1
|
Mäkinen JJ, Rosenqvist P, Virta P, Metsä-Ketelä M, Belogurov GA. Probing the nucleobase selectivity of RNA polymerases with dual-coding substrates. J Biol Chem 2024; 300:107755. [PMID: 39260691 PMCID: PMC11474200 DOI: 10.1016/j.jbc.2024.107755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Formycin A (FOR) and pyrazofurin A (PYR) are nucleoside analogs with antiviral and antitumor properties. They are known to interfere with nucleic acid metabolism, but their direct effect on transcription is less understood. We explored how RNA polymerases (RNAPs) from bacteria, mitochondria, and viruses utilize FOR, PYR, and oxidized purine nucleotides. All tested polymerases incorporated FOR in place of adenine and PYR in place of uridine. FOR also exhibited surprising dual-coding behavior, functioning as a cytosine substitute, particularly for viral RNAP. In contrast, 8-oxoadenine and 8-oxoguanine were incorporated in place of uridine in addition to their canonical Watson-Crick codings. Our data suggest that the interconversion of canonical anti and alternative syn conformers underlies dual-coding abilities of FOR and oxidized purines. Structurally distinct RNAPs displayed varying abilities to utilize syn conformers during transcription. By examining base pairings that led to substrate incorporation and the entire spectrum of geometrically compatible pairings, we have gained new insights into the nucleobase selection processes employed by structurally diverse RNAPs. These insights may pave the way for advancements in antiviral therapies.
Collapse
Affiliation(s)
- Janne J Mäkinen
- Department of Life Technologies, University of Turku, Turku, Finland
| | | | - Pasi Virta
- Department of Chemistry, University of Turku, Turku, Finland
| | | | | |
Collapse
|
2
|
Castanedo LAM, Matta CF. Prebiotic N-(2-Aminoethyl)-Glycine (AEG)-Assisted Synthesis of Proto-RNA? J Mol Evol 2024:10.1007/s00239-024-10185-w. [PMID: 39052031 DOI: 10.1007/s00239-024-10185-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/23/2024] [Indexed: 07/27/2024]
Abstract
Quantum mechanical calculations are used to explore the thermodynamics of possible prebiotic synthesis of the building blocks of nucleic acids. Different combinations of D-ribofuranose (Ribf) and N-(2-aminoethyl)-glycine (AEG) (trifunctional connectors (TCs)); the nature of the Ribf, its anomeric form, and its ring puckering (conformation); and the nature of the nucleobases (recognition units (RUs)) are considered. The combinatorial explosion of possible nucleosides has been drastically reduced on physicochemical grounds followed by a detailed thermodynamic evaluation of alternative synthetic pathways. The synthesis of nucleosides containing N-(2-aminoethyl)-glycine (AEG) is predicted to be thermodynamically favored suggesting a possible role of AEG as a component of an ancestral proto-RNA that may have preceded today's nucleic acids. A new pathway for the building of free nucleotides (exemplified by 5'-uridine monophosphate (UMP)) and of AEG dipeptides is proposed. This new pathway leads to a spontaneous formation of free UMP assisted by an AEG nucleoside in an aqueous environment. This appears to be a workaround to the "water problem" that prohibits the synthesis of nucleotides in water.
Collapse
Affiliation(s)
- Lázaro A M Castanedo
- Department of Chemistry, Saint Mary's University, Halifax, NS, B3H 3C3, Canada
- Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, NS, B3M 2J6, Canada
| | - Chérif F Matta
- Department of Chemistry, Saint Mary's University, Halifax, NS, B3H 3C3, Canada.
- Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, NS, B3M 2J6, Canada.
- Département de Chimie, Université Laval, Québec, QC, G1V 0A6, Canada.
- Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4J3, Canada.
| |
Collapse
|
3
|
Zhang C, He D, Ma Z, Wang M, Zhu Y, Liu Y, Chen J, Guo L, Lv G, Wu Y. Synthesis of Nonclassical Heteroaryl C-Glycosides via Decarboxylative C-H Glycosylation. J Org Chem 2024; 89:10112-10126. [PMID: 38959135 DOI: 10.1021/acs.joc.4c00868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
A photoredox-promoted decarboxylative C-H glycosylation for the synthesis of nonclassical heteroaryl C-glycosides is reported. This methodology is characterized by an exceedingly simple reaction system, high diastereoselectivity, and good functional group tolerance. Moreover, the operational procedure is simple, and the gram-scale reaction highlights the practical applicability of this protocol.
Collapse
Affiliation(s)
- Cuimei Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, Third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Dongqin He
- Department of Pediatrics, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Zhaohui Ma
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Mi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, Third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Yafei Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, Third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Yan Liu
- Department of Pediatrics, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Jian Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, Third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Li Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, Third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Guanghui Lv
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, Third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, Third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| |
Collapse
|
4
|
Xie R, Xu J, Shi H, Xiao C, Wang N, Huang N, Yao H. Stereocontrolled Synthesis of Aryl C-Nucleosides under Ambient Conditions. Org Lett 2024; 26:5162-5166. [PMID: 38832704 DOI: 10.1021/acs.orglett.4c01664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
A stereocontrolled synthesis of an aryl C-nucleoside has been developed using D-ribals and arylboronic acids catalyzed by palladium without additional ligands in common solvents under an open-air atmosphere at room temperature. This protocol features very mild conditions, simplicity in operation, exclusive β-stereoselectivity, broad substrate scopes, and good compatibility with reactive amino and hydroxyl groups. The functionalization of unsaturated C-nucleosides and the late-stage glycosylation of natural products/drugs demonstrated the high practicality of this strategy.
