1
|
Štarha P. Anticancer iridium( iii) cyclopentadienyl complexes. Inorg Chem Front 2025. [DOI: 10.1039/d4qi02472a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
A comprehensive review of anticancer iridium(iii) cyclopentadienyl complexes, including a critical discussion of structure–activity relationships and mechanisms of action, is provided.
Collapse
Affiliation(s)
- Pavel Štarha
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
2
|
Salmain M, Gaschard M, Baroud M, Lepeltier E, Jaouen G, Passirani C, Vessières A. Thioredoxin Reductase and Organometallic Complexes: A Pivotal System to Tackle Multidrug Resistant Tumors? Cancers (Basel) 2023; 15:4448. [PMID: 37760418 PMCID: PMC10526406 DOI: 10.3390/cancers15184448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Cancers classified as multidrug-resistant (MDR) are a family of diseases with poor prognosis despite access to increasingly sophisticated treatments. Several mechanisms explain these resistances involving both tumor cells and their microenvironment. It is now recognized that a multi-targeting approach offers a promising strategy to treat these MDR tumors. Inhibition of thioredoxin reductase (TrxR), a key enzyme in maintaining redox balance in cells, is a well-identified target for this approach. Auranofin was the first inorganic gold complex to be described as a powerful inhibitor of TrxR. In this review, we will first recall the main results obtained with this metallodrug. Then, we will focus on organometallic complexes reported as TrxR inhibitors. These include gold(I), gold(III) complexes and metallocifens, i.e., organometallic complexes of Fe and Os derived from tamoxifen. In these families of complexes, similarities and differences in the molecular mechanisms of TrxR inhibition will be highlighted. Finally, the possible relationship between TrxR inhibition and cytotoxicity will be discussed and put into perspective with their mode of action.
Collapse
Affiliation(s)
- Michèle Salmain
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 4 Place Jussieu, F-75005 Paris, France; (M.S.); (M.G.); (G.J.); (A.V.)
| | - Marie Gaschard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 4 Place Jussieu, F-75005 Paris, France; (M.S.); (M.G.); (G.J.); (A.V.)
| | - Milad Baroud
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, F-49000 Angers, France; (M.B.); (E.L.)
| | - Elise Lepeltier
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, F-49000 Angers, France; (M.B.); (E.L.)
| | - Gérard Jaouen
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 4 Place Jussieu, F-75005 Paris, France; (M.S.); (M.G.); (G.J.); (A.V.)
| | - Catherine Passirani
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, F-49000 Angers, France; (M.B.); (E.L.)
| | - Anne Vessières
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 4 Place Jussieu, F-75005 Paris, France; (M.S.); (M.G.); (G.J.); (A.V.)
| |
Collapse
|
3
|
Allison M, Caramés-Méndez P, Hofmann BJ, Pask CM, Phillips RM, Lord RM, McGowan PC. Cytotoxicity of Ruthenium(II) Arene Complexes Containing Functionalized Ferrocenyl β-Diketonate Ligands. Organometallics 2023; 42:1869-1881. [PMID: 37592952 PMCID: PMC10428205 DOI: 10.1021/acs.organomet.2c00553] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 08/19/2023]
Abstract
The synthesis and characterization of 24 ruthenium(II) arene complexes of the type [(p-cym)RuCl(Fc-acac)] (where p-cym = p-cymene and Fc-acac = functionalized ferrocenyl β-diketonate ligands) are reported, including single-crystal X-ray diffraction for 21 new complexes. Chemosensitivity studies have been conducted against human pancreatic carcinoma (MIA PaCa-2), human colorectal adenocarcinoma p53-wildtype (HCT116 p53+/+) and normal human retinal epithelial cell lines (APRE-19). The most active complex, which contains a 2-furan-substituted ligand (4), is 5x more cytotoxic than the analogs 3-furan complex (5) against MIA PaCa-2. Several complexes were screened under hypoxic conditions and at shorter-time incubations, and their ability to damage DNA was determined by the comet assay. Compounds were also screened for their potential to inhibit the growth of both bacterial and fungal strains.
Collapse
Affiliation(s)
- Matthew Allison
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Pablo Caramés-Méndez
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
- Department
of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, U.K.
| | - Benjamin J. Hofmann
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Christopher M. Pask
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Roger M. Phillips
- Department
of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, U.K.
| | - Rianne M. Lord
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
- School
of Chemistry and Biosciences, University
of Bradford, Bradford BD7 1DP, U.K.
| | - Patrick C. McGowan
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| |
Collapse
|
4
|
Arunachalam A, Rengan R, Umapathy D, Arockiam AJV. Impact of Biphenyl Benzhydrazone-Incorporated Arene Ru(II) Complexes on Cytotoxicity and the Cancer Cell Death Mechanism. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Abirami Arunachalam
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, India
| | - Devan Umapathy
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Antony Joseph Velanganni Arockiam
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| |
Collapse
|
5
|
Kovaleva TV, Uraev AI, Lyssenko KA, Vlasenko VG, Burlov AS, Borodkin GS, Garnovskii DA. Synthesis, Structure, and Properties of Copper(II), Nickel(II), and Cobalt(II) Ketoiminate Chelates. Molecular and Crystal Structures of Bis[2-nitro-3-(8-quinolylimino)prop-1-enoxy]cobalt(II). RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Liao LS, Tan LJ, Chen Y, Yang QY, Choudhary MI, Pan YM, Tang HT, Su GF, Liang H, Chen ZF. One-pot synthesis of oxoaporphines as potent antitumor agents and investigation of their mechanisms of actions. Eur J Med Chem 2022; 231:114141. [DOI: 10.1016/j.ejmech.2022.114141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/22/2022]
|
7
|
Valente A, Podolski-Renić A, Poetsch I, Filipović N, López Ó, Turel I, Heffeter P. Metal- and metalloid-based compounds to target and reverse cancer multidrug resistance. Drug Resist Updat 2021; 58:100778. [PMID: 34403910 DOI: 10.1016/j.drup.2021.100778] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Drug resistance remains the major cause of cancer treatment failure especially at the late stage of the disease. However, based on their versatile chemistry, metal and metalloid compounds offer the possibility to design fine-tuned drugs to circumvent and even specifically target drug-resistant cancer cells. Based on the paramount importance of platinum drugs in the clinics, two main areas of drug resistance reversal strategies exist: overcoming resistance to platinum drugs as well as multidrug resistance based on ABC efflux pumps. The current review provides an overview of both aspects of drug design and discusses the open questions in the field. The areas of drug resistance covered in this article involve: 1) Altered expression of proteins involved in metal uptake, efflux or intracellular distribution, 2) Enhanced drug efflux via ABC transporters, 3) Altered metabolism in drug-resistant cancer cells, 4) Altered thiol or redox homeostasis, 5) Altered DNA damage recognition and enhanced DNA damage repair, 6) Impaired induction of apoptosis and 7) Altered interaction with the immune system. This review represents the first collection of metal (including platinum, ruthenium, iridium, gold, and copper) and metalloid drugs (e.g. arsenic and selenium) which demonstrated drug resistance reversal activity. A special focus is on compounds characterized by collateral sensitivity of ABC transporter-overexpressing cancer cells. Through this approach, we wish to draw the attention to open research questions in the field. Future investigations are warranted to obtain more insights into the mechanisms of action of the most potent compounds which target specific modalities of drug resistance.
