1
|
Haq A, Mallawarachchi S, Anderson A, Khaleghi L, Manujitha L, Fernando S. In Silico Evaluation of Potential Hit Molecules Against Multiple Serotypes of Dengue Virus Envelope Glycoprotein. Molecules 2025; 30:1268. [PMID: 40142044 PMCID: PMC11944462 DOI: 10.3390/molecules30061268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Dengue Fever, a widespread mosquito-borne disease caused by the dengue virus (DENV), poses a major health threat in tropical and subtropical regions worldwide, resulting in millions of infections yearly. Severe cases of dengue fever have a mortality rate of around fifteen percent. Currently, there are no antiviral treatments for this disease and the only FDA-approved vaccine has been known to have adverse effects, especially in children. Thus, there is an urgent need for new therapeutics for Dengue fever. The largest issue with developing an antiviral treatment is that DENV has four serotypes that each differ slightly enough to pose problems with one compound inhibiting all four. This study addresses that challenge to some extent by focusing on in silico screening of potential hits targeting the envelope glycoprotein, which is relatively conserved across these four serotypes. Using pharmacophore screening and in silico evaluation of ligands, we identified compounds which could potentially have high affinity to the envelope glycoprotein for two of the four DENV serotypes. These in silico results were validated experimentally using bio-layer interferometry. These findings lay a foundation for in vitro analysis and hit-to-lead studies, advancing the development of antivirals that can inhibit multiple serotypes of the dengue virus.
Collapse
Affiliation(s)
| | | | | | | | | | - Sandun Fernando
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77840, USA; (A.H.); (S.M.)
| |
Collapse
|
2
|
Kaewjiw N, Thaingtamtanha T, Mehra D, Chawnawa W, Prommool T, Puttikhunt C, Songjaeng A, Kongmanas K, Avirutnan P, Luangaram P, Srisawat C, Roytrakul S, Bäurle SA, Noisakran S. Domperidone inhibits dengue virus infection by targeting the viral envelope protein and nonstructural protein 1. Sci Rep 2025; 15:3817. [PMID: 39885306 PMCID: PMC11782576 DOI: 10.1038/s41598-025-87146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
Dengue is a mosquito-borne disease caused by dengue virus (DENV) infection, which remains a major public health concern worldwide owing to the lack of specific treatments or antiviral drugs available. This study investigated the potential repurposing of domperidone, an antiemetic and gastrokinetic agent, to control DENV infection. Domperidone was identified by pharmacophore-based virtual screening as a small molecule that can bind to both the viral envelope (E) and the nonstructural protein 1 (NS1) of DENV. Molecular dynamics (MD) simulations and surface plasmon resonance (SPR) analysis were subsequently performed to determine specific interactions of domperidone with the DENV E and NS1 proteins and their binding affinity. Treatment of immortalized human hepatocyte-like cells (imHC) with domperidone could inhibit DENV production and NS1 secretion in a dose-dependent manner following infection with DENV serotype 2. These inhibitory effects were mediated by reduction in viral RNA replication and viral E and NS1 protein expression, but not by interference with virus entry into cells or NS1 oligomerization. The suppression of DENV production and NS1 secretion by domperidone was observed across all four DENV serotypes to varying degrees between different virus strains. The findings from our study suggest viral target-based repurposing of domperidone for modulating DENV.
Collapse
Affiliation(s)
- Nuttapong Kaewjiw
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanawat Thaingtamtanha
- Department of Chemistry and Biology, University of Siegen, Siegen, Germany
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Damini Mehra
- Department of Chemistry and Biology, University of Siegen, Siegen, Germany
| | - Wanida Chawnawa
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Tanapan Prommool
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Chunya Puttikhunt
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Adisak Songjaeng
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kessiri Kongmanas
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Panisadee Avirutnan
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prasit Luangaram
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Chatchawan Srisawat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Stephan A Bäurle
- Department of Chemistry and Biology, University of Siegen, Siegen, Germany
| | - Sansanee Noisakran
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand.
| |
Collapse
|
3
|
Januário MAP, Junior CDOR, Castro-Gamboa I. Indole Derivatives as Promising Anti-Dengue Agents: A Review of Recent Advances. Chem Biodivers 2024:e202402517. [PMID: 39714443 DOI: 10.1002/cbdv.202402517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Dengue, a mosquito-borne disease transmitted by Aedes mosquitoes, is a significant global health concern. Despite extensive research, effective treatments remain limited. The indole nucleus, known for its diverse pharmacological properties, has emerged as a promising scaffold for anti-dengue drug discovery. This review comprehensively examines recent advancements in the fields of natural products, medicinal chemistry, and computer-aided drug design focused on discovering indole-based anti-dengue agents. We discuss the rationale for targeting indole frameworks, highlight key structural features associated with anti-dengue activity, and summarize recent research findings. The review aims to provide valuable insights for researchers working on developing novel anti-dengue therapeutics.