Collapse
Affiliation(s)
- Rui Xie
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Jing Xu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Haolin Shi
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Chenyu Xiao
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Nengzhong Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| |
Collapse
|
5
|
Stachelska-Wierzchowska A, Wierzchowski J. Chemo-Enzymatic Generation of Highly Fluorescent Nucleoside Analogs Using Purine-Nucleoside Phosphorylase. Biomolecules 2024; 14:701. [PMID: 38927104 PMCID: PMC11201700 DOI: 10.3390/biom14060701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Chemo-enzymatic syntheses of strongly fluorescent nucleoside analogs, potentially applicable in analytical biochemistry and cell biology are reviewed. The syntheses and properties of fluorescent ribofuranosides of several purine, 8-azapurine, and etheno-purine derivatives, obtained using various types of purine nucleoside phosphorylase (PNP) as catalysts, as well as α-ribose-1-phosphate (r1P) as a second substrate, are described. In several instances, the ribosylation sites are different to the canonical purine N9. Some of the obtained ribosides show fluorescence yields close to 100%. Possible applications of the new analogs include assays of PNP, nucleoside hydrolases, and other enzyme activities both in vitro and within living cells using fluorescence microscopy.
Collapse
Affiliation(s)
| | - Jacek Wierzchowski
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| |
Collapse
|
6
|
Ren D, Lee YH, Liu HW. Expression, purification and characterization of non-heme iron-dependent mono-oxygenase OzmD in oxazinomycin biosynthesis. Methods Enzymol 2024; 704:113-142. [PMID: 39300645 DOI: 10.1016/bs.mie.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Oxazinomycin is a C-nucleoside natural product characterized by a 1,3-oxazine ring linked to ribose via a C-C glycosidic bond. Construction of the 1,3-oxazine ring depends on the activity of OzmD, which is a mononuclear non-heme iron-dependent enzyme from a family of enzymes that contain a domain of unknown function (DUF) 4243. OzmD catalyzes an unusual oxidative ring rearrangement of a pyridine derivative that releases cyanide as a by-product in the final stage of oxazinomycin biosynthesis. The intrinsic sensitivity of the OzmD substrate to oxygen along with the oxygen dependency of catalysis presents significant challenges in conducting in vitro enzymatic assays. This chapter describes the detailed procedures that have been used to characterize OzmD, including protein preparation, activity assays, and reaction by-product identification.
Collapse
Affiliation(s)
- Daan Ren
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, United States
| | - Yu-Hsuan Lee
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, United States
| | - Hung-Wen Liu
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, United States; Department of Chemistry, University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
7
|
Liu D, Zhang Y, Niu D. Preparing glycosyl benzothiazoles from 2-isocyanoaryl thioethers and glycosyl radicals under thermal conditions. Chem Commun (Camb) 2024; 60:5498-5501. [PMID: 38696183 DOI: 10.1039/d4cc00648h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Herein, we report a method for preparing glycosyl benzothiazoles via radical cascade cyclization, in which glycosyl radicals are generated from readily available and bench-stable allyl glycosyl sulfones. This cascade reaction proceeds under simple conditions and tolerates a broad substrate scope in high yield with excellent stereoselectivity. Mechanistic studies support that the reactions proceed via the intermediacy of imidoyl radicals, which attack the appended sulfide unit by a SH2 process to forge the thiazole ring.
Collapse
Affiliation(s)
- Daqi Liu
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu 610041, China.
| | - Yang Zhang
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu 610041, China.
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Wong XK, Ng CS, Yeong KY. Shaping the future of antiviral Treatment: Spotlight on Nucleobase-Containing drugs and their revolutionary impact. Bioorg Chem 2024; 144:107150. [PMID: 38309002 DOI: 10.1016/j.bioorg.2024.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Nucleobases serve as essential molecular frameworks present in both natural and synthetic compounds that exhibit notable antiviral activity. Through molecular modifications, novel nucleobase-containing drugs (NCDs) have been developed, exhibiting enhanced antiviral activity against a wide range of viruses, including the recently emerged SARS‑CoV‑2. This article provides a detailed examination of the significant advancements in NCDs from 2015 till current, encompassing various aspects concerning their mechanisms of action, pharmacology and antiviral properties. Additionally, the article discusses antiviral prodrugs relevant to the scope of this review. It fills in the knowledge gap by examining the structure-activity relationship and trend of NCDs as therapeutics against a diverse range of viral diseases, either as approved drugs, clinical candidates or as early-stage development prospects. Moreover, the article highlights on the status of this field of study and addresses the prevailing limitations encountered.
Collapse
Affiliation(s)
- Xi Khai Wong
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Chen Seng Ng
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
9
|
Nascimento SMRD, Ferry A, Gallier F, Lubin-Germain N, Uziel J, Gonzales S, Miranda LSDME. Developments in the chemistry and biology of 1,2,3-triazolyl-C-nucleosides. Arch Pharm (Weinheim) 2024; 357:e2300580. [PMID: 38150650 DOI: 10.1002/ardp.202300580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023]
Abstract
In the last 50 years, nucleoside analogs have been introduced to drug therapy as antivirals for different types of cancer due to their interference in cellular proliferation. Among the first line of nucleoside treatment drugs, ribavirin (RBV) is a synthetic N-nucleoside with a 