Collapse
Affiliation(s)
- Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Isabella Poetsch
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nenad Filipović
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Allison M, Caramés-Méndez P, Pask CM, Phillips RM, Lord RM, McGowan PC. Bis(bipyridine)ruthenium(II) Ferrocenyl β-Diketonate Complexes: Exhibiting Nanomolar Potency against Human Cancer Cell Lines. Chemistry 2021; 27:3737-3744. [PMID: 33073884 DOI: 10.1002/chem.202004024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/09/2020] [Indexed: 12/23/2022]
Abstract
The synthesis and characterization of new bis(bipyridine)ruthenium(II) ferrocenyl β-diketonate complexes, [(bpy)2 Ru(Fc-acac)][PF6 ] (bpy=2,2'-bipyridine; Fc-acac=functionalized ferrocenyl β-diketonate ligand) are reported. Alongside clinical platinum drugs, these bimetallic ruthenium-iron complexes have been screened for their cytotoxicity against MIA PaCa-2 (human pancreatic carcinoma), HCT116 p53+/+ (human colon carcinoma, p53-wild type) and ARPE-19 (human retinal pigment epithelial) cell lines. With the exception of one complex, the library exhibit nanomolar potency against cancerous cell lines, and their relative potencies are up to 40x, 400x and 72x more cytotoxic than cisplatin, carboplatin and oxaliplatin, respectively. Under hypoxic conditions, the complexes remain cytotoxic (sub-micromolar range), highlighting their potential in targeting hypoxic tumor regions. The Comet assay was used to determine their ability to damage DNA, and results show dose dependent damage which correlates well with the cytotoxicity results. Their potential to treat bacterial and fungal strains has been determined, and highlight complexes have selective growth inhibition of up to 87-100 % against Staphylococcus aureus and Candida albicans.
Collapse
Affiliation(s)
- Matthew Allison
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Pablo Caramés-Méndez
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- Department of Pharmacy, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Christopher M Pask
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Roger M Phillips
- Department of Pharmacy, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Rianne M Lord
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Patrick C McGowan
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
9
|
Nakao K, Sasabe H, Shibuya Y, Matsunaga A, Katagiri H, Kido J. Novel Series of Mononuclear Aluminum Complexes for High‐Performance Solution‐Processed Organic Light‐Emitting Devices. Angew Chem Int Ed Engl 2021; 60:6036-6041. [DOI: 10.1002/anie.202014941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Kohei Nakao
- Department of Organic Materials Science Graduate School of Organic Materials Science Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Hisahiro Sasabe
- Department of Organic Materials Science Graduate School of Organic Materials Science Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
- Research Center for Organic Electronics (ROEL) Frontier Center for Organic Materials (FROM) Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Yusuke Shibuya
- Department of Organic Materials Science Graduate School of Organic Materials Science Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Amane Matsunaga
- Department of Organic Materials Science Graduate School of Organic Materials Science Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Hiroshi Katagiri
- Department of Organic Materials Science Graduate School of Organic Materials Science Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Junji Kido
- Department of Organic Materials Science Graduate School of Organic Materials Science Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
- Research Center for Organic Electronics (ROEL) Frontier Center for Organic Materials (FROM) Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| |
Collapse
|
10
|
Nakao K, Sasabe H, Shibuya Y, Matsunaga A, Katagiri H, Kido J. Novel Series of Mononuclear Aluminum Complexes for High‐Performance Solution‐Processed Organic Light‐Emitting Devices. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Kohei Nakao
- Department of Organic Materials Science Graduate School of Organic Materials Science Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Hisahiro Sasabe
- Department of Organic Materials Science Graduate School of Organic Materials Science Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
- Research Center for Organic Electronics (ROEL) Frontier Center for Organic Materials (FROM) Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Yusuke Shibuya
- Department of Organic Materials Science Graduate School of Organic Materials Science Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Amane Matsunaga
- Department of Organic Materials Science Graduate School of Organic Materials Science Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Hiroshi Katagiri
- Department of Organic Materials Science Graduate School of Organic Materials Science Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Junji Kido
- Department of Organic Materials Science Graduate School of Organic Materials Science Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
- Research Center for Organic Electronics (ROEL) Frontier Center for Organic Materials (FROM) Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| |
Collapse
|
11
|
Liu X, Shao M, Liang C, Guo J, Wang G, Yuan XA, Jing Z, Tian L, Liu Z. Preparation and Bioactivity of Iridium(III) Phenanthroline Complexes with Halide Ions and Pyridine Leaving Groups. Chembiochem 2020; 22:557-564. [PMID: 32964620 DOI: 10.1002/cbic.202000511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/20/2020] [Indexed: 12/15/2022]
Abstract
A series of half-sandwich structural iridium(III) phenanthroline (Phen) complexes with halide ions (Cl- , Br- , I- ) and pyridine leaving groups ([(η5 -CpX )Ir(Phen)Z](PF6 )n , Cpx : electron-rich cyclopentadienyl group, Z: leaving group) have been prepared. Target complexes, especially the Cpxbiph (biphenyl-substituted cyclopentadienyl)-based one, showed favourable anticancer activity against human lung cancer (A549) cells; the best one (Ir8) was almost five times that of cisplatin under the same conditions. Compared with complexes involving halide ion leaving groups, the pyridine-based one did not display hydrolysis but effectively caused lysosomal damage, leading to accumulation in the cytosol, inducing an increase in the level of intracellular reactive oxygen species and apoptosis; this indicated an anticancer mechanism of oxidation. Additionally, these complexes could bind to serum albumin through a static quenching mechanism. The data highlight the potential value of half-sandwich iridium(III) phenanthroline complexes as anticancer drugs.