Collapse
Affiliation(s)
| | | | - Ian Castro-Gamboa
- Departament of Biochemistry and Organic Chemistry, São Paulo State University-UNESP, Araraquara, Brazil
| |
Collapse
|
4
|
João EE, Lopes JR, Guedes BFR, da Silva Sanches PR, Chin CM, Dos Santos JL, Scarim CB. Advances in drug discovery of flavivirus NS2B-NS3pro serine protease inhibitors for the treatment of Dengue, Zika, and West Nile viruses. Bioorg Chem 2024; 153:107914. [PMID: 39546935 DOI: 10.1016/j.bioorg.2024.107914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/24/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
Flaviviruses are vector-borne RNA viruses that seriously threaten global public health due to their high transmission index in humans, mainly in endemic areas. They spread infectious diseases that affect approximately 400 million people globally, primarily in developing countries struggling with persistent epidemic diseases. Viral infections manifest as hemorrhagic fever, encephalitis, congenital abnormalities, and fatalities. Despite nearly two decades of drug discovery campaigns, researchers have not identified promising lead compounds for clinical trials to treat or prevent flavivirus infections. Although scientists have made substantial progress through drug discovery approaches and vaccine development, resolving this complex issue might need some time. New therapeutic agents that can safely and effectively target key components of flaviviruses need to be identified. NS2B-NS3pro is an extensively studied pharmacological target among viral proteases. It plays a key role in the viral replication cycle by cleaving the polyprotein of flaviviruses and triggering the formation of structural and non-structural proteins. In this review, studies published from 2014 to 2023 were examined, and the specificity profile of compounds targeting NS2B-NS3 pro proteases for treating flavivirus infections was focused on. Additionally, the latest advancements in clinical trials were discussed. This article might provide information on the prospects of this promising pharmacological target.
Collapse
Affiliation(s)
- Emílio Emílio João
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Juliana Romano Lopes
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | | | | | - Chung Man Chin
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Cauê Benito Scarim
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.
| |
Collapse
|
5
|
Wegman AD, Kalimuddin S, Marques ETA, Adams LE, Rothman AL, Gromowski GD, Wang TT, Weiskopf D, Hibberd ML, Alex Perkins T, Christofferson RC, Gunale B, Kulkarni PS, Rosas A, Macareo L, Yacoub S, Eong Ooi E, Paz-Bailey G, Thomas SJ, Waickman AT. Proceedings of the dengue endgame summit: Imagining a world with dengue control. Vaccine 2024; 42:126071. [PMID: 38890105 DOI: 10.1016/j.vaccine.2024.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
The first dengue "endgame" summit was held in Syracuse, NY over August 9 and 10, 2023. Organized and hosted by the Institute for Global Health and Translational Sciences at SUNY Upstate Medical University, the gathering brought together researchers, clinicians, drug and vaccine developers, government officials, and other key stakeholders in the dengue field for a highly collaborative and discussion-oriented event. The objective of the gathering was to discuss the current state of dengue around the world, what dengue "control" might look like, and what a potential roadmap might look like to achieve functional dengue control. Over the course of 7 sessions, speakers with a diverse array of expertise highlighted both current and historic challenges associated with dengue control, the state of dengue countermeasure development and deployment, as well as fundamental virologic, immunologic, and medical barriers to achieving dengue control. While sustained eradication of dengue was considered challenging, attendees were optimistic that significant reduction in the burden of dengue can be achieved by integration of vector control with effective application of therapeutics and vaccines.
