1
|
Chen X, Xu S, Yang S, Yu Z, Chen Y, Wu H, Bao Q, You Q, Guo X, Jiang Z. Discovery of Selenium-Containing Derivatives as Potent and Orally Bioavailable GLP-1R Agonists. J Med Chem 2025. [PMID: 39824521 DOI: 10.1021/acs.jmedchem.4c02616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) is a well-established target for the treatment of type 2 diabetes mellitus (T2DM) and obesity. The development of orally bioavailable and long-acting small-molecule GLP-1R agonists is a pursuit in both academia and industry. Herein, new selenium (Se)-containing compounds were designed using a Se-oxygen bioisostere strategy on the danuglipron scaffold. Among these, compound 21 was orally bioavailable and exhibited full agonistic efficacy in promoting cyclic adenosine monophosphate (cAMP) accumulation. In hGLP-1R knock-in mice, 21 effectively reduced blood glucose levels and food intake, with the duration of action slightly extended compared to that of danuglipron. Importantly, no significant adverse effects were observed in mice treated with 21 during the subacute toxicity studies. This study delineates the potential of Se-containing compounds as orally bioavailable GLP-1R agonists, with compound 21 emerging as a promising candidate for T2DM and obesity treatment.
Collapse
Affiliation(s)
- Xuetao Chen
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shicheng Xu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shuang Yang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zezhou Yu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yali Chen
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huidan Wu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qichao Bao
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoke Guo
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Hou W, Hou S, Gu Y, Zhang S, Ma P, Hu HY, Xu H. Selenium(II)-Nitrogen Exchange (SeNEx) Chemistry: A Good Chemistry Suitable for Nanomole-Scale Parallel Synthesis, DNA-encoded Library Synthesis and Bioconjugation. Chembiochem 2024; 25:e202400641. [PMID: 39379308 DOI: 10.1002/cbic.202400641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
The continuous development of click reactions with new connecting linkage is crucial for advancing the frontiers of click chemistry. Selenium-nitrogen exchange (SeNEx) chemistry, a versatile chemistry in click chemistry, represents an all-encompassing term for nucleophilic substitution events that replace nitrogen at an electrophilic selenium(II) center, enabling the flexible and efficient assembly of linkages around a Se(II) core. Several SeNEx chemistries have been developed inspired by the biochemical reaction between Ebselen and cysteine residue, and demonstrated significant potential in on-plate nanomole-scale parallel synthesis, selenium-containing DNA-encoded library (SeDEL) synthesis, as well as peptide and protein bioconjugation. This concept aims to present the origins, advancements, and applications of selenium(II)-nitrogen exchange (SeNEx) chemistry while also outlining the potential directions for future research in this field.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology Department, Hangzhou, 310014, China
| | - Shaoneng Hou
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology Department, Hangzhou, 310014, China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Shuning Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking UnionMedical College, Beijing, 100050, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
3
|
Mamgain R, Mishra G, Kriti S, Singh FV. Organoselenium compounds beyond antioxidants. Future Med Chem 2024; 16:2663-2685. [PMID: 39711134 PMCID: PMC11734649 DOI: 10.1080/17568919.2024.2435254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Organoselenium chemistry has become a significant field due to its role in synthesizing numerous biologically active and therapeutic compounds. In early phase, researchers focused on designing organoselenium compounds with antioxidant properties and were quite successful. In last two decades, synthetic chemists shifted their focus toward synthesis of organoselenium compounds with biological properties, moving beyond their traditional antioxidant properties. The review includes synthesis and study of organo-selenium compounds as anticancer, antimicrobial, antiviral, antidiabetic, antithyroid, anti-inflammatory therapies, contributing to disease treatment. This review covers the synthesis and medicinal applications of synthetic organoselenium compounds over the past 10 years, thus making it a valuable resource for researchers in the field of medicinal chemistry.