Collapse
Affiliation(s)
- Xicheng Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| | - Mingxiao Shao
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| | - Congcong Liang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| | - Jinghang Guo
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| | - Guangxuan Wang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| | - Xiang-Ai Yuan
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| | - Zhihong Jing
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| | - Laijin Tian
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| |
Collapse
|
12
|
|
13
|
Allison M, Wilson D, Pask CM, McGowan PC, Lord RM. β-Diketonate versus β-Ketoiminate: The Importance of a Ferrocenyl Moiety in Improving the Anticancer Potency. Chembiochem 2020; 21:1988-1996. [PMID: 32176811 PMCID: PMC7496474 DOI: 10.1002/cbic.202000028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/23/2020] [Indexed: 12/01/2022]
Abstract
Herein we present a library of fully characterized β-diketonate and β-ketoiminate compounds that are functionalized with a ferrocenyl moiety. Their cytotoxic potential has been determined by screening against human breast adenocarcinomas (MCF-7 and MDA-MB-231), human colorectal carcinoma p53 wild type (HCT116 p53+/+ ) and normal human prostate (PNT2) cell lines. The ferrocenyl β-diketonate compounds are more than 18 times more cytotoxic than the ferrocenyl β-ketoiminate analogues. Against MCF-7, compounds functionalized at the meta position are up to nine times more cytotoxic than when functionalized at the para position. The ferrocenyl β-diketonate compounds have increased selectivity towards MCF-7 and MDA-MB-231, with several complexes having selectivity index (SI) values that are more than nine times (MCF-7) and more than six times (MDA-MB-231) that of carboplatin. The stability of these compounds in dimethyl sulfoxide (DMSO) and dimethylformamide (DMF) has been assessed by NMR spectroscopy and mass spectrometry studies, and the compounds show no oxidation of the iron center from FeII to FeIII . Cytotoxicity screening was performed in both DMSO and DMF, with no significant differences observedin their potency.
Collapse
Affiliation(s)
| | - Daniel Wilson
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
| | | | | | - Rianne M. Lord
- School of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
- School of Chemistry and BiosciencesUniversity of BradfordBradfordBD7 1DPUK
| |
Collapse
|
14
|
Carrasco AC, Rodríguez-Fanjul V, Habtemariam A, Pizarro AM. Structurally Strained Half-Sandwich Iridium(III) Complexes As Highly Potent Anticancer Agents. J Med Chem 2020; 63:4005-4021. [PMID: 32207946 DOI: 10.1021/acs.jmedchem.9b02000] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Six complexes of formula [Ir(η5:κ1-C5Me4CH2py)(C,N)]PF6, where C5Me4CH2py is 2-((2,3,4,5-tetramethylcyclopentadienyl)methyl)pyridine, and C,N is 2-phenylpyridine (1), 7,8-benzoquinoline (2), 1-phenylisoquinoline (3), 2-(p-tolyl)pyridine (4), 4-chloro-2-phenylquinoline (5), or 2-(2,4-difluorophenyl)pyridine (6), have been synthesized. The cyclopentadienyl ligand bears a tethered pyridine that binds to the metal center, resulting in an Ir(η5:κ1-C5Me4CH2pyN) tether-ring structure, as confirmed by the X-ray crystal structures of 1, 2, 4, 5, and 6. Nontether versions of 1 and 2 were synthesized to aid unambiguous correlation between structure and activity. While nontether complexes are highly potent toward MCF7 cancer cells (similar to cisplatin), complexes bearing the tether-ring structure, 1-6, are exceptionally more potent (1-2 orders of magnitude). Additionally, 1-6 disrupt mitochondrial membrane potential (ΔΨm) and induce oxidative stress. Internalization studies strongly correlate intracellular accumulation and anticancer activity in tether and nontether complexes. We present a new class of organo-iridium drug candidates bearing a structural feature that results in a leap in anticancer potency.
Collapse
Affiliation(s)
| | | | - Abraha Habtemariam
- IMDEA Nanociencia, Faraday 9, 28049 Madrid, Spain.,Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Ana M Pizarro
- IMDEA Nanociencia, Faraday 9, 28049 Madrid, Spain.,Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA, 28049 Madrid, Spain
| |
Collapse
|
15
|
Meng T, Qin QP, Chen ZL, Zou HH, Wang K, Liang FP. Cyclometalated Ir(III)-8-oxychinolin complexes acting as red-colored probes for specific mitochondrial imaging and anticancer drugs. Eur J Med Chem 2020; 192:112192. [PMID: 32146374 DOI: 10.1016/j.ejmech.2020.112192] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/13/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022]
Abstract
A new class of luminescent IrIII antitumor agents, namely, [Ir(CP1)(PY1)2] (Ir-1), [Ir(CP1)(PY2)2] (Ir-2), [Ir(CP1)(PY4)2] (Ir-3), [Ir(CP2)(PY1)2] (Ir-4), [Ir(CP2)(PY4)2] (Ir-5), [Ir(CP3)(PY1)2]⋅CH3OH (Ir-6), [Ir(CP4)(PY4)2]⋅CH3OH (Ir-7), [Ir(CP5)(PY2)2] (Ir-8), [Ir(CP5)(PY4)2]⋅CH3OH (Ir-9), [Ir(CP6)(PY1)2] (Ir-10), [Ir(CP6)(PY2)2]⋅CH3OH (Ir-11), [Ir(CP6)(PY3)2] (Ir-12), [Ir(CP6)(PY41)2] (Ir-13), and [Ir(CP7)(PY1)2] (Ir-14), supported by 8-oxychinolin derivatives and 1-phenylpyrazole ligands was prepared. Compared with SK-OV-3/DDP and HL-7702 cells, the Ir-1-Ir-14 compounds exhibited half maximal inhibitory concentration (IC50) values within the high nanomolar range (50 nM-10.99 μM) in HeLa cells. In addition, Ir-1 and Ir-3 accumulated and stained the mitochondrial inner membrane of HeLa cells with high selectivity and exhibited a high antineoplastic activity in the entire cervical HeLa cells, with IC50 values of 1.22 ± 0.36 μM and 0.05 ± 0.04 μM, respectively. This phenomenon induced mitochondrial dysfunction, suggesting that these cyclometalated IrIII complexes can be potentially used in biomedical imaging and Ir(III)-based anticancer drugs. Furthermore, the high cytotoxicity activity of Ir-3 is correlated with the 1-phenylpyrazole (H-PY4) secondary ligands in the luminescent IrIII antitumor complex.