Collapse
Affiliation(s)
- Adam D Wegman
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General Hospital, Singapore; Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Ernesto T A Marques
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Laura E Adams
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico, USA
| | - Alan L Rothman
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Taia T Wang
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA; Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Daniela Weiskopf
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Martin L Hibberd
- London School of Hygiene & Tropical Medicine Department of Infection Biology, Keppel Street, London WC1E 7HT, England; Associate Faculty, National Institutes of Health, University of the Philippines, Philippines
| | - T Alex Perkins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Rebecca C Christofferson
- Department of Pathobiological Sciences, Louisiana School of Veterinary Medicine, Baton Rouge, LA, USA
| | | | | | - Angel Rosas
- Takeda Pharmaceuticals, Inc, Boston, MA, USA
| | | | - Sophie Yacoub
- Oxford University Clinical Research Unit (OUCRU) Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine and Global Health, University of Oxford, UK
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Gabriela Paz-Bailey
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico, USA
| | - Stephen J Thomas
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| | - Adam T Waickman
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
6
|
Liu Y, Wang M, Yu N, Zhao W, Wang P, Zhang H, Sun W, Jin N, Lu H. Trends and insights in dengue virus research globally: a bibliometric analysis (1995-2023). J Transl Med 2024; 22:818. [PMID: 39227968 PMCID: PMC11370300 DOI: 10.1186/s12967-024-05561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Dengue virus (DENV) is the most widespread arbovirus. The World Health Organization (WHO) declared dengue one of the top 10 global health threats in 2019. However, it has been underrepresented in bibliometric analyses. This study employs bibliometric analysis to identify research hotspots and trends, offering a comprehensive overview of the current research dynamics in this field. RESULTS We present a report spanning from 1995 to 2023 that provides a unique longitudinal analysis of Dengue virus (DENV) research, revealing significant trends and shifts not extensively covered in previous literature. A total of 10,767 DENV-related documents were considered, with a notable increase in publications, peaking at 747 articles in 2021. Plos Neglected Tropical Diseases has become the leading journal in Dengue virus research, publishing 791 articles in this field-the highest number recorded. Our bibliometric analysis provides a comprehensive mapping of DENV research across multiple dimensions, including vector ecology, virology, and emerging therapies. The study delineates a complex network of immune response genes, including IFNA1, DDX58, IFNB1, STAT1, IRF3, and NFKB1, highlighting significant trends and emerging themes, particularly the impacts of climate change and new outbreaks on disease transmission. Our findings detail the progress and current status of key vaccine candidates, including the licensed Dengvaxia, newer vaccines such as Qdenga and TV003, and updated clinical trials. The study underscores significant advancements in antiviral therapies and vector control strategies for dengue, highlighting innovative drug candidates such as AT-752 and JNJ-1802, and the potential of drug repurposing with agents like Ribavirin, Remdesivir, and Lopinavir. Additionally, it discusses biological control methods, including the introduction of Wolbachia-infected mosquitoes and gene-editing technologies. CONCLUSION This bibliometric study underscores the critical role of interdisciplinary collaboration in advancing DENV research, identifying key trends and areas needing further exploration, including host-virus dynamics, the development and application of antiviral drugs and vaccines, and the use of artificial intelligence. It advocates for strengthened partnerships across various disciplines to effectively tackle the challenges posed by DENV.
Collapse
Affiliation(s)
- Yumeng Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China.
| | - MengMeng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ning Yu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wenxin Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Peng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wenchao Sun
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China.
| | - Ningyi Jin
- College of Animal Science and Technology, Guangxi University, Nanning, China.
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Huijun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
7
|
Cavina L, Bouma MJ, Gironés D, Feiters MC. Orthoflaviviral Inhibitors in Clinical Trials, Preclinical In Vivo Efficacy Targeting NS2B-NS3 and Cellular Antiviral Activity via Competitive Protease Inhibition. Molecules 2024; 29:4047. [PMID: 39274895 PMCID: PMC11396989 DOI: 10.3390/molecules29174047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024] Open
Abstract
Orthoflaviviruses, including zika (ZIKV), West Nile (WNV), and dengue (DENV) virus, induce severely debilitating infections and contribute significantly to the global disease burden, yet no clinically approved antiviral treatments exist. This review offers a comprehensive analysis of small-molecule drug development targeting orthoflaviviral infections, with a focus on NS2B-NS3 inhibition. We systematically examined clinical trials, preclinical efficacy studies, and modes of action for various viral replication inhibitors, emphasizing allosteric and orthosteric drugs inhibiting NS2B-NS3 protease with in vivo efficacy and in vitro-tested competitive NS2B-NS3 inhibitors with cellular efficacy. Our findings revealed that several compounds with in vivo preclinical efficacy failed to show clinical antiviral efficacy. NS3-NS4B inhibitors, such as JNJ-64281802 and EYU688, show promise, recently entering clinical trials, underscoring the importance of developing novel viral replication inhibitors targeting viral machinery. To date, the only NS2B-NS3 inhibitor that has undergone clinical trials is doxycycline, however, its mechanism of action and clinical efficacy as viral growth inhibitor require additional investigation. SYC-1307, an allosteric inhibitor, exhibits high in vivo efficacy, while temoporfin and methylene blue represent promising orthosteric non-competitive inhibitors. Compound 71, a competitive NS2B-NS3 inhibitor, emerges as a leading preclinical candidate due to its high cellular antiviral efficacy, minimal cytotoxicity, and favorable in vitro pharmacokinetic parameters. Challenges remain in developing competitive NS2B-NS3 inhibitors, including appropriate biochemical inhibition assays as well as the selectivity and conformational flexibility of the protease, complicating effective antiviral treatment design.
