M.); (S.V.-M.); (F.P.)
| | - Sonia Vázquez-Morón
- Reference and Research Laboratory for Respiratory Virus, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain; (V.M.); (S.V.-M.); (F.P.)
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Mónica Vázquez
- Reference and Research Laboratory for Respiratory Virus, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain; (V.M.); (S.V.-M.); (F.P.)
| | - Sara Camarero-Serrano
- Reference and Research Laboratory for Respiratory Virus, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain; (V.M.); (S.V.-M.); (F.P.)
| | - Olga Cano
- Reference and Research Laboratory for Respiratory Virus, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain; (V.M.); (S.V.-M.); (F.P.)
| | - Concepción Palomo
- Reference and Research Laboratory for Respiratory Virus, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain; (V.M.); (S.V.-M.); (F.P.)
| | - María José Ruano
- Central Laboratory of Veterinarian (LCV), Ministry of Agriculture, Fisheries and Food, 28110 Algete, Madrid, Spain; (M.J.R.); (C.C.-G.); (M.A.)
| | - Cristina Cano-Gómez
- Central Laboratory of Veterinarian (LCV), Ministry of Agriculture, Fisheries and Food, 28110 Algete, Madrid, Spain; (M.J.R.); (C.C.-G.); (M.A.)
| | - José Antonio Infantes-Lorenzo
- Reference and Research Laboratory for Respiratory Virus, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain; (V.M.); (S.V.-M.); (F.P.)
| | - Albert Campoy
- Reference and Research Laboratory for Respiratory Virus, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain; (V.M.); (S.V.-M.); (F.P.)
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Montserrat Agüero
- Central Laboratory of Veterinarian (LCV), Ministry of Agriculture, Fisheries and Food, 28110 Algete, Madrid, Spain; (M.J.R.); (C.C.-G.); (M.A.)
| | - Francisco Pozo
- Reference and Research Laboratory for Respiratory Virus, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain; (V.M.); (S.V.-M.); (F.P.)
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Inmaculada Casas
- Reference and Research Laboratory for Respiratory Virus, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain; (V.M.); (S.V.-M.); (F.P.)
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
27
|
Schmedtje JF, Ciske F, Muzzarelli KM, Assar Z. Novel nitric oxide donors are coronary vasodilators that also bind to the papain-like protease of SARS-CoV-2. Biomed Pharmacother 2024; 173:116378. [PMID: 38492437 DOI: 10.1016/j.biopha.2024.116378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Several investigational nitric oxide donors were originally created to correct vascular endothelial dysfunction in cardiovascular diseases. These 48 compounds contain an urea-like moiety attached to the well-known NO donors isosorbide 2- and 5-mononitrate. CR-0305 and CR-0202 were synthesized and found to be nontoxic in the cell lines HMEC-1, A549/hACE2 and VeroE6. CR-0305 induced vasodilation in human coronary arteries ex vivo. Since NO can also have antiviral properties, a study of drug-protein interactions with SARS-CoV-2 was undertaken using in silico modeling. CR-0305 experimentally outperformed the other compounds, including CR-0202, in binding the catalytic site of SARS-CoV-2 papain-like protease (PLpro). PLpro is a primary target for therapeutic inhibition of SARS-CoV-2 as it mediates viral replication and modulates host innate immune responses. CR-0305 is predicted to sit firmly in the PLpro catalytic pocket as confirmed by molecular dynamics simulations, wherein stability of binding to the catalytic site of PLpro induces a conformational change in the BL2 loop to a more closed conformation as observed previously with GRL0617. Surface plasmon resonance was performed with CR-0305 and CR-0202 to characterize binding affinity to purified SARS-CoV-2 PLpro protein. CR-0305 and CR-0202 also inhibited SARS-CoV-2 infection compared to vehicle as measured by virus N protein staining with a specific antibody in A549-ACE2 and VeroE6 cells at 20 µM. CR-0305 is a coronary vasodilator that appears to bind to the catalytic site of the PLpro of SARS-CoV-2 while targeting delivery of antiviral NO to cells infected by SARS-CoV-2, suggesting multiple indications for future development.
Collapse
Affiliation(s)
- John F Schmedtje
- Coeurative, Inc., 201 McClanahan St. SW, Roanoke, VA 24014, USA.
| | - Fred Ciske
- Cayman Chemical Co., 1180 East Ellsworth Road, Ann Arbor, MI 48108, USA
| | | | - Zahra Assar
- Cayman Chemical Co., 1180 East Ellsworth Road, Ann Arbor, MI 48108, USA
| |
Collapse
|
28
|
Shahid M, Alaofi AL, Ahmad Ansari M, Fayaz Ahmad S, Alsuwayeh S, Taha E, Raish M. Utilizing sinapic acid as an inhibitory antiviral agent against MERS-CoV PLpro. Saudi Pharm J 2024; 32:101986. [PMID: 38487020 PMCID: PMC10937238 DOI: 10.1016/j.jsps.2024.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
Concerns about the social and economic collapse, high mortality rates, and stress on the healthcare system are developing due to the coronavirus onslaught in the form of various species and their variants. In the recent past, infections brought on by coronaviruses severe acute respiratory syndrome coronaviruses (SARS-CoV and SARS-CoV-2) as well as middle east respiratory syndrome coronavirus (MERS-CoV) have been reported. There is a severe lack of medications to treat various coronavirus types including MERS-CoV which is hazard to public health due to its ability for pandemic spread by human-to-human transmission. Here, we utilized sinapic acid (SA) against papain-like protease (PLpro), a crucial enzyme involved in MERS-CoV replication, because phytomedicine derived from nature has less well-known negative effects. The thermal shift assay (TSA) was used in the current study to determine whether the drug interact with the recombinant MERS-CoV PLpro. Also, inhibition assay was conducted as the hydrolysis of fluorogenic peptide from the Z-RLRGG-AMC-peptide bond in the presence of SA to determine the level of inhibition of the MERS-CoV PLpro. To study the structural binding efficiency Autodock Vina was used to dock SA to the MERS-CoV PLpro and results were analyzed using PyMOL and Maestro Schrödinger programs. Our results show a convincing interaction between SA and the MERS protease, as SA reduced MERS-CoV PLpro in a dose-dependent way IC50 values of 68.58 μM (of SA). The TSA showed SA raised temperature of melting to 54.61 °C near IC50 and at approximately 2X IC50 concentration (111.5 μM) the Tm for SA + MERS-CoV PLpro was 59.72 °C. SA was docked to MERS-CoV PLpro to identify the binding site. SA bound to the blocking loop (BL2) region of MERS-CoV PLpro interacts with F268, E272, V275, and P249 residues of MERS-CoV PLpro. The effectiveness of protease inhibitors against MERS-CoV has been established and SA is already known for broad range biological activity including antiviral properties; it can be a suitable candidate for anti-MERS-CoV treatment.