Collapse
Affiliation(s)
- Ting Meng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Qi-Pin Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China.
| | - Zi-Lu Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Hua-Hong Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China.
| | - Kai Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Fu-Pei Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
16
|
Precious metal N-heterocyclic carbene-carbaboranyl complexes: Cytotoxic and selective compounds for the treatment of cancer. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2019.121062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Binuclear half-sandwich ruthenium(II) Schiff base complexes: Synthesis, characterization, DFT study and catalytic activity for the reduction of nitroarenes. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120984] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Madzivire CR, Caramés-Méndez P, Pask CM, Phillips RM, Lord RM, McGowan PC. Anticancer, antifungal and antibacterial potential of bis(β-ketoiminato)ruthenium(II) carbonyl complexes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Purkait K, Ruturaj, Mukherjee A, Gupta A. ATP7B Binds Ruthenium(II) p-Cymene Half-Sandwich Complexes: Role of Steric Hindrance and Ru-I Coordination in Rescuing the Sequestration. Inorg Chem 2019; 58:15659-15670. [PMID: 31657924 DOI: 10.1021/acs.inorgchem.9b02780] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ruthenium(II/III) complexes are predicted to be efficient alternatives to platinum drug-resistant cancers but have never been investigated for sequestration and efflux by Cu-ATPases (ATP7A or ATP7B) overexpressed in resistant cancer cells, although a major cause of platinum drug resistance is found to be sequestration of platinum chemotherapeutic agents by thiol donors glutathione (GSH) or the Cys-X-X-Cys (CXXC) motifs in the Cu-ATPases in cytosol. Here, we show for the first time that ATP7B efficiently sequesters ruthenium(II) η6-p-cymene complexes. We present seven complexes, [RuII(η6-p-cym)(L)X](PF6) (1-7; L = L1-L3, X = Cl, Br, and I), out of which two resists deactivation by the cellular thiol, glutathione (GSH). The results show that Ru-I coordination and a moderate steric factor increase resistance to GSH and the CXXC motif. RuII-I-coordinated 3 and 7 showed resistance to sequestration by ATP7B. 3 displays highest resistance against GSH and does not trigger ATP7B trafficking in the liver cancer cell line. It escapes ATP7B-mediated sequestration and triggers apoptosis. Thus, with a suitable bidentate ligand and iodido leaving group, RuII(η6-p-cym) complexes may display strong kinetic inertness to inhibit the ATP7B detoxification pathway. Inductively coupled plasma mass spectrometry data show higher retention of 3 and 7 inside the cell with time compared to 4, supporting ATP7B-mediated sequestration.
Collapse
|
20
|
Zegke M, Spencer HLM, Lord RM. Fast, Facile and Solvent-Free Dry-Melt Synthesis of Oxovanadium(IV) Complexes: Simple Design with High Potency towards Cancerous Cells. Chemistry 2019; 25:12275-12280. [PMID: 31389071 DOI: 10.1002/chem.201902441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/05/2019] [Indexed: 11/09/2022]
Abstract
A range of oxobis(phenyl-1,3-butanedione) vanadium(IV) complexes have been successfully synthesized from cheap starting materials and a simple and solvent-free one-pot dry-melt reaction. This direct, straightforward, fast and alternative approach to inorganic synthesis has the potential for a wide range of applications. Analytical studies confirm their successful synthesis, purity and solid-state coordination, and we report the use of such complexes as potential drug candidates for the treatment of cancer. After a 24 hour incubation of A549 lung carcinoma cells with the compounds, they reveal cytotoxicity values elevenfold greater than cisplatin and remain non-toxic towards normal cell types. Additionally, the complexes are stable over a range of physiological pH values and show the potential for interactions with bovine serum albumin.
Collapse
Affiliation(s)
- Markus Zegke
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, UK
| | - Hannah L M Spencer
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, UK
| | - Rianne M Lord
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, UK
| |
Collapse
|
21
|
Lord RM, McGowan PC. Organometallic Iridium Arene Compounds: The Effects of C-Donor Ligands on Anticancer Activity. CHEM LETT 2019; 48:916-924. [DOI: 10.1246/cl.190179] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Rianne M. Lord
- School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, U.K
| | | |
Collapse
|
22
|
Wei QM, Wang ZF, Qin QP, Wang SL, Tan MX, Zou BQ, Yao PF, Liang H. Inhibition of telomerase activity and SK-OV-3/DDP cell apoptosis by rhodium(III) and iron(III) complexes with 4′-(3-thiophenecarboxaldehyde)-2,2′:6′,2″-terpyridine. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.02.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Bhatti MZ, Ali A, Duong HQ, Chen J, Rahman FU. Anticancer activity and mechanism of bis-pyrimidine based dimetallic Ru(II)(η 6-p-cymene) complex in human non-small cell lung cancer via p53-dependent pathway. J Inorg Biochem 2019; 194:52-64. [PMID: 30831390 DOI: 10.1016/j.jinorgbio.2019.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/14/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most common cancer worldwide, which is related with poor prognosis and resistance to chemotherapy. Notably, ruthenium-based complexes have emerged as good alternative to the currently used platinum-based drugs for cancer therapy. In the present study, we synthesized a novel bis-pyrimidine based ligand 1,3-bis(2-methyl-6-(pyridin-2-yl)pyrimidin-4-yl)benzene (L) and used it in the synthesis of a dimetallic Ru(II) cymene complex [(Ru(η6-p-cymene)Cl)2(1,3-bis(2-methyl-6-(pyridin-2-yl)pyrimidin-4-yl)benzene)] (L-Ru). We checked the stability of this complex in solution state in D2O/DMSO‑d6 mixture and found it to be highly stable under these conditions. We determined the anticancer activity and mechanism of action of L-Ru in human NSCLC A549 and A427 by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and related biological analyses. These results revealed that L-Ru exerted a strong inhibitory effect on the cells proliferation,G0/G1-arrest, accompanied with upregulation of p53, p21, p15, cleaved Poly (ADP-ribose) polymerase (PARP) protein and downregulation of cell cycle markers. L-Ru inhibited cell migration and invasion. The mitochondria-mediated apoptosis of NSCLC induced by L-Ru was also observed followed by the increase of apoptosis regulator B-cell lymphoma 2 associated X (BAX), and activation of caspase-3/-9. The effects of L-Ru on the cell viability, Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells and Annexin V-positive cells apoptosis induction were remarkably attenuated. This complex induced DNA damage, cell cycle arrest and cell death via caspase-dependent apoptosis involving PARP activation and induction of p53-dependent pathway. These findings suggested that this ruthenium complex might be a potential effective chemotherapeutic agent in NSCLC therapy.