Collapse
Affiliation(s)
- Lorenzo Cavina
- Institute for Molecules and Materials, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (M.J.B.); (D.G.)
| | - Mathijs J. Bouma
- Institute for Molecules and Materials, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (M.J.B.); (D.G.)
| | - Daniel Gironés
- Institute for Molecules and Materials, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (M.J.B.); (D.G.)
- Protinhi Therapeutics, Transistorweg 5, 6534 AT Nijmegen, The Netherlands
| | - Martin C. Feiters
- Institute for Molecules and Materials, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (M.J.B.); (D.G.)
| |
Collapse
|
8
|
Kiemel D, Kroell ASH, Denolly S, Haselmann U, Bonfanti JF, Andres JI, Ghosh B, Geluykens P, Kaptein SJF, Wilken L, Scaturro P, Neyts J, Van Loock M, Goethals O, Bartenschlager R. Pan-serotype dengue virus inhibitor JNJ-A07 targets NS4A-2K-NS4B interaction with NS2B/NS3 and blocks replication organelle formation. Nat Commun 2024; 15:6080. [PMID: 39030239 PMCID: PMC11271582 DOI: 10.1038/s41467-024-50437-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/05/2024] [Indexed: 07/21/2024] Open
Abstract
Dengue fever represents a significant medical and socio-economic burden in (sub)tropical regions, yet antivirals for treatment or prophylaxis are lacking. JNJ-A07 was described as highly active against the different genotypes within each serotype of the disease-causing dengue virus (DENV). Based on clustering of resistance mutations it has been assumed to target DENV non-structural protein 4B (NS4B). Using a photoaffinity labeling compound with high structural similarity to JNJ-A07, here we demonstrate binding to NS4B and its precursor NS4A-2K-NS4B. Consistently, we report recruitment of the compound to intracellular sites enriched for these proteins. We further specify the mechanism-of-action of JNJ-A07, which has virtually no effect on viral polyprotein cleavage, but targets the interaction between the NS2B/NS3 protease/helicase complex and the NS4A-2K-NS4B cleavage intermediate. This interaction is functionally linked to de novo formation of vesicle packets (VPs), the sites of DENV RNA replication. JNJ-A07 blocks VPs biogenesis with little effect on established ones. A similar mechanism-of-action was found for another NS4B inhibitor, NITD-688. In summary, we unravel the antiviral mechanism of these NS4B-targeting molecules and show how DENV employs a short-lived cleavage intermediate to carry out an early step of the viral life cycle.
Collapse
Affiliation(s)
- Dominik Kiemel
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Ann-Sophie Helene Kroell
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Solène Denolly
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Uta Haselmann
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Jean-François Bonfanti
- Janssen Infectious Diseases Discovery, Janssen-Cilag, Val de Reuil, France
- Evotec, Toulouse, France
| | - Jose Ignacio Andres
- Discovery Chemistry, Janssen R&D, a Johnson & Johnson company, Toledo, Spain
| | - Brahma Ghosh
- Discovery Chemistry, Janssen R&D, a Johnson & Johnson company, Spring House, PA, USA
| | | | - Suzanne J F Kaptein
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | | | | | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Marnix Van Loock
- Janssen Global Public Health, Janssen Pharmaceutica NV, a Johnson & Johnson company, Beerse, Belgium
| | - Olivia Goethals
- Janssen Global Public Health, Janssen Pharmaceutica NV, a Johnson & Johnson company, Beerse, Belgium
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany.
- German Centre for Infection Research, Heidelberg partner site, Heidelberg, Germany.
| |
Collapse
|