Collapse
Affiliation(s)
- Ritu Mamgain
- Chemistry Division, School of Advanced Sciences (SAS), Vellore Institute of Technology - Chennai, Chennai, India
| | - Garima Mishra
- Department of Chemistry, Western Illinois University-Quad Cities, Moline, IL, USA
| | - Saumya Kriti
- Chemistry Division, School of Advanced Sciences (SAS), Vellore Institute of Technology - Chennai, Chennai, India
| | - Fateh V. Singh
- Chemistry Division, School of Advanced Sciences (SAS), Vellore Institute of Technology - Chennai, Chennai, India
| |
Collapse
|
4
|
Pyka P, Garbo S, Murzyn A, Satała G, Janusz A, Górka M, Pietruś W, Mituła F, Popiel D, Wieczorek M, Palmisano B, Raucci A, Bojarski AJ, Zwergel C, Szymańska E, Kucwaj-Brysz K, Battistelli C, Handzlik J, Podlewska S. Unlocking the potential of higher-molecular-weight 5-HT 7R ligands: Synthesis, affinity, and ADMET examination. Bioorg Chem 2024; 151:107668. [PMID: 39079393 DOI: 10.1016/j.bioorg.2024.107668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 08/30/2024]
Abstract
An increasing number of drugs introduced to the market and numerous repositories of compounds with confirmed activity have posed the need to revalidate the state-of-the-art rules that determine the ranges of properties the compounds should possess to become future drugs. In this study, we designed a series of two chemotypes of aryl-piperazine hydantoin ligands of 5-HT7R, an attractive target in search for innovative CNS drugs, with higher molecular weight (close to or over 500). Consequently, 14 new compounds were synthesised and screened for their receptor activity accompanied by extensive docking studies to evaluate the observed structure-activity/properties relationships. The ADMET characterisation in terms of the biological membrane permeability, metabolic stability, hepatotoxicity, cardiotoxicity, and protein plasma binding of the obtained compounds was carried out in vitro. The outcome of these studies constituted the basis for the comprehensive challenge of computational tools for ADMET properties prediction. All the compounds possessed high affinity to the 5-HT7R (Ki below 250 nM for all analysed structures) with good selectivity over 5-HT6R and varying affinity towards 5-HT2AR, 5-HT1AR and D2R. For the best compounds of this study, the expression profile of genes associated with neurodegeneration, anti-oxidant response and anti-inflammatory function was determined, and the survival of the cells (SH-SY5Y as an in vitro model of Alzheimer's disease) was evaluated. One 5-HT7R agent (32) was characterised by a very promising ADMET profile, i.e. good membrane permeability, low hepatotoxicity and cardiotoxicity, and high metabolic stability with the simultaneous high rate of plasma protein binding and high selectivity over other GPCRs considered, together with satisfying gene expression profile modulations and neural cell survival. Such encouraging properties make it a good candidate for further testing and optimisation as a potential agent in the treatment of CNS-related disorders.
Collapse
Affiliation(s)
- Patryk Pyka
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 31-530 Kraków, Poland
| | - Sabrina Garbo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome
| | - Aleksandra Murzyn
- Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland
| | - Grzegorz Satała
- Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland
| | - Artur Janusz
- Preclinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Michał Górka
- Preclinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Wojciech Pietruś
- Medicinal Chemistry Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Filip Mituła
- Preclinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Delfina Popiel
- Preclinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Maciej Wieczorek
- Preclinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland; Clinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome
| | - Alessia Raucci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
| | - Ewa Szymańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Katarzyna Kucwaj-Brysz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome.
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland.
| | - Sabina Podlewska
- Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland.
| |
Collapse
|
5
|
Drop M, Koczurkiewicz-Adamczyk P, Bento O, Pietruś W, Satała G, Blicharz-Futera K, Canale V, Grychowska K, Bantreil X, Pękala E, Kurczab R, Bojarski AJ, Chaumont-Dubel S, Marin P, Lamaty F, Zajdel P. 5-HT 6 receptor neutral antagonists protect astrocytes: A lesson from 2-phenylpyrrole derivatives. Eur J Med Chem 2024; 275:116615. [PMID: 38936149 DOI: 10.1016/j.ejmech.2024.116615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
The serotonin type 6 receptor (5-HT6R) displays a strong constitutive activity, suggesting it participates largely in the physiological and pathological processes controlled by the receptor. The active states of 5-HT6R engage particular signal transduction pathways that lead to different biological responses. In this study, we present the development of 5-HT6R neutral antagonists at Gs signaling built upon the 2-phenylpyrrole scaffold. Using molecular dynamics simulations, we outline the relationship between the exposure of the basic center of the molecules and their ability to target the agonist-activated state of the receptor. Our study identifies compound 30 as a potent and selective neutral antagonist at 5-HT6R-operated Gs signaling. Furthermore, we demonstrate the cytoprotective effects of 30 and structurally diverse 5-HT6R neutral antagonists at Gs signaling in C8-D1A cells and human astrocytes exposed to rotenone. This effect is not observed for 5-HT6R agonists or inverse agonists. In light of these findings, we propose compound 30 as a valuable molecular probe to study the biological effects associated with the agonist-activated state of 5-HT6R and provide insight into the glioprotective properties of 5-HT6R neutral antagonists at Gs signaling.