Collapse
Affiliation(s)
- Muhammad Zeeshan Bhatti
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Amjad Ali
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KPK, Pakistan
| | - Hong-Quan Duong
- Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang 550000, Viet Nam
| | - Jiwu Chen
- School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Faiz-Ur Rahman
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai 200444, China; Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| |
Collapse
|
24
|
Sharma A, Arambula JF, Koo S, Kumar R, Singh H, Sessler JL, Kim JS. Hypoxia-targeted drug delivery. Chem Soc Rev 2019; 48:771-813. [PMID: 30575832 PMCID: PMC6361706 DOI: 10.1039/c8cs00304a] [Citation(s) in RCA: 324] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypoxia is a state of low oxygen tension found in numerous solid tumours. It is typically associated with abnormal vasculature, which results in a reduced supply of oxygen and nutrients, as well as impaired delivery of drugs. The hypoxic nature of tumours often leads to the development of localized heterogeneous environments characterized by variable oxygen concentrations, relatively low pH, and increased levels of reactive oxygen species (ROS). The hypoxic heterogeneity promotes tumour invasiveness, metastasis, angiogenesis, and an increase in multidrug-resistant proteins. These factors decrease the therapeutic efficacy of anticancer drugs and can provide a barrier to advancing drug leads beyond the early stages of preclinical development. This review highlights various hypoxia-targeted and activated design strategies for the formulation of drugs or prodrugs and their mechanism of action for tumour diagnosis and treatment.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | | | | | | | | | | | | |
Collapse
|
25
|
Ramesh M, Venkatachalam G. Half‒Sandwich (η6‒p‒Cymene) Ruthenium(II) complexes bearing 5‒Amino‒1‒Methyl‒3‒Phenylpyrazole Schiff base ligands: Synthesis, structure and catalytic transfer hydrogenation of ketones. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2018.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Aradhyula BPR, Mawnai IL, Kollipara MR. Pyrazole Based Mono- and Di-Substituted Half Sandwich d 6
Platinum Group Metal Complexes: Synthesis and Spectral Characterization. Z Anorg Allg Chem 2019. [DOI: 10.1002/zaac.201800292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Ibaniewkor L. Mawnai
- Center for Advanced Studies in Chemistry; North-Eastern Hill University; 793 022 Shillong India
| | - Mohan Rao Kollipara
- Center for Advanced Studies in Chemistry; North-Eastern Hill University; 793 022 Shillong India
| |
Collapse
|
27
|
Lord RM, Zegke M, Henderson IR, Pask CM, Shepherd HJ, McGowan PC. β-Ketoiminato Iridium(III) Organometallic Complexes: Selective Cytotoxicity towards Colorectal Cancer Cells HCT116 p53-/. Chemistry 2018; 25:495-500. [PMID: 30362193 DOI: 10.1002/chem.201804901] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/24/2018] [Indexed: 12/15/2022]
Abstract
This report presents a new library of organometallic iridium(III) compounds of the type [Cp*IrCl(L)] (Cp*=pentamethylcyclopentadienyl and L=a functionalized β-ketoiminato ligand) showing moderate to high cytotoxicity against a range of cancer cell lines. All compounds show increased activity towards colorectal cancer, with preferential activity observed against the immortalized p53-null colorectal cell line, HCT116 p53-/-, with sensitivity factors (SF) up to 26.7. Additionally, the compounds have excellent selectivity for cancerous cells when tested against normal cell types, with selectivity ratios (SR) up to 35.6, contrary to that of cisplatin, which is neither selective nor specific for cancerous cells (SF=0.43 and SR=0.7-2.3). This work provides a preliminary understanding of the cytotoxicity of iridium compounds in the absence of p53 and has potential applications in treatment of cancers for which the p53 gene is absent or mutant.
Collapse
Affiliation(s)
- Rianne M Lord
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, UK
| | - Markus Zegke
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, UK.,Present Addresses: Institut für Anorganische Chemie, Universität zu Köln, 50939, Köln, Germany
| | - Imogen R Henderson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Christopher M Pask
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Helena J Shepherd
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,Present Addresses: School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | - Patrick C McGowan
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
28
|
Wang KH, Gao EJ. Synthesis, crystal structure, DNA binding, molecular docking, cytotoxic activities and apoptosis of two copper (II) complexes constructed by 1,10-phen and semirigid bridge ligands. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Synthesis of six 8-quinolinate-based ruthenium complexes with high catalytic activity for nitroarene reduction. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.06.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Štarha P, Trávníček Z, Crlíková H, Vančo J, Kašpárková J, Dvořák Z. Half-Sandwich Ir(III) Complex of N1-Pyridyl-7-azaindole Exceeds Cytotoxicity of Cisplatin at Various Human Cancer Cells and 3D Multicellular Tumor Spheroids. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00415] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pavel Štarha
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Zdeněk Trávníček
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Hana Crlíková
- Department of Biophysics, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Ján Vančo
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jana Kašpárková
- Department of Biophysics, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
31
|
Pettinari R, Marchetti F, Di Nicola C, Pettinari C. Half-Sandwich Metal Complexes with β-Diketone-Like Ligands and Their Anticancer Activity. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800400] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Riccardo Pettinari
- School of Pharmacy; Chemistry Section; University of Camerino; Via S. Agostino 1 62032 Camerino MC Italy
| | - Fabio Marchetti
- School of Science and Technology; Chemistry Section; University of Camerino; Via S. Agostino 1 62032 Camerino MC Italy
| | - Corrado Di Nicola
- School of Science and Technology; Chemistry Section; University of Camerino; Via S. Agostino 1 62032 Camerino MC Italy
| | - Claudio Pettinari
- School of Pharmacy; Chemistry Section; University of Camerino; Via S. Agostino 1 62032 Camerino MC Italy
| |
Collapse
|
32
|
Liu YQ, Luo XM, Jiang HJ, Zhang ZQ. A Water Soluble Zinc(II) Coordination Polymer Containing Pyridazine-4,5-Dicarboxylic Acid: The Crystal Structure and Binding Properties with DNA. RUSS J COORD CHEM+ 2018. [DOI: 10.1134/s1070328418050032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Hsiao CM, Chen YF, Lin CH, Hu CH, Cai YR, Huang JH. Catalytic amination of benzyl alcohol using ruthenium cymene compounds containing bidentate N,O-donor ancillary ligands. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.02.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Štarha P, Trávníček Z, Drahoš B, Herchel R, Dvořák Z. Cell-based studies of the first-in-class half-sandwich Ir(III) complex containing histone deacetylase inhibitor 4-phenylbutyrate. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pavel Štarha
- Department of Inorganic Chemistry & Regional Centre of Advanced Technologies and Materials, Faculty of Science; Palacký University in Olomouc; 17. listopadu 12 771 46 Olomouc Czech Republic
| | - Zdeněk Trávníček
- Department of Inorganic Chemistry & Regional Centre of Advanced Technologies and Materials, Faculty of Science; Palacký University in Olomouc; 17. listopadu 12 771 46 Olomouc Czech Republic
| | - Bohuslav Drahoš
- Department of Inorganic Chemistry & Regional Centre of Advanced Technologies and Materials, Faculty of Science; Palacký University in Olomouc; 17. listopadu 12 771 46 Olomouc Czech Republic
| | - Radovan Herchel
- Department of Inorganic Chemistry & Regional Centre of Advanced Technologies and Materials, Faculty of Science; Palacký University in Olomouc; 17. listopadu 12 771 46 Olomouc Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics & Regional Centre of Advanced Technologies and Materials, Faculty of Science; Palacký University in Olomouc; Šlechtitelů 27 783 71 Olomouc Czech Republic
| |
Collapse
|
35
|
Mohamed Kasim MS, Sundar S, Rengan R. Synthesis and structure of new binuclear ruthenium(ii) arene benzil bis(benzoylhydrazone) complexes: investigation on antiproliferative activity and apoptosis induction. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00761b] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New binuclear Ru(ii) arene benzil bis(benzoylhydrazone) complexes show excellent cytotoxicity against human cancer cell lines. The results of biochemical assays demonstrated that complexes are able to induce apoptosis.