Collapse
Affiliation(s)
- Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed L. Alaofi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq Ahmad Ansari
- Department of Phamacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sheikh Fayaz Ahmad
- Department of Phamacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Saleh Alsuwayeh
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ehab Taha
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Tan B, Zhang X, Ansari A, Jadhav P, Tan H, Li K, Chopra A, Ford A, Chi X, Ruiz FX, Arnold E, Deng X, Wang J. Design of a SARS-CoV-2 papain-like protease inhibitor with antiviral efficacy in a mouse model. Science 2024; 383:1434-1440. [PMID: 38547259 DOI: 10.1126/science.adm9724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/22/2024] [Indexed: 04/02/2024]
Abstract
The emergence of SARS-CoV-2 variants and drug-resistant mutants calls for additional oral antivirals. The SARS-CoV-2 papain-like protease (PLpro) is a promising but challenging drug target. We designed and synthesized 85 noncovalent PLpro inhibitors that bind to a recently discovered ubiquitin binding site and the known BL2 groove pocket near the S4 subsite. Leads inhibited PLpro with the inhibitory constant Ki values from 13.2 to 88.2 nanomolar. The co-crystal structures of PLpro with eight leads revealed their interaction modes. The in vivo lead Jun12682 inhibited SARS-CoV-2 and its variants, including nirmatrelvir-resistant strains with EC50 from 0.44 to 2.02 micromolar. Oral treatment with Jun12682 improved survival and reduced lung viral loads and lesions in a SARS-CoV-2 infection mouse model, suggesting that PLpro inhibitors are promising oral SARS-CoV-2 antiviral candidates.
Collapse
Affiliation(s)
- Bin Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xiaoming Zhang
- Department Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ahmadullah Ansari
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Prakash Jadhav
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ashima Chopra
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Alexandra Ford
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiang Chi
- Department Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Francesc Xavier Ruiz
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xufang Deng
- Department Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
30
|
Desantis J, Bazzacco A, Eleuteri M, Tuci S, Bianconi E, Macchiarulo A, Mercorelli B, Loregian A, Goracci L. Design, synthesis, and biological evaluation of first-in-class indomethacin-based PROTACs degrading SARS-CoV-2 main protease and with broad-spectrum antiviral activity. Eur J Med Chem 2024; 268:116202. [PMID: 38394929 DOI: 10.1016/j.ejmech.2024.116202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
To date, Proteolysis Targeting Chimera (PROTAC) technology has been successfully applied to mediate proteasomal-induced degradation of several pharmaceutical targets mainly related to oncology, immune disorders, and neurodegenerative diseases. On the other hand, its exploitation in the field of antiviral drug discovery is still in its infancy. Recently, we described two indomethacin (INM)-based PROTACs displaying broad-spectrum antiviral activity against coronaviruses. Here, we report the design, synthesis, and characterization of a novel series of INM-based PROTACs that recruit either Von-Hippel Lindau (VHL) or cereblon (CRBN) E3 ligases. The panel of INM-based PROTACs was also enlarged by varying the linker moiety. The antiviral activity resulted very susceptible to this modification, particularly for PROTACs hijacking VHL as E3 ligase, with one piperazine-based compound (PROTAC 6) showing potent anti-SARS-CoV-2 activity in infected human lung cells. Interestingly, degradation assays in both uninfected and virus-infected cells with the most promising PROTACs emerged so far (PROTACs 5 and 6) demonstrated that INM-PROTACs do not degrade human PGES-2 protein, as initially hypothesized, but induce the concentration-dependent degradation of SARS-CoV-2 main protease (Mpro) both in Mpro-transfected and in SARS-CoV-2-infected cells. Importantly, thanks to the target degradation, INM-PROTACs exhibited a considerable enhancement in antiviral activity with respect to indomethacin, with EC50 values in the low-micromolar/nanomolar range. Finally, kinetic solubility as well as metabolic and chemical stability were measured for PROTACs 5 and 6. Altogether, the identification of INM-based PROTACs as the first class of SARS-CoV-2 Mpro degraders demonstrating activity also in SARS-CoV-2-infected cells represents a significant advance in the development of effective, broad-spectrum anti-coronavirus strategies.
Collapse
Affiliation(s)
- Jenny Desantis
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Italy
| | | | - Michela Eleuteri
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Italy
| | - Sara Tuci
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Elisa Bianconi
- Department of Pharmaceutical Science, University of Perugia, Italy
| | | | | | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| | - Laura Goracci
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Italy.
| |
Collapse
|
31
|
Chan HTH, Brewitz L, Lukacik P, Strain-Damerell C, Walsh MA, Schofield CJ, Duarte F. Studies on the selectivity of the SARS-CoV-2 papain-like protease reveal the importance of the P2' proline of the viral polyprotein. RSC Chem Biol 2024; 5:117-130. [PMID: 38333195 PMCID: PMC10849127 DOI: 10.1039/d3cb00128h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/13/2023] [Indexed: 02/10/2024] Open
Abstract
The SARS-CoV-2 papain-like protease (PLpro) is an antiviral drug target that catalyzes the hydrolysis of the viral polyproteins pp1a/1ab, so releasing the non-structural proteins (nsps) 1-3 that are essential for the coronavirus lifecycle. The LXGG↓X motif in pp1a/1ab is crucial for recognition and cleavage by PLpro. We describe molecular dynamics, docking, and quantum mechanics/molecular mechanics (QM/MM) calculations to investigate how oligopeptide substrates derived from the viral polyprotein bind to PLpro. The results reveal how the substrate sequence affects the efficiency of PLpro-catalyzed hydrolysis. In particular, a proline at the P2' position promotes catalysis, as validated by residue substitutions and mass spectrometry-based analyses. Analysis of PLpro catalyzed hydrolysis of LXGG motif-containing oligopeptides derived from human proteins suggests that factors beyond the LXGG motif and the presence of a proline residue at P2' contribute to catalytic efficiency, possibly reflecting the promiscuity of PLpro. The results will help in identifying PLpro substrates and guiding inhibitor design.