Collapse
Affiliation(s)
- Marcin Drop
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688, Kraków, Poland; IBMM, Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | | | - Ophélie Bento
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France; Institut de Génomique Fonctionelle, Université de Montpellier, CNRS INSERM, 34094, Montpellier, France
| | - Wojciech Pietruś
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343, Kraków, Poland
| | - Grzegorz Satała
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343, Kraków, Poland
| | - Klaudia Blicharz-Futera
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688, Kraków, Poland
| | - Vittorio Canale
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688, Kraków, Poland
| | - Katarzyna Grychowska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688, Kraków, Poland
| | - Xavier Bantreil
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France; Institut Universitaire de France (IUF), France
| | - Elżbieta Pękala
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688, Kraków, Poland
| | - Rafał Kurczab
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343, Kraków, Poland
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343, Kraków, Poland
| | - Severine Chaumont-Dubel
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS INSERM, 34094, Montpellier, France
| | - Philippe Marin
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS INSERM, 34094, Montpellier, France
| | - Frédéric Lamaty
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Paweł Zajdel
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688, Kraków, Poland.
| |
Collapse
|
6
|
Siwek A, Marcinkowska M, Głuch-Lutwin M, Mordyl B, Wolak M, Jastrzębska-Więsek M, Wilczyńska-Zawal N, Wyska E, Szafrańska K, Karcz T, Ostrowska O, Bucki A, Kołaczkowski M. Dual 5-HT 6/SERT ligands for mitigating neuropsychiatric symptoms of dementia exerting neuroprotection against amyloid-β toxicity, memory preservation, and antidepressant-like properties. Eur J Med Chem 2024; 275:116601. [PMID: 38901106 DOI: 10.1016/j.ejmech.2024.116601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
In light of the biological targets alterations in dementia patients suffering from neuropsychiatric symptoms, particularly in the 5-HT6 receptor and SERT transporters, this study aimed to develop dual-acting molecules targeting both these targets. By combining a 5-substituted indole with piperazine scaffolds, we synthesized molecules with nanomolar affinities for these sites, avoiding interaction with off-targets detrimental to dementia patients. Preliminary pharmacodynamic and ADMET assays let the identification of compound 15 as a lead molecule. In vitro studies showed that 15 provided neuroprotection against Aβ toxicity and reduced the levels of proapoptotic enzymes: caspase 3 and 7. In vivo, 15 reversed MK-801-induced memory deficits and exhibited antidepressant-like effects. Further studies showed that acute administration of compound 15 at a dose of 5 mg/kg increased BDNF levels, which are crucial for supporting neuronal survival and potentially slowing cognitive decline in dementia. These findings suggest 15's potential as a therapeutic for behavioral and psychological symptoms of dementia (BPSD), warranting further investigation.
Collapse
Affiliation(s)
- Agata Siwek
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland.
| | - Monika Marcinkowska
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Monika Głuch-Lutwin
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Barbara Mordyl
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Małgorzata Wolak
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | | | - Natalia Wilczyńska-Zawal
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Elżbieta Wyska
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Katarzyna Szafrańska
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Tadeusz Karcz
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Olga Ostrowska
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Adam Bucki
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Marcin Kołaczkowski
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland; Adamed Pharma S.A., Pienkow, 6A Mariana Adamkiewicza St., 05-152, Czosnów, Poland
| |
Collapse
|
7
|
Pyka P, Garbo S, Fioravanti R, Jacob C, Hittinger M, Handzlik J, Zwergel C, Battistelli C. Selenium-containing compounds: a new hope for innovative treatments in Alzheimer's disease and Parkinson's disease. Drug Discov Today 2024; 29:104062. [PMID: 38871111 DOI: 10.1016/j.drudis.2024.104062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Neurodegenerative diseases are challenging to cure. To date, no cure has been found for Alzheimer's disease or Parkinson's disease, and current treatments are able only to slow the progression of the diseases and manage their symptoms. After an introduction to the complex biology of these diseases, we discuss the beneficial effect of selenium-containing agents, which show neuroprotective effects in vitro or in vivo. Indeed, selenium is an essential trace element that is being incorporated into innovative organoselenium compounds, which can improve outcomes in rodent or even primate models with neurological deficits. Herein, we critically discuss recent findings in the field of selenium-based applications in neurological disorders.