Collapse
Affiliation(s)
| | - Saranya Sundar
- Centre for Organometallic Chemistry
- School of Chemistry
- Bharathidasan University
- Tiruchirappalli 620 024
- India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry
- School of Chemistry
- Bharathidasan University
- Tiruchirappalli 620 024
- India
| |
Collapse
|
36
|
DuChane CM, Brown LC, Dozier VS, Merola JS. Synthesis, Characterization, and Antimicrobial Activity of RhIII and IrIII β-Diketonato Piano-Stool Compounds. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00742] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christine M. DuChane
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Loren C. Brown
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Virginia S. Dozier
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph S. Merola
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
37
|
Jia WG, Ling S, Zhang HN, Sheng EH, Lee R. Half-Sandwich Ruthenium Phenolate–Oxazoline Complexes: Experimental and Theoretical Studies in Catalytic Transfer Hydrogenation of Nitroarene. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00721] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wei-Guo Jia
- College
of Chemistry and Materials Science, Center for Nano Science and Technology,
The Key Laboratory of Functional Molecular Solids, Ministry of Education,
Anhui Laboratory of Molecular-Based Materials (State Key Laboratory
Cultivation Base), Anhui Normal University, Wuhu, 241000, China
| | - Shuo Ling
- College
of Chemistry and Materials Science, Center for Nano Science and Technology,
The Key Laboratory of Functional Molecular Solids, Ministry of Education,
Anhui Laboratory of Molecular-Based Materials (State Key Laboratory
Cultivation Base), Anhui Normal University, Wuhu, 241000, China
| | - Hai-Ning Zhang
- College
of Chemistry and Materials Science, Center for Nano Science and Technology,
The Key Laboratory of Functional Molecular Solids, Ministry of Education,
Anhui Laboratory of Molecular-Based Materials (State Key Laboratory
Cultivation Base), Anhui Normal University, Wuhu, 241000, China
| | - En-Hong Sheng
- College
of Chemistry and Materials Science, Center for Nano Science and Technology,
The Key Laboratory of Functional Molecular Solids, Ministry of Education,
Anhui Laboratory of Molecular-Based Materials (State Key Laboratory
Cultivation Base), Anhui Normal University, Wuhu, 241000, China
| | - Richmond Lee
- Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
| |
Collapse
|
38
|
Half-sandwich d 6 metal complexes with bis(pyridine carboxamide)benzene ligand: Synthesis and spectral analysis. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.07.098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
39
|
Zeng L, Gupta P, Chen Y, Wang E, Ji L, Chao H, Chen ZS. The development of anticancer ruthenium(ii) complexes: from single molecule compounds to nanomaterials. Chem Soc Rev 2017; 46:5771-5804. [PMID: 28654103 PMCID: PMC5624840 DOI: 10.1039/c7cs00195a] [Citation(s) in RCA: 742] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer is rapidly becoming the top killer in the world. Most of the FDA approved anticancer drugs are organic molecules, while metallodrugs are very scarce. The advent of the first metal based therapeutic agent, cisplatin, launched a new era in the application of transition metal complexes for therapeutic design. Due to their unique and versatile biochemical properties, ruthenium-based compounds have emerged as promising anti-cancer agents that serve as alternatives to cisplatin and its derivertives. Ruthenium(iii) complexes have successfully been used in clinical research and their mechanisms of anticancer action have been reported in large volumes over the past few decades. Ruthenium(ii) complexes have also attracted significant attention as anticancer candidates; however, only a few of them have been reported comprehensively. In this review, we discuss the development of ruthenium(ii) complexes as anticancer candidates and biocatalysts, including arene ruthenium complexes, polypyridyl ruthenium complexes, and ruthenium nanomaterial complexes. This review focuses on the likely mechanisms of action of ruthenium(ii)-based anticancer drugs and the relationship between their chemical structures and biological properties. This review also highlights the catalytic activity and the photoinduced activation of ruthenium(ii) complexes, their targeted delivery, and their activity in nanomaterial systems.
Collapse
Affiliation(s)
- Leli Zeng
- College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Allison SJ, Sadiq M, Baronou E, Cooper PA, Dunnill C, Georgopoulos NT, Latif A, Shepherd S, Shnyder SD, Stratford IJ, Wheelhouse RT, Willans CE, Phillips RM. Preclinical anti-cancer activity and multiple mechanisms of action of a cationic silver complex bearing N-heterocyclic carbene ligands. Cancer Lett 2017; 403:98-107. [PMID: 28624622 DOI: 10.1016/j.canlet.2017.04.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/06/2017] [Accepted: 04/29/2017] [Indexed: 12/16/2022]
Abstract
Organometallic complexes offer the prospect of targeting multiple pathways that are important in cancer biology. Here, the preclinical activity and mechanism(s) of action of a silver-bis(N-heterocyclic carbine) complex (Ag8) were evaluated. Ag8 induced DNA damage via several mechanisms including topoisomerase I/II and thioredoxin reductase inhibition and induction of reactive oxygen species. DNA damage induction was consistent with cytotoxicity observed against proliferating cells and Ag8 induced cell death by apoptosis. Ag8 also inhibited DNA repair enzyme PARP1, showed preferential activity against cisplatin resistant A2780 cells and potentiated the activity of temozolomide. Ag8 was substantially less active against non-proliferating non-cancer cells and selectively inhibited glycolysis in cancer cells. Ag8 also induced significant anti-tumour effects against cells implanted intraperitoneally in hollow fibres but lacked activity against hollow fibres implanted subcutaneously. Thus, Ag8 targets multiple pathways of importance in cancer biology, is less active against non-cancer cells and shows activity in vivo in a loco-regional setting.