Collapse
Affiliation(s)
- H T Henry Chan
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Petra Lukacik
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot OX11 0FA UK
| | - Claire Strain-Damerell
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot OX11 0FA UK
| | - Martin A Walsh
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot OX11 0FA UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Fernanda Duarte
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
32
|
Allayeh AK, El-boghdady AH, Said MA, Saleh MGA, Abdel-Aal MT, Abouelenein MG. Discovery of Pyrano[2,3- c]pyrazole Derivatives as Novel Potential Human Coronavirus Inhibitors: Design, Synthesis, In Silico, In Vitro, and ADME Studies. Pharmaceuticals (Basel) 2024; 17:198. [PMID: 38399412 PMCID: PMC10892497 DOI: 10.3390/ph17020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
The SARS-CoV-2 pandemic at the end of 2019 had major worldwide health and economic consequences. Until effective vaccination approaches were created, the healthcare sectors endured a shortage of operative treatments that might prevent the infection's spread. As a result, academia and the pharmaceutical industry prioritized the development of SARS-CoV2 antiviral medication. Pyranopyrazoles have been shown to play a prominent function in pharmaceutical chemistry and drug sighting because of their significant bioactive properties. We provide herein a novel sequence of pyranopyrazoles and their annulated systems whose antiviral efficacy and cytotoxicity were explored versus human coronavirus 229E (HCoV-229E) Vero-E6 cell lines as a model for the Coronaviridae family. Fifteen synthetic congeners pointed out miscellaneous antiviral efficacies against HCoV-229E with variable inhibition degrees. Compound 18 showed a high selectivity index (SI = 12.6) that established spectacular inhibitory capacity against human coronavirus 229E. Compounds 6, 7, and 14 exposed moderate efficacies. Compounds 6, 7, 14, and 18 exhibited substantial antiviral action through the replication phase with reduction percentages extending from 53.6%, 60.7%, and 55% to 82.2%, correspondingly. Likewise, when assessed to the positive control tipranavir (88.6%), the inhibitory efficiency of compounds 6, 7, 14, and 18 versus the SARS-CoV2 Mpro provided high percentages of 80.4%, 73.1%, 81.4% and up to 84.5%, respectively. In silico studies were performed to investigate further the biological activity and the target compounds' physical and chemical features, including molecular dynamic (MD) simulations, protein-ligand docking, ADME studies, and density functional theory (DFT) calculations. These inquiries demonstrated that this series of metabolically stable pyranopyrazoles and their annulated systems are effective human coronavirus inhibitors that inhibit the viral Mpro protein and may have emerged as a novel COVID-19 curative option.
Collapse
Affiliation(s)
- Abdou K. Allayeh
- Environmental Virology Laboratory 176, Water Pollution Research Department, Environment and Climate Change Institute, National Research Centre (NRC), 33 El-Behouth St., Dokki, Giza 12622, Egypt;
| | - Aliaa H. El-boghdady
- Chemistry Department, Faculty of Science, Menofia University, Shebin El-Kom 32511, Egypt; (A.H.E.-b.); (M.T.A.-A.); (M.G.A.)
| | - Mohamed A. Said
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt;
| | - Mahmoud G. A. Saleh
- Department of Chemistry, College of Science, Northern Border University, Arar 91431, Saudi Arabia
| | - Mohammed T. Abdel-Aal
- Chemistry Department, Faculty of Science, Menofia University, Shebin El-Kom 32511, Egypt; (A.H.E.-b.); (M.T.A.-A.); (M.G.A.)
| | - Mohamed G. Abouelenein
- Chemistry Department, Faculty of Science, Menofia University, Shebin El-Kom 32511, Egypt; (A.H.E.-b.); (M.T.A.-A.); (M.G.A.)
| |
Collapse
|
33
|
Quagliata M, Papini AM, Rovero P. Chemically modified antiviral peptides against SARS-CoV-2. J Pept Sci 2024; 30:e3541. [PMID: 37699615 DOI: 10.1002/psc.3541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023]
Abstract
To date, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) COVID-19 pandemic continues to be a potentially lethal disease. Although both vaccines and specific antiviral drugs have been approved, the search for more specific therapeutic approaches is still ongoing. The infection mechanism of SARS-CoV-2 consists of several stages, and each one can be selectively blocked to disrupt viral infection. Peptides are a promising class of antiviral compounds, which may be suitably modified to be more stable, more effective, and more selective towards a specific viral replication step. The latter two goals might be obtained by increasing the specificity and/or the affinity of the interaction with a specific target and often imply the stabilization of the secondary structure of the active peptide. This review is focused on modified antiviral peptides against SARS-CoV-2 acting at different stages of virus replication, including ACE2-RBD interaction, membrane fusion mechanism, and the proteolytic cleavage by different viral proteases. Therefore, the landscape presented herein provides a useful springboard for the design of new and powerful antiviral therapeutics.
Collapse
Affiliation(s)
- Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
34
|
Janin YL. On the origins of SARS-CoV-2 main protease inhibitors. RSC Med Chem 2024; 15:81-118. [PMID: 38283212 PMCID: PMC10809347 DOI: 10.1039/d3md00493g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 01/30/2024] Open
Abstract
In order to address the world-wide health challenge caused by the COVID-19 pandemic, the 3CL protease/SARS-CoV-2 main protease (SARS-CoV-2-Mpro) coded by its nsp5 gene became one of the biochemical targets for the design of antiviral drugs. In less than 3 years of research, 4 inhibitors of SARS-CoV-2-Mpro have actually been authorized for COVID-19 treatment (nirmatrelvir, ensitrelvir, leritrelvir and simnotrelvir) and more such as EDP-235, FB-2001 and STI-1558/Olgotrelvir or five undisclosed compounds (CDI-988, ASC11, ALG-097558, QLS1128 and H-10517) are undergoing clinical trials. This review is an attempt to picture this quite unprecedented medicinal chemistry feat and provide insights on how these cysteine protease inhibitors were discovered. Since many series of covalent SARS-CoV-2-Mpro inhibitors owe some of their origins to previous work on other proteases, we first provided a description of various inhibitors of cysteine-bearing human caspase-1 or cathepsin K, as well as inhibitors of serine proteases such as human dipeptidyl peptidase-4 or the hepatitis C protein complex NS3/4A. This is then followed by a description of the results of the approaches adopted (repurposing, structure-based and high throughput screening) to discover coronavirus main protease inhibitors.
Collapse
Affiliation(s)
- Yves L Janin
- Structure et Instabilité des Génomes (StrInG), Muséum National d'Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université 75005 Paris France
| |
Collapse
|
35
|
Tian L, Qiang T, Yang X, Gao Y, Zhai X, Kang K, Du C, Lu Q, Gao H, Zhang D, Xie X, Liang C. Development of de-novo coronavirus 3-chymotrypsin-like protease (3CL pro) inhibitors since COVID-19 outbreak: A strategy to tackle challenges of persistent virus infection. Eur J Med Chem 2024; 264:115979. [PMID: 38048696 DOI: 10.1016/j.ejmech.2023.115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023]
Abstract
Although no longer a public health emergency of international concern, COVID-19 remains a persistent and critical health concern. The development of effective antiviral drugs could serve as the ultimate piece of the puzzle to curbing this global crisis. 3-chymotrypsin-like protease (3CLpro), with its substrate specificity mirroring that of the main picornavirus 3C protease and conserved across various coronaviruses, emerges as an ideal candidate for broad-spectrum antiviral drug development. Moreover, it holds the potential as a reliable contingency option to combat emerging SARS-CoV-2 variants. In this light, the approved drugs, promising candidates, and de-novo small molecule therapeutics targeting 3CLpro since the COVID-19 outbreak in 2020 are discussed. Emphasizing the significance of diverse structural characteristics in inhibitors, be they peptidomimetic or nonpeptidic, with a shared mission to minimize the risk of cross-resistance. Moreover, the authors propose an innovative optimization strategy for 3CLpro reversible covalent PROTACs, optimizing pharmacodynamics and pharmacokinetics to better prepare for potential future viral outbreaks.
Collapse
Affiliation(s)
- Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Xiuding Yang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yue Gao
- College of Pharmacy, Jinan University, Guangzhou, 511436, PR China
| | - Xiaopei Zhai
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, PR China
| | - Kairui Kang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Cong Du
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Qi Lu
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Hong Gao
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Shaanxi Pioneer Biotech Co., Ltd., Xi'an, 710021, PR China
| | - Dezhu Zhang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Xiaolin Xie
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Chengyuan Liang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
36
|
Jadhav P, Huang B, Osipiuk J, Zhang X, Tan H, Tesar C, Endres M, Jedrzejczak R, Tan B, Deng X, Joachimiak A, Cai J, Wang J. Structure-based design of SARS-CoV-2 papain-like protease inhibitors. Eur J Med Chem 2024; 264:116011. [PMID: 38065031 PMCID: PMC11194760 DOI: 10.1016/j.ejmech.2023.116011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/30/2023]
Abstract
The COVID-19 pandemic is caused by SARS-CoV-2, an RNA virus with high transmissibility and mutation rate. Given the paucity of orally bioavailable antiviral drugs to combat SARS-CoV-2 infection, there is a critical need for additional antivirals with alternative mechanisms of action. Papain-like protease (PLpro) is one of the two SARS-CoV-2 encoded viral cysteine proteases essential for viral replication. PLpro cleaves at three sites of the viral polyproteins. In addition, PLpro antagonizes the host immune response upon viral infection by cleaving ISG15 and ubiquitin from host proteins. Therefore, PLpro is a validated antiviral drug target. In this study, we report the X-ray crystal structures of papain-like protease (PLpro) with two potent inhibitors, Jun9722 and Jun9843. Subsequently, we designed and synthesized several series of analogs to explore the structure-activity relationship, which led to the discovery of PLpro inhibitors with potent enzymatic inhibitory activity and antiviral activity against SARS-CoV-2. Together, the lead compounds are promising drug candidates for further development.
Collapse
Affiliation(s)
- Prakash Jadhav
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Bo Huang
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Jerzy Osipiuk
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Xiaoming Zhang
- Department Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Christine Tesar
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA; Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA
| | - Michael Endres
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA; Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA
| | - Robert Jedrzejczak
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA; Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA
| | - Bin Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Xufang Deng
- Department Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, 74078, USA; Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Andrzej Joachimiak
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA; Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60367, USA.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA.
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
37
|
Mihalovits LM, Kollár L, Bajusz D, Knez D, Bozovičar K, Imre T, Ferenczy GG, Gobec S, Keserű GM. Molecular Mechanism of Labelling Functional Cysteines by Heterocyclic Thiones. Chemphyschem 2024; 25:e202300596. [PMID: 37888491 DOI: 10.1002/cphc.202300596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023]
Abstract
Heterocyclic thiones have recently been identified as reversible covalent warheads, consistent with their mild electrophilic nature. Little is known so far about their mechanism of action in labelling nucleophilic sidechains, especially cysteines. The vast number of tractable cysteines promotes a wide range of target proteins to examine; however, our focus was put on functional cysteines. We chose the main protease of SARS-CoV-2 harboring Cys145 at the active site that is a structurally characterized and clinically validated target of covalent inhibitors. We screened an in-house, cysteine-targeting covalent inhibitor library which resulted in several covalent fragment hits with benzoxazole, benzothiazole and benzimidazole cores. Thione derivatives and Michael acceptors were selected for further investigations with the objective of exploring the mechanism of inhibition of the thiones and using the thoroughly characterized Michael acceptors for benchmarking our studies. Classical and hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations were carried out that revealed a new mechanism of covalent cysteine labelling by thione derivatives, which was supported by QM and free energy calculations and by a wide range of experimental results. Our study shows that the molecular recognition step plays a crucial role in the overall binding of both sets of molecules.
Collapse
Affiliation(s)
- Levente M Mihalovits
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Levente Kollár
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111, Budapest, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Damijan Knez
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Krištof Bozovičar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Tímea Imre
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
- MS Metabolomics Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - György G Ferenczy
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Stanislav Gobec
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - György M Keserű
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111, Budapest, Hungary
| |
Collapse
|
38
|
Song L, Gao S, Ye B, Yang M, Cheng Y, Kang D, Yi F, Sun JP, Menéndez-Arias L, Neyts J, Liu X, Zhan P. Medicinal chemistry strategies towards the development of non-covalent SARS-CoV-2 M pro inhibitors. Acta Pharm Sin B 2024; 14:87-109. [PMID: 38239241 PMCID: PMC10792984 DOI: 10.1016/j.apsb.2023.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 01/22/2024] Open
Abstract
The main protease (Mpro) of SARS-CoV-2 is an attractive target in anti-COVID-19 therapy for its high conservation and major role in the virus life cycle. The covalent Mpro inhibitor nirmatrelvir (in combination with ritonavir, a pharmacokinetic enhancer) and the non-covalent inhibitor ensitrelvir have shown efficacy in clinical trials and have been approved for therapeutic use. Effective antiviral drugs are needed to fight the pandemic, while non-covalent Mpro inhibitors could be promising alternatives due to their high selectivity and favorable druggability. Numerous non-covalent Mpro inhibitors with desirable properties have been developed based on available crystal structures of Mpro. In this article, we describe medicinal chemistry strategies applied for the discovery and optimization of non-covalent Mpro inhibitors, followed by a general overview and critical analysis of the available information. Prospective viewpoints and insights into current strategies for the development of non-covalent Mpro inhibitors are also discussed.
Collapse
Affiliation(s)
- Letian Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Bing Ye
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Mianling Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yusen Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Autonomous University of Madrid), Madrid 28049, Spain
| | - Johan Neyts
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven 3000, Belgium
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
39
|
Yi Y, Yu R, Xue H, Jin Z, Zhang M, Bao YO, Wang Z, Wei H, Qiao X, Yang H. Chrysin 7-O-β-D-glucuronide, a dual inhibitor of SARS-CoV-2 3CL pro and PL pro, for the prevention and treatment of COVID-19. Int J Antimicrob Agents 2024; 63:107039. [PMID: 37981073 DOI: 10.1016/j.ijantimicag.2023.107039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/08/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) resulted in the coronavirus disease 2019 (COVID-19) pandemic. Given the advent of subvariants, there is an urgent need to develop novel drugs. The aim of this study was to find SARS-CoV-2 inhibitors from Scutellaria baicalensis Georgi targeting the proteases 3CLpro and PLpro. After screening 25 flavonoids, chrysin 7-O-β-D-glucuronide was found to be a potent inhibitor of SARS-CoV-2 on Vero E6 cells, with half-maximal effective concentration of 8.72 µM. Surface plasmon resonance assay, site-directed mutagenesis and enzymatic activity measurements indicated that chrysin-7-O-β-D-glucuronide inhibits SARS-CoV-2 by binding to H41 of 3CLpro, and K157 and E167 of PLpro. Hydrogen-deuterium exchange mass spectrometry analysis showed that chrysin-7-O-β-D-glucuronide changes the conformation of PLpro. Finally, chrysin 7-O-β-D-glucuronide was shown to have anti-inflammatory activity, mainly due to reduction of the levels of the pro-inflammatory cytokines interleukin (IL)-1β and IL-6.
Collapse
Affiliation(s)
- Yang Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Yunnan Baiyao International Medical Research Centre, Peking University, Beijing, China.
| | - Rong Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Heng Xue
- CAS Key Laboratory of Special Pathogens and Biosafety, Centre for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhengtong Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yang-Oujie Bao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zilong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Centre for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hang Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Centre for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Hubei Jiangxia Laboratory, Wuhan, China.
| |
Collapse
|
40
|
Schimunek J, Seidl P, Elez K, Hempel T, Le T, Noé F, Olsson S, Raich L, Winter R, Gokcan H, Gusev F, Gutkin EM, Isayev O, Kurnikova MG, Narangoda CH, Zubatyuk R, Bosko IP, Furs KV, Karpenko AD, Kornoushenko YV, Shuldau M, Yushkevich A, Benabderrahmane MB, Bousquet-Melou P, Bureau R, Charton B, Cirou BC, Gil G, Allen WJ, Sirimulla S, Watowich S, Antonopoulos N, Epitropakis N, Krasoulis A, Itsikalis V, Theodorakis S, Kozlovskii I, Maliutin A, Medvedev A, Popov P, Zaretckii M, Eghbal-Zadeh H, Halmich C, Hochreiter S, Mayr A, Ruch P, Widrich M, Berenger F, Kumar A, Yamanishi Y, Zhang KYJ, Bengio E, Bengio Y, Jain MJ, Korablyov M, Liu CH, Marcou G, Glaab E, Barnsley K, Iyengar SM, Ondrechen MJ, Haupt VJ, Kaiser F, Schroeder M, Pugliese L, Albani S, Athanasiou C, Beccari A, Carloni P, D'Arrigo G, Gianquinto E, Goßen J, Hanke A, Joseph BP, Kokh DB, Kovachka S, Manelfi C, Mukherjee G, Muñiz-Chicharro A, Musiani F, Nunes-Alves A, Paiardi G, Rossetti G, Sadiq SK, Spyrakis F, Talarico C, Tsengenes A, Wade RC, Copeland C, Gaiser J, Olson DR, Roy A, Venkatraman V, Wheeler TJ, Arthanari H, Blaschitz K, Cespugli M, Durmaz V, Fackeldey K, Fischer PD, Gorgulla C, Gruber C, Gruber K, Hetmann M, Kinney JE, Padmanabha Das KM, Pandita S, Singh A, Steinkellner G, Tesseyre G, Wagner G, Wang ZF, Yust RJ, Druzhilovskiy DS, Filimonov DA, Pogodin PV, Poroikov V, Rudik AV, Stolbov LA, Veselovsky AV, De Rosa M, De Simone G, Gulotta MR, Lombino J, Mekni N, Perricone U, Casini A, Embree A, Gordon DB, Lei D, Pratt K, Voigt CA, Chen KY, Jacob Y, Krischuns T, Lafaye P, Zettor A, Rodríguez ML, White KM, Fearon D, Von Delft F, Walsh MA, Horvath D, Brooks CL, Falsafi B, Ford B, García-Sastre A, Yup Lee S, Naffakh N, Varnek A, Klambauer G, Hermans TM. A community effort in SARS-CoV-2 drug discovery. Mol Inform 2024; 43:e202300262. [PMID: 37833243 PMCID: PMC11299051 DOI: 10.1002/minf.202300262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
The COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the "Billion molecules against COVID-19 challenge", to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors. Participating teams used a wide variety of computational methods to screen a minimum of 1 billion virtual molecules against 6 protein targets. Overall, 31 teams participated, and they suggested a total of 639,024 molecules, which were subsequently ranked to find 'consensus compounds'. The organizing team coordinated with various contract research organizations (CROs) and collaborating institutions to synthesize and test 878 compounds for biological activity against proteases (Nsp5, Nsp3, TMPRSS2), nucleocapsid N, RdRP (only the Nsp12 domain), and (alpha) spike protein S. Overall, 27 compounds with weak inhibition/binding were experimentally identified by binding-, cleavage-, and/or viral suppression assays and are presented here. Open science approaches such as the one presented here contribute to the knowledge base of future drug discovery efforts in finding better SARS-CoV-2 treatments.
Collapse
|
41
|
Mia ME, Howlader M, Akter F, Hossain MM. Preclinical and Clinical Investigations of Potential Drugs and Vaccines for COVID-19 Therapy: A Comprehensive Review With Recent Update. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2024; 17:2632010X241263054. [PMID: 39070952 PMCID: PMC11282570 DOI: 10.1177/2632010x241263054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/03/2024] [Indexed: 07/30/2024]
Abstract
The COVID-19 pandemic-led worldwide healthcare crisis necessitates prompt societal, ecological, and medical efforts to stop or reduce the rising number of fatalities. Numerous mRNA based vaccines and vaccines for viral vectors have been licensed for use in emergencies which showed 90% to 95% efficacy in preventing SARS-CoV-2 infection. However, safety issues, vaccine reluctance, and skepticism remain major concerns for making mass vaccination a successful approach to treat COVID-19. Hence, alternative therapeutics is needed for eradicating the global burden of COVID-19 from developed and low-resource countries. Repurposing current medications and drug candidates could be a more viable option for treating SARS-CoV-2 as these therapies have previously passed a number of significant checkpoints for drug development and patient care. Besides vaccines, this review focused on the potential usage of alternative therapeutic agents including antiviral, antiparasitic, and antibacterial drugs, protease inhibitors, neuraminidase inhibitors, and monoclonal antibodies that are currently undergoing preclinical and clinical investigations to assess their effectiveness and safety in the treatment of COVID-19. Among the repurposed drugs, remdesivir is considered as the most promising agent, while favipiravir, molnupiravir, paxlovid, and lopinavir/ritonavir exhibited improved therapeutic effects in terms of elimination of viruses. However, the outcomes of treatment with oseltamivir, umifenovir, disulfiram, teicoplanin, and ivermectin were not significant. It is noteworthy that combining multiple drugs as therapy showcases impressive effectiveness in managing individuals with COVID-19. Tocilizumab is presently employed for the treatment of patients who exhibit COVID-19-related pneumonia. Numerous antiviral drugs such as galidesivir, griffithsin, and thapsigargin are under clinical trials which could be promising for treating COVID-19 individuals with severe symptoms. Supportive treatment for patients of COVID-19 may involve the use of corticosteroids, convalescent plasma, stem cells, pooled antibodies, vitamins, and natural substances. This study provides an updated progress in SARS-CoV-2 medications and a crucial guide for inventing novel interventions against COVID-19.
Collapse
Affiliation(s)
- Md. Easin Mia
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mithu Howlader
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Farzana Akter
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Murad Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
42
|
Li X, Song Y. Targeting SARS-CoV-2 nonstructural protein 3: Function, structure, inhibition, and perspective in drug discovery. Drug Discov Today 2024; 29:103832. [PMID: 37977285 PMCID: PMC10872262 DOI: 10.1016/j.drudis.2023.103832] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
As a highly contagious human pathogen, severe acute respiratory syndrome-associated coronavirus-2 (SARS-CoV-2) has infected billions of people worldwide with more than 6 million deaths. With several effective vaccines and antiviral drugs now available, the SARS-CoV-2 pandemic been brought under control. However, a new pathogenic coronavirus could emerge in the future, given the zoonotic nature of this virus. Natural evolution and drug-induced mutations of SARS-CoV-2 also require continued efforts for new anti-coronavirus drugs. Nonstructural protein (nsp) 3 of CoVs is a large, multifunctional protein, containing a papain-like protease (PLpro) and a macrodomain (Mac1), which are essential for viral replication. Here, we provide a comprehensive review of the function, structure, and inhibition of SARS-CoV/-CoV-2 PLpro and Mac1. We also discuss advances in, and challenges to, the discovery of drugs against these targets.
Collapse
Affiliation(s)
- Xin Li
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.
| | - Yongcheng Song
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
43
|
Tan B, Zhang X, Ansari A, Jadhav P, Tan H, Li K, Chopra A, Ford A, Chi X, Ruiz FX, Arnold E, Deng X, Wang J. Design of SARS-CoV-2 papain-like protease inhibitor with antiviral efficacy in a mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569653. [PMID: 38076941 PMCID: PMC10705561 DOI: 10.1101/2023.12.01.569653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The emergence of SARS-CoV-2 variants and drug-resistant mutants calls for additional oral antivirals. The SARS-CoV-2 papain-like protease (PLpro) is a promising but challenging drug target. In this study, we designed and synthesized 85 noncovalent PLpro inhibitors that bind to the newly discovered Val70Ub site and the known BL2 groove pocket. Potent compounds inhibited PLpro with inhibitory constant Ki values from 13.2 to 88.2 nM. The co-crystal structures of PLpro with eight leads revealed their interaction modes. The in vivo lead Jun12682 inhibited SARS-CoV-2 and its variants, including nirmatrelvir-resistant strains with EC50 from 0.44 to 2.02 μM. Oral treatment with Jun12682 significantly improved survival and reduced lung viral loads and lesions in a SARS-CoV-2 infection mouse model, suggesting PLpro inhibitors are promising oral SARS-CoV-2 antiviral candidates.
Collapse
Affiliation(s)
- Bin Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Xiaoming Zhang
- Department Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Ahmadullah Ansari
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Prakash Jadhav
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ashima Chopra
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Alexandra Ford
- Deprtment of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xiang Chi
- Department Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Francesc Xavier Ruiz
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Xufang Deng
- Department Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| |
Collapse
|
44
|
Trivedi A, Kardam V, Inampudi KK, Vrati S, Gupta D, Singh A, Kayampeta SR, Appaiahgari MB, Sehgal D. Identification of a novel inhibitor of SARS-CoV-2 main protease: an in silico, biochemical, and cell-based approach. FEBS J 2023; 290:5496-5513. [PMID: 37657928 DOI: 10.1111/febs.16947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 09/03/2023]
Abstract
The recurrent nature of coronavirus outbreaks, severity of the COVID-19 pandemic, rapid emergence of novel variants, and concerns over the effectiveness of existing vaccines against novel variants have highlighted the need to develop therapeutic interventions. Targeted efforts to identify inhibitors of crucial viral proteins are the preferred strategy. In this study, we screened FDA-approved and natural product libraries using in silico approach for potential hits against the SARS-CoV-2 main protease (Mpro) and experimentally validated their potency using in vitro biochemical and cell-based assays. Seven potential hits were identified through in silico screening and were subsequently evaluated in SARS-CoV-2-based cell-free assays, followed by testing in the HCoV-229E-based culture system. Of the tested compounds, 4-(3,4-dihydroxyphenyl)-6,7-dihydroxy-1-isopropyl-1H-benzofuro[3,2-b]pyrazolo[4,3-e]pyridin-3(2H)-one (PubChem CID:71755304, hereafter referred to as STL522228) exhibited significant antiviral activity. Subsequently, its potential as a novel COVID therapeutic molecule was validated in the SARS-CoV-2-culture system, where STL522228 demonstrated superior antiviral activity (EC50 = 0.44 μm) compared to Remdesivir (EC50 = 0.62 μm). Based on these findings, we report the strong anti-coronavirus activity of STL522228, and propose that it as a promising pan-coronavirus Mpro inhibitor for further experimental and preclinical validation.
Collapse
Affiliation(s)
- Aditya Trivedi
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh, India
| | - Vandana Kardam
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh, India
| | | | - Sudhanshu Vrati
- Laboratory of Virology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Dharmender Gupta
- Laboratory of Virology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Aekagra Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh, India
| | - Sarala Rani Kayampeta
- Research and Development Division, Srikara Biologicals Private Limited, Tirupati, India
| | | | - Deepak Sehgal
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
45
|
Forrestall K, Pringle ES, Sands D, Duguay BA, Farewell B, Woldemariam T, Falzarano D, Pottie I, McCormick C, Darvesh S. A phenothiazine urea derivative broadly inhibits coronavirus replication via viral protease inhibition. Antiviral Res 2023; 220:105758. [PMID: 38008194 DOI: 10.1016/j.antiviral.2023.105758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023]
Abstract
Coronavirus (CoV) replication requires efficient cleavage of viral polyproteins into an array of non-structural proteins involved in viral replication, organelle formation, viral RNA synthesis, and host shutoff. Human CoVs (HCoVs) encode two viral cysteine proteases, main protease (Mpro) and papain-like protease (PLpro), that mediate polyprotein cleavage. Using a structure-guided approach, a phenothiazine urea derivative that inhibits both SARS-CoV-2 Mpro and PLpro protease activity was identified. In silico docking studies also predicted the binding of the phenothiazine urea to the active sites of structurally similar Mpro and PLpro proteases from distantly related alphacoronavirus, HCoV-229 E (229 E), and the betacoronavirus, HCoV-OC43 (OC43). The lead phenothiazine urea derivative displayed broad antiviral activity against all three HCoVs tested in cellulo. It was further demonstrated that the compound inhibited 229 E and OC43 at an early stage of viral replication, with diminished formation of viral replication organelles, and the RNAs that are made within them, as expected following viral protease inhibition. These observations suggest that the phenothiazine urea derivative readily inhibits viral replication and may broadly inhibit proteases of diverse coronaviruses.
Collapse
Affiliation(s)
- Katrina Forrestall
- Department of Medicine (Geriatric Medicine and Neurology) and Medical Neuroscience, Dalhousie University, 5850 College Street, Halifax, NS, Canada, B3H 4R2
| | - Eric S Pringle
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS, Canada, B3H 4R2
| | - Dane Sands
- Department of Medicine (Geriatric Medicine and Neurology) and Medical Neuroscience, Dalhousie University, 5850 College Street, Halifax, NS, Canada, B3H 4R2
| | - Brett A Duguay
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS, Canada, B3H 4R2
| | - Brett Farewell
- Department of Medicine (Geriatric Medicine and Neurology) and Medical Neuroscience, Dalhousie University, 5850 College Street, Halifax, NS, Canada, B3H 4R2
| | | | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), 120 Veterinary Road, Saskatoon, SK, Canada, S7N 5E3; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada, S7N 5B4
| | - Ian Pottie
- Department of Chemistry & Physics, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS, Canada, B3M 2J6; Department of Chemistry, Saint Mary's University, 923 Robbie Street, Halifax, NS, Canada, B3H 3C3
| | - Craig McCormick
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS, Canada, B3H 4R2
| | - Sultan Darvesh
- Department of Medicine (Geriatric Medicine and Neurology) and Medical Neuroscience, Dalhousie University, 5850 College Street, Halifax, NS, Canada, B3H 4R2; Department of Chemistry & Physics, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS, Canada, B3M 2J6.
| |
Collapse
|
46
|
Yevsieieva LV, Lohachova KO, Kyrychenko A, Kovalenko SM, Ivanov VV, Kalugin ON. Main and papain-like proteases as prospective targets for pharmacological treatment of coronavirus SARS-CoV-2. RSC Adv 2023; 13:35500-35524. [PMID: 38077980 PMCID: PMC10698513 DOI: 10.1039/d3ra06479d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/23/2023] [Indexed: 10/16/2024] Open
Abstract
The pandemic caused by the coronavirus SARS-CoV-2 led to a global crisis in the world healthcare system. Despite some progress in the creation of antiviral vaccines and mass vaccination of the population, the number of patients continues to grow because of the spread of new SARS-CoV-2 mutations. There is an urgent need for direct-acting drugs capable of suppressing or stopping the main mechanisms of reproduction of the coronavirus SARS-CoV-2. Several studies have shown that the successful replication of the virus in the cell requires proteolytic cleavage of the protein structures of the virus. Two proteases are crucial in replicating SARS-CoV-2 and other coronaviruses: the main protease (Mpro) and the papain-like protease (PLpro). In this review, we summarize the essential viral proteins of SARS-CoV-2 required for its viral life cycle as targets for chemotherapy of coronavirus infection and provide a critical summary of the development of drugs against COVID-19 from the drug repurposing strategy up to the molecular design of novel covalent and non-covalent agents capable of inhibiting virus replication. We overview the main antiviral strategy and the choice of SARS-CoV-2 Mpro and PLpro proteases as promising targets for pharmacological impact on the coronavirus life cycle.
Collapse
Affiliation(s)
- Larysa V Yevsieieva
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Kateryna O Lohachova
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Alexander Kyrychenko
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Sergiy M Kovalenko
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Volodymyr V Ivanov
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Oleg N Kalugin
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| |
Collapse
|
47
|
Hasan MN, Ray M, Saha A. Landscape of In Silico Tools for Modeling Covalent Modification of Proteins: A Review on Computational Covalent Drug Discovery. J Phys Chem B 2023; 127:9663-9684. [PMID: 37921534 DOI: 10.1021/acs.jpcb.3c04710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Covalent drug discovery has been a challenging research area given the struggle of finding a sweet balance between selectivity and reactivity for these drugs, the lack of which often leads to off-target activities and hence undesirable side effects. However, there has been a resurgence in covalent drug design following the success of several covalent drugs such as boceprevir (2011), ibrutinib (2013), neratinib (2017), dacomitinib (2018), zanubrutinib (2019), and many others. Design of covalent drugs includes many crucial factors, where "evaluation of the binding affinity" and "a detailed mechanistic understanding on covalent inhibition" are at the top of the list. Well-defined experimental techniques are available to elucidate these factors; however, often they are expensive and/or time-consuming and hence not suitable for high throughput screens. Recent developments in in silico methods provide promise in this direction. In this report, we review a set of recent publications that focused on developing and/or implementing novel in silico techniques in "Computational Covalent Drug Discovery (CCDD)". We also discuss the advantages and disadvantages of these approaches along with what improvements are required to make it a great tool in medicinal chemistry in the near future.
Collapse
Affiliation(s)
- Md Nazmul Hasan
- Department of Chemistry and Biochemistry, University of Wisconsin─Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Manisha Ray
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Arjun Saha
- Department of Chemistry and Biochemistry, University of Wisconsin─Milwaukee, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
48
|
Brewitz L, Henry Chan HT, Lukacik P, Strain-Damerell C, Walsh MA, Duarte F, Schofield CJ. Mass spectrometric assays monitoring the deubiquitinase activity of the SARS-CoV-2 papain-like protease inform on the basis of substrate selectivity and have utility for substrate identification. Bioorg Med Chem 2023; 95:117498. [PMID: 37857256 PMCID: PMC10933793 DOI: 10.1016/j.bmc.2023.117498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
The SARS-CoV-2 papain-like protease (PLpro) and main protease (Mpro) are nucleophilic cysteine enzymes that catalyze hydrolysis of the viral polyproteins pp1a/1ab. By contrast with Mpro, PLpro is also a deubiquitinase (DUB) that accepts post-translationally modified human proteins as substrates. Here we report studies on the DUB activity of PLpro using synthetic Nε-lysine-branched oligopeptides as substrates that mimic post-translational protein modifications by ubiquitin (Ub) or Ub-like modifiers (UBLs), such as interferon stimulated gene 15 (ISG15). Mass spectrometry (MS)-based assays confirm the DUB activity of isolated recombinant PLpro. They reveal that the sequence of both the peptide fragment derived from the post-translationally modified protein and that derived from the UBL affects PLpro catalysis; the nature of substrate binding in the S sites appears to be more important for catalytic efficiency than binding in the S' sites. Importantly, the results reflect the reported cellular substrate selectivity of PLpro, i.e. human proteins conjugated to ISG15 are better substrates than those conjugated to Ub or other UBLs. The combined experimental and modelling results imply that PLpro catalysis is affected not only by the identity of the substrate residues binding in the S and S' sites, but also by the substrate fold and the conformational dynamics of the blocking loop 2 of the PLpro:substrate complex. Nε-Lysine-branched oligopeptides thus have potential to help the identification of PLpro substrates. More generally, the results imply that MS-based assays with Nε-lysine-branched oligopeptides have potential to monitor catalysis by human DUBs and hence to inform on their substrate preferences.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom; The Ineos Oxford Institute for Antimicrobial Research, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom.
| | - H T Henry Chan
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Petra Lukacik
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA Didcot, United Kingdom
| | - Claire Strain-Damerell
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA Didcot, United Kingdom
| | - Martin A Walsh
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA Didcot, United Kingdom
| | - Fernanda Duarte
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom; The Ineos Oxford Institute for Antimicrobial Research, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom.
| |
Collapse
|
49
|
Tan B, Sacco M, Tan H, Li K, Joyce R, Zhang X, Chen Y, Wang J. Exploring diverse reactive warheads for the design of SARS-CoV-2 main protease inhibitors. Eur J Med Chem 2023; 259:115667. [PMID: 37482021 PMCID: PMC10529912 DOI: 10.1016/j.ejmech.2023.115667] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
SARS-CoV-2 main protease (Mpro) is a validated antiviral drug target of nirmatrelvir, the active ingredient in Pfizer's oral drug Paxlovid. Drug-drug interactions limit the use of Paxlovid. In addition, drug-resistant Mpro mutants against nirmatrelvir have been identified from cell culture viral passage and naturally occurring variants. As such, there is a need for a second generation of Mpro inhibitors. In this study, we explored several reactive warheads in the design of Mpro inhibitors. We identified Jun11119R (vinyl sulfonamide warhead), Jun10221R (propiolamide warhead), Jun1112R (4-chlorobut-2-ynamide warhead), Jun10541R (nitrile warhead), and Jun10963R (dually activated nitrile warhead) as potent Mpro inhibitors. Jun10541R and Jun10963R also had potent antiviral activity against SARS-CoV-2 in Calu-3 cells with EC50 values of 2.92 and 6.47 μM, respectively. X-ray crystal structures of Mpro with Jun10541R and Jun10221 revealed covalent modification of Cys145. These Mpro inhibitors with diverse reactive warheads collectively represent promising candidates for further development.
Collapse
Affiliation(s)
- Bin Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Michael Sacco
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Ryan Joyce
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Xiujun Zhang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States
| | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, United States.
| |
Collapse
|
50
|
Liu W, Wang J, Wang S, Yue K, Hu Y, Liu X, Wang L, Wan S, Xu X. Discovery of new non-covalent and covalent inhibitors targeting SARS-CoV-2 papain-like protease and main protease. Bioorg Chem 2023; 140:106830. [PMID: 37683544 DOI: 10.1016/j.bioorg.2023.106830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/04/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Global coronavirus disease 2019 (COVID-19) pandemic still threatens human health and public safety, and the development of effective antiviral agent is urgently needed. The SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro) are vital proteins in viral replication and promising therapeutic targets. Additionally, PLpro also modulates host immune response by cleaving ubiquitin and interferon-stimulated gene product 15 (ISG15) from ISGylated host proteins. In this report, we identified [1,2]selenazolo[5,4-c]pyridin-3(2H)-one and benzo[d]isothiazol-3(2H)-one as attractive scaffolds of PLpro and Mpro inhibitors. The representative compounds 6c and 7e exhibited excellent PLpro inhibition with percent inhibition of 42.9% and 44.9% at 50 nM, respectively. The preliminary enzyme kinetics experiment and fluorescent labelling experiment results determined that 6c was identified as a covalent PLpro inhibitor, while 7e was a non-covalent inhibitor. Molecular docking and dynamics simulations revealed that 6c and 7e bound to Zn-finger domain of PLpro. Compounds 6c and 7e were also identified to potent Mpro inhibitors, and they exhibited potent antiviral activities in SARS-CoV-2 infected Vero E6 cells, with EC50 value of 3.9 μM and 7.4 μM, respectively. In addition, the rat liver homogenate half-life of 6c and 7e exceeded 24 h. These findings suggest that 6c and 7e are promising led compounds for further development of PLpro/Mpro dual-target antiviral drugs.
Collapse
Affiliation(s)
- Wandong Liu
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China
| | - Juan Wang
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China
| | - Suyun Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Kairui Yue
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China
| | - Yu Hu
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China
| | - Xiaochun Liu
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China
| | - Lihao Wang
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China
| | - Shengbiao Wan
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China.
| | - Ximing Xu
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China.
| |
Collapse
|