1
|
Zhang T, Yang B, Jiang T, Kong X, Huo X, Ma Y, Yang K, Liu M, Liu Y, Yao Z, Yu H, Liu H, Zhang K, Liu Y. A Hypoxia-Activated BODIPY-Azo Anticancer Prodrug for Bimodal Chemo-Photodynamic Therapy. J Med Chem 2025. [PMID: 39826133 DOI: 10.1021/acs.jmedchem.4c02231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
For cancer treatment, collaborative strategies have been the mainstream for overcoming the restrictions resulting from monotherapy. Combining chemotherapy with photodynamic therapy (PDT) has been shown to increase the antitumor effect and reduce side impacts. This study reports a hypoxia-activated prodrug BOD-Azo-single with a PDT agent and aniline mustard connected by the azo bond. With light illumination, BOD-Azo-single exhibited some PDT. Under hypoxic conditions, the azo bond cleaved and released BOD-3-single of higher phototoxicity and aniline mustard of chemotoxicity. In vivo therapeutic experiments showed that BOD-Azo-single with light significantly reduced A375 tumor proliferation with 92% TGI value. Overall, in this study, PDT was employed to address the adverse systemic toxicity of chemotherapy and the released chemotoxicity made up for the inefficiency of PDT in the hypoxic tumor microenvironment, introducing a new strategy for developing combined therapeutic agents to be advantageous to each other. Under a hypoxic tumor environment, BOD-3-single and aniline mustard exerted a strong synergistic effect (CI = 0.25), indicating that BOD-Azo-single is a real bimodal chemo-photodynamic therapeutic agent.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang 050017, China
| | - Baoyin Yang
- Department of Pharmacy, Baoding Hospital of Beijing Children's Hospital, Capital Medical University, Baoding 071000, China
| | - Tao Jiang
- The Thoracic Surgery Department of the First Hospital of Hebei Medical University, Shijiazhuang 050017, China
| | - Xiangyu Kong
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang 050017, China
| | - Xinyao Huo
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang 050017, China
| | - Yan Ma
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang 050017, China
| | - Kehao Yang
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang 050017, China
| | - Mengchun Liu
- Renhe Yikang Group Co., Ltd, Shijiazhuang 050017, China
| | - Yumiao Liu
- Renhe Yikang Group Co., Ltd, Shijiazhuang 050017, China
| | - Zikuo Yao
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang 050017, China
| | - Hao Yu
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang 050017, China
| | - Huining Liu
- The Thoracic Surgery Department of the First Hospital of Hebei Medical University, Shijiazhuang 050017, China
| | - Kai Zhang
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang 050017, China
| | - Yifan Liu
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
2
|
Hu W, Wang K, Li X, Fan X, Qu WJ, Wei TB, Lin Q, Shi B. A Temperature-Sensitive Fluorescent Supramolecular Polymer Constructed by Discrete Platinum(II) Metallacycle and Pillar[5]arene-Based Host-Guest Interactions. Inorg Chem 2024; 63:20030-20037. [PMID: 39390759 DOI: 10.1021/acs.inorgchem.4c03727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The application of thermosensitive fluorescent supramolecular polymers in advanced optical materials, chemical sensors, artificial optical devices, and external stimulus responses remains underdeveloped. In this study, we introduced a novel method for constructing a mechanically interlocked fluorescent supramolecular polymer utilizing host-guest interactions, including C-H···π interactions and π-π stacking. This polymer exhibits outstanding temperature-sensitive fluorescence properties and is environmentally friendly due to its recyclability. Leveraging the polymer's fluorescence response at critical temperature ranges, we developed a high-temperature warning device. This device utilizes the temperature-sensitive fluorescence characteristic of the polymer to indicate dangerous temperature levels, thereby demonstrating its potential in practical safety applications.
Collapse
Affiliation(s)
- Wentao Hu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Ke Wang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Xupeng Li
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Xiliang Fan
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Wen-Juan Qu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Qi Lin
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Bingbing Shi
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
3
|
Tu L, Li C, Ding Q, Sharma A, Li M, Li J, Kim JS, Sun Y. Augmenting Cancer Therapy with a Supramolecular Immunogenic Cell Death Inducer: A Lysosome-Targeted NIR-Light-Activated Ruthenium(II) Metallacycle. J Am Chem Soc 2024; 146:8991-9003. [PMID: 38513217 DOI: 10.1021/jacs.3c13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Though immunogenic cell death (ICD) has garnered significant attention in the realm of anticancer therapies, effectively stimulating strong immune responses with minimal side effects in deep-seated tumors remains challenging. Herein, we introduce a novel self-assembled near-infrared-light-activated ruthenium(II) metallacycle, Ru1105 (λem = 1105 nm), as a first example of a Ru(II) supramolecular ICD inducer. Ru1105 synergistically potentiates immunomodulatory responses and reduces adverse effects in deep-seated tumors through multiple regulated approaches, including NIR-light excitation, increased reactive oxygen species (ROS) generation, selective targeting of tumor cells, precision organelle localization, and improved tumor penetration/retention capabilities. Specifically, Ru1105 demonstrates excellent depth-activated ROS production (∼1 cm), strong resistance to diffusion, and anti-ROS quenching. Moreover, Ru1105 exhibits promising results in cellular uptake and ROS generation in cancer cells and multicellular tumor spheroids. Importantly, Ru1105 induces more efficient ICD in an ultralow dose (10 μM) compared to the conventional anticancer agent, oxaliplatin (300 μM). In vivo experiments further confirm Ru1105's potency as an ICD inducer, eliciting CD8+ T cell responses and depleting Foxp3+ T cells with minimal adverse effects. Our research lays the foundation for the design of secure and exceptionally potent metal-based ICD agents in immunotherapy.
Collapse
Affiliation(s)
- Le Tu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chonglu Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Amit Sharma
- Amity School of Chemical Sciences, Amity University Punjab, Sector 82A, Mohali, Punjab 140306, India
| | - Meiqin Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Junrong Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Yao Sun
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
4
|
Uriel C, Grenier D, Herranz F, Casado N, Bañuelos J, Rebollar E, Garcia-Moreno I, Gomez AM, López JC. De Novo Access to BODIPY C-Glycosides as Linker-Free Nonsymmetrical BODIPY-Carbohydrate Conjugates. J Org Chem 2024; 89:4042-4055. [PMID: 38438277 PMCID: PMC10949249 DOI: 10.1021/acs.joc.3c02907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
Recent years have witnessed an increasing interest in the synthesis and study of BODIPY-glycoconjugates. Most of the described synthetic methods toward these derivatives involve postfunctional modifications of the BODIPY core followed by the covalent attachment of the fluorophore and the carbohydrate through a "connector". Conversely, few de novo synthetic approaches to linker-free carbohydrate-BODIPY hybrids have been described. We have developed a reliable modular, de novo, synthetic strategy to linker-free BODIPY-sugar derivatives using the condensation of pyrrole C-glycosides with a pyrrole-carbaldehyde derivative mediated by POCl3. This methodology allows labeling of carbohydrate biomolecules with fluorescent-enough BODIPYs within the biological window, stable in aqueous media, and able to display singlet oxygen generation.
Collapse
Affiliation(s)
- Clara Uriel
- Instituto
de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| | - Dylan Grenier
- Instituto
de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| | - Florian Herranz
- Instituto
de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| | - Natalia Casado
- Departamento
de Química Física, Universidad
del Pais Vasco, UPV-EHU, Apartado 644, Bilbao 48080, Spain
| | - Jorge Bañuelos
- Departamento
de Química Física, Universidad
del Pais Vasco, UPV-EHU, Apartado 644, Bilbao 48080, Spain
| | - Esther Rebollar
- Instituto
de Química y Física Blas Cabrera, CSIC, Serrano 119, Madrid 28006, Spain
| | | | - Ana M. Gomez
- Instituto
de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| | - J. Cristobal López
- Instituto
de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| |
Collapse
|
5
|
Soto MA, MacLachlan MJ. Responsive macrocyclic and supramolecular structures powered by platinum. Chem Sci 2024; 15:431-441. [PMID: 38179527 PMCID: PMC10763547 DOI: 10.1039/d3sc05524h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Humankind's manipulation of platinum dates back more than two millennia to burial objects. Since then, its use has evolved from purely decorative purposes in jewelry to more functional applications such as in catalysts, pharmaceuticals, and bioimaging agents. Platinum offers a range of properties arguably unmatched by any other metal, including electroactivity, photoluminescence, chromic behaviour, catalysis, redox reactivity, photoreactivity, and stimuli-controlled intermetallic interactions. The vast body of knowledge generated by the exploration of these and other properties of platinum has recently merged with other areas of chemistry such as supramolecular and host-guest chemistry. This has shown us that platinum can incorporate its responsive character into supramolecular assemblies (e.g., macrocycles and polymers) to produce materials with tailorable functions and responses. In this Perspective Article, we cover some platinum-powered supramolecular structures reported by us and others, hoping to inspire new and exciting discoveries in the field.
Collapse
Affiliation(s)
- Miguel A Soto
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Mark J MacLachlan
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
- Quantum Matter Institute, University of British Columbia 2355 East Mall Vancouver British Columbia V6T 1Z4 Canada
- WPI Nano Life Science Institute, Kanazawa University Kanazawa 920-1192 Japan
| |
Collapse
|
6
|
Thomas-Moore BA, Dedola S, Russell DA, Field RA, Marín MJ. Targeted photodynamic therapy for breast cancer: the potential of glyconanoparticles. NANOSCALE ADVANCES 2023; 5:6501-6513. [PMID: 38024308 PMCID: PMC10662151 DOI: 10.1039/d3na00544e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/15/2023] [Indexed: 12/01/2023]
Abstract
Photodynamic therapy (PDT) uses a non-toxic light sensitive molecule, a photosensitiser, that releases cytotoxic reactive oxygen species upon activation with light of a specific wavelength. Here, glycan-modified 16 nm gold nanoparticles (glycoAuNPs) were explored for their use in targeted PDT, where the photosensitiser was localised to the target cell through selective glycan-lectin interactions. Polyacrylamide (PAA)-glycans were chosen to assess glycan binding to the cell lines. These PAA-glycans indicated the selective uptake of a galactose-derivative PAA by two breast cancer cell lines, SK-BR-3 and MDA-MD-231. Subsequently, AuNPs were modified with a galactose-derivative ligand and an amine derivate of the photosensitiser chlorin e6 was incorporated to the nanoparticle surface via amide bond formation using EDC/NHS coupling chemistry. The dual modified nanoparticles were investigated for the targeted cell killing of breast cancer cells, demonstrating the versatility of using glycoAuNPs for selective binding to different cancer cells and their potential use for targeted PDT.
Collapse
Affiliation(s)
- Brydie A Thomas-Moore
- Iceni Glycoscience Ltd. Norwich Research Park Norwich NR4 7TJ UK
- School of Chemistry, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Simone Dedola
- Iceni Glycoscience Ltd. Norwich Research Park Norwich NR4 7TJ UK
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - David A Russell
- School of Chemistry, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Robert A Field
- Iceni Glycoscience Ltd. Norwich Research Park Norwich NR4 7TJ UK
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - María J Marín
- School of Chemistry, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| |
Collapse
|