Collapse
Affiliation(s)
- Simon J Allison
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Maria Sadiq
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| | | | - Patricia A Cooper
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| | - Chris Dunnill
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Nikolaos T Georgopoulos
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Ayşe Latif
- Division of Pharmacy and Optometry, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Samantha Shepherd
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Steve D Shnyder
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| | - Ian J Stratford
- Division of Pharmacy and Optometry, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | - Roger M Phillips
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| |
Collapse
|
41
|
[Ru(pipe)(dppb)(bipy)]PF 6: A novel ruthenium complex that effectively inhibits ERK activation and cyclin D1 expression in A549 cells. Toxicol In Vitro 2017; 44:382-391. [PMID: 28774850 DOI: 10.1016/j.tiv.2017.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/10/2017] [Accepted: 07/20/2017] [Indexed: 11/22/2022]
Abstract
Lung cancer is the most frequent type of cancer worldwide. In Brazil, only 14% of the patients diagnosed with lung cancer survived 5years in the last decades. Although improvements in the therapeutic approach, it is relevant to identify new chemotherapeutic agents. In this framework, ruthenium metal compounds emerge as a promising alternative to platinum-based compounds once they displayed lower cytotoxicity and more selectivity for tumor cells. The present study aimed to evaluate the antitumor potential of innovative ruthenium(II) complex, [Ru(pipe)(dppb)(bipy)]PF6 (PIPE) on A549 cells, which is derived from non-small cell lung cancer. Results demonstrated that PIPE effectively reduced the viability and proliferation rate of A549 cells. When PIPE was used at 9μM there was increase in G0/G1 cell population with concomitant reduction in frequency of cells in S-phase, indicating cell cycle arrest in G1/S transition. Antiproliferative activity of PIPE was associated to its ability of reducing cyclin D1 expression and ERK phosphorylation levels. Cytotoxic activity of PIPE on A549 cells was observed when PIPE was used at 18μM, which was associated to its ability of inducing apoptosis by intrinsic pathway. Taken together, the data demonstrated that PIPE is a promising antitumor agent and further in vivo studies should be performed.
Collapse
|
42
|
Zhang Z, Wang X, Luo C, Zhu C, Wang K, Zhang C, Guo Z. Dinuclear Platinum(II) Complexes with Bone-Targeting Groups as Potential Anti-Osteosarcoma Agents. Chem Asian J 2017; 12:1659-1667. [DOI: 10.1002/asia.201700577] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/26/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Zhenqin Zhang
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
- School of Pharmacy; Nanjing Medical University; Nanjing 211166 China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing 210023 China
| | - Cheng Luo
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Chengcheng Zhu
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Kun Wang
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Changli Zhang
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| |
Collapse
|
43
|
Basri AM, Lord RM, Allison SJ, Rodríguez-Bárzano A, Lucas SJ, Janeway FD, Shepherd HJ, Pask CM, Phillips RM, McGowan PC. Bis-picolinamide Ruthenium(III) Dihalide Complexes: Dichloride-to-Diiodide Exchange Generates Single trans
Isomers with High Potency and Cancer Cell Selectivity. Chemistry 2017; 23:6341-6356. [DOI: 10.1002/chem.201605960] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/16/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Aida M. Basri
- School of Chemistry; University of Leeds; Woodhouse Lane Leeds LS2 9JT UK
| | - Rianne M. Lord
- School of Chemistry and Forensic Sciences; University of Bradford; Bradford BD7 1DP UK
| | - Simon J. Allison
- School of Applied Sciences; University of Huddersfield; Huddersfield HD1 3DH UK
| | | | - Stephanie J. Lucas
- School of Chemistry; University of Leeds; Woodhouse Lane Leeds LS2 9JT UK
| | - Felix D. Janeway
- School of Chemistry; University of Leeds; Woodhouse Lane Leeds LS2 9JT UK
| | - Helena J. Shepherd
- School of Physical Sciences; University of Kent; Canterbury, Kent CT2 7NH UK
| | | | - Roger M. Phillips
- School of Applied Sciences; University of Huddersfield; Huddersfield HD1 3DH UK
| | - Patrick C. McGowan
- School of Chemistry; University of Leeds; Woodhouse Lane Leeds LS2 9JT UK
| |
Collapse
|
44
|
Deng Z, Gao P, Yu L, Ma B, You Y, Chan L, Mei C, Chen T. Ruthenium complexes with phenylterpyridine derivatives target cell membrane and trigger death receptors-mediated apoptosis in cancer cells. Biomaterials 2017; 129:111-126. [PMID: 28340357 DOI: 10.1016/j.biomaterials.2017.03.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 01/04/2023]
Abstract
Elucidation of the communication between metal complexes and cell membrane may provide useful information for rational design of metal-based anticancer drugs. Herein we synthesized a novel class of ruthenium (Ru) complexes containing phtpy derivatives (phtpy = phenylterpyridine), analyzed their structure-activity relationship and revealed their action mechanisms. The result showed that, the increase in the planarity of hydrophobic Ru complexes significantly enhanced their lipophilicity and cellular uptake. Meanwhile, the introduction of nitro group effectively improved their anticancer efficacy. Further mechanism studies revealed that, complex (2c), firstly accumulated on cell membrane and interacted with death receptors to activate extrinsic apoptosis signaling pathway. The complex was then transported into cell cytoplasm through transferrin receptor-mediated endocytosis. Most of the intracellular 2c accumulated in cell plasma, decreasing the level of cellular ROS, inducing the activation of caspase-9 and thus intensifying the apoptosis. At the same time, the residual 2c can translocate into cell nucleus to interact with DNA, induce DNA damage, activate p53 pathway and enhance apoptosis. Comparing with cisplatin, 2c possesses prolonged circulation time in blood, comparable antitumor ability and importantly, much lower toxicity in vivo. Taken together, this study uncovers the role of membrane receptors in the anticancer actions of Ru complexes, and provides fundamental information for rational design of membrane receptor targeting anticancer drugs.
Collapse
Affiliation(s)
- Zhiqin Deng
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Pan Gao
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Lianling Yu
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Bin Ma
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yuanyuan You
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Leung Chan
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Chaoming Mei
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
45
|
Aradhyula BPR, Kalidasan M, Gangele K, Deb DK, Shepherd SL, Phillips RM, Poluri KM, Kollipara MR. Synthesis, Structural and Biological Studies of Some Half-Sandwich d6-Metal Complexes with Pyrimidine-Based Ligands. ChemistrySelect 2017. [DOI: 10.1002/slct.201601926] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Mahesh Kalidasan
- Centre for Advanced Studies in Chemistry; North-Eastern Hill University; Shillong- 793 022 India
| | - Krishnakant Gangele
- Department of Biotechnology and Center for Nanotechnology; Indian Institute of Technology Roorkee; Roorkee- 247667, Uttarakhand India
| | - Debojit K. Deb
- Centre for Advanced Studies in Chemistry; North-Eastern Hill University; Shillong- 793 022 India
| | - Samanta L. Shepherd
- Department of Pharmacy; School of Applied Sciences; University of Huddersfield; Huddersfield - HD1 3DH UK
| | - Roger M. Phillips
- Department of Pharmacy; School of Applied Sciences; University of Huddersfield; Huddersfield - HD1 3DH UK
| | - Krishna Mohan Poluri
- Department of Biotechnology and Center for Nanotechnology; Indian Institute of Technology Roorkee; Roorkee- 247667, Uttarakhand India
| | - Mohan Rao Kollipara
- Centre for Advanced Studies in Chemistry; North-Eastern Hill University; Shillong- 793 022 India
| |
Collapse
|
46
|
Kljun J, Turel I. β-Diketones as Scaffolds for Anticancer Drug Design - From Organic Building Blocks to Natural Products and Metallodrug Components. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601314] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jakob Kljun
- Faculty of Chemistry and Chemical Technology; University of Ljubljana; Večna pot 113 1000 Ljubljana Slovenia
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology; University of Ljubljana; Večna pot 113 1000 Ljubljana Slovenia
| |
Collapse
|
47
|
Tabrizi L, Chiniforoshan H. Designing new iridium(iii) arene complexes of naphthoquinone derivatives as anticancer agents: a structure-activity relationship study. Dalton Trans 2017; 46:2339-2349. [PMID: 28138683 DOI: 10.1039/c6dt04339a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
A series of iridium(iii) arene complexes of naphthoquinone derivatives of the formula [IrIII(η6-L1)(L2)(3,5-(NO2)2pcyd)](PF6) (L1 = p-methylphenyl)ethynylferrocene; L2 = Lap: lapachol, 1, Plum: plumbagin, 2, Law: lawsone, 3, and Jug: juglone, 4; 3,5-(NO2)2pcyd = 3,5-dinitrophenylcyanamide) have been synthesized and investigated for their suitability as potential anticancer drugs. The DNA-binding interactions of the complexes with calf thymus DNA have been studied by absorption, emission, and viscosity measurements. Their cytotoxicity against the cancer cell lines including colon adenocarcinoma (HT-29), liver hepatocellular carcinoma (HepG-2), breast (MCF-7), colon carcinoma (HCT-8), and ovary (A2780) is reported. Remarkably, almost all complexes exhibit significant cytotoxic effects towards HepG-2, MCF-7, and HCT-8 cancer cell lines and complex 1 emerged as the most cytotoxic derivative in comparison with other complexes. The complexes 1-4 increase the production of reactive oxygen species (ROS) in MCF-7 cells. The new compounds also inhibit the enzyme thioredoxin reductase activity at nanomolar concentrations. Furthermore, the complexes induce major levels of cancer cell death by apoptosis that is in correlation with activity in cytotoxicity studies.
Collapse
Affiliation(s)
- Leila Tabrizi
- School of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland. and Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Hossein Chiniforoshan
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
48
|
Jia WG, Wang ZB, Zhi XT, Han JQ, Sun Y. Syntheses, characterization and catalytic activities of half-sandwich ruthenium complexes with naphthalene-based Schiff base ligands. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1284322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wei-Guo Jia
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu, China
| | - Zhi-Bao Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu, China
| | - Xue-Ting Zhi
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu, China
| | - Jia-Qin Han
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu, China
| | - Ying Sun
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu, China
| |
Collapse
|
49
|
Lucas SJ, Lord RM, Basri AM, Allison SJ, Phillips RM, Blacker AJ, McGowan PC. Increasing anti-cancer activity with longer tether lengths of group 9 Cp* complexes. Dalton Trans 2016; 45:6812-5. [PMID: 26924272 DOI: 10.1039/c6dt00186f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here in, we report the cytotoxicity of both rhodium and iridium functionalised Cp* analogues of the [Cp*MCl2]2 dimers. The functionalised dimers contain a hydroxy tethered arm of differing carbon length. These show promising IC50 values when tested against HT-29, A2780 and cisplatin-resistant A2780cis human cancer cell lines, with the cytotoxicity improving proportionally with an increase in carbon tether length of the Cp* ring. The most promising results are seen for the 14-carbon Cp* tethered rhodium () and iridium () complexes, which show up to a 24-fold increase in IC50 compared to the unfunctionalised [Cp*MCl2]2 dimer. All complexes were potent inhibitors of purified thioredoxin reductase suggesting that disruption of cellular anti-oxidant function is one potential mechanism of action.
Collapse
Affiliation(s)
- Stephanie J Lucas
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Rianne M Lord
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Aida M Basri
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Simon J Allison
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Roger M Phillips
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - A John Blacker
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Patrick C McGowan
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
50
|
Kim KW, Lee SJ, Kim WY, Seo JH, Lee HY. How Can We Treat Cancer Disease Not Cancer Cells? Cancer Res Treat 2016; 49:1-9. [PMID: 28052653 PMCID: PMC5266380 DOI: 10.4143/crt.2016.606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/23/2016] [Indexed: 12/25/2022] Open
Abstract
Since molecular biology studies began, researches in biological science have centered on proteins and genes at molecular level of a single cell. Cancer research has also focused on various functions of proteins and genes that distinguish cancer cells from normal cells. Accordingly, most contemporary anticancer drugs have been developed to target abnormal characteristics of cancer cells. Despite the great advances in the development of anticancer drugs, vast majority of patients with advanced cancer have shown grim prognosis and high rate of relapse. To resolve this problem, we must reevaluate our focuses in current cancer research. Cancer should be considered as a systemic disease because cancer cells undergo a complex interaction with various surrounding cells in cancer tissue and spread to whole body through metastasis under the control of the systemic modulation. Human body relies on the cooperative interaction between various tissues and organs, and each organ performs its specialized function through tissue-specific cell networks. Therefore, investigation of the tumor-specific cell networks can provide novel strategy to overcome the limitation of current cancer research. This review presents the limitations of the current cancer research, emphasizing the necessity of studying tissue-specific cell network which could be a new perspective on treating cancer disease, not cancer cells.
Collapse
Affiliation(s)
- Kyu-Won Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Su-Jae Lee
- Laboratory of Molecular Biochemisty, Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Woo-Young Kim
- The Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| | - Ji Hae Seo
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Ho-Young Lee
- Laboratory of Carcinogenesis and Drug Resistance, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|