Collapse
Affiliation(s)
- Patryk Pyka
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, św. Łazarza 15, 31-530 Krakow, Poland; Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Sabrina Garbo
- Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
| | - Marius Hittinger
- Pharmbiotec gGmbH, Department of Drug Discovery, Nußkopf 39, 66578 Schiffweiler, Germany
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland.
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany; Pharmbiotec gGmbH, Department of Drug Discovery, Nußkopf 39, 66578 Schiffweiler, Germany.
| | - Cecilia Battistelli
- Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
8
|
Jeon JH, Jeon SY, Baek YJ, Park CE, Choi MK, Han YT, Song IS. Pharmacokinetics and Enterohepatic Circulation of 2-(Quinoline-8-carboxamido)benzoic Acid (2-QBA) in Mice. Pharmaceutics 2024; 16:934. [PMID: 39065631 PMCID: PMC11279551 DOI: 10.3390/pharmaceutics16070934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The quinoline alkaloid 2-(quinoline-8-carboxamido)benzoic acid (2-QBA), which is isolated from Aspergillus sp. SCSIO06786, a deep sea-derived fungus, has been suggested as a therapeutic candidate for the treatment of Parkinson's disease. We developed an analytical method for 2-QBA using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) in mouse plasma, in which a protein precipitation method for the sample preparation of 2-QBA in mouse plasma was used due to its simplicity and good extraction recovery rates (80.49-97.56%). The linearity of the calibration standard sample, inter- and intraday precision and accuracy, and stability of three quality control samples were suitable based on the assessment criteria and the lower limit of quantification (LLOQ) of the 2-QBA was 1 ng/mL. A pharmacokinetic study of 2-QBA was performed in mice divided into oral (2.0, 5.0, and 15 mg/kg) and intravenous (0.5 and 1.0 mg/kg) administration groups. The absolute oral bioavailability (BA) range of 2-QBA was calculated as 68.3-83.7%. Secondary peaks were observed at approximately 4-8 h after the oral administration of 2-QBA at all doses. The elimination half-life of the orally administered 2-QBA was significantly longer than that of the intravenous 2-QBA. In addition, glucuronide metabolites of 2-QBA were identified. They were transformed into 2-QBA using the β-glucuronidase treatment. Furthermore, the 2-QBA was readily absorbed from the jejunum to lower ileum. Taken together, the secondary peaks could be explained by the enterohepatic circulation of 2-QBA. In conclusion, the reabsorption of orally administered 2-QBA could contribute to the high oral BA of 2-QBA and could be beneficial for the efficacy of 2-QBA. Moreover, the simple and validated analytical method for 2-QBA using LC-MS/MS was applied to the pharmacokinetic study and BA assessments of 2-QBA in mice and would be helpful for subsequent pharmacokinetic studies, as well as for evaluations of the toxicokinetics and pharmacokinetic-pharmacodynamic correlation of 2-QBA to assess its potential as a drug.
Collapse
Affiliation(s)
- Ji-Hyeon Jeon
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - So-Yeon Jeon
- College of Pharmacy, Dankook University, Cheon-an 31116, Republic of Korea; (S.-Y.J.); (Y.-J.B.); (C.-E.P.); (M.-K.C.)
| | - Yeon-Ju Baek
- College of Pharmacy, Dankook University, Cheon-an 31116, Republic of Korea; (S.-Y.J.); (Y.-J.B.); (C.-E.P.); (M.-K.C.)
| | - Chan-E Park
- College of Pharmacy, Dankook University, Cheon-an 31116, Republic of Korea; (S.-Y.J.); (Y.-J.B.); (C.-E.P.); (M.-K.C.)
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Republic of Korea; (S.-Y.J.); (Y.-J.B.); (C.-E.P.); (M.-K.C.)
| | - Young Taek Han
- College of Pharmacy, Dankook University, Cheon-an 31116, Republic of Korea; (S.-Y.J.); (Y.-J.B.); (C.-E.P.); (M.-K.C.)
| | - Im-Sook Song
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea;
| |
Collapse
|
9
|
Cui L, Hou W, Xu H. Selenium: the emerging element in the medicinal chemist's toolkit. Future Med Chem 2024; 16:493-496. [PMID: 38375573 DOI: 10.4155/fmc-2024-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Affiliation(s)
- Lanmeng Cui
- College of Pharmaceutical Science & Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wei Hou
- College of Pharmaceutical Science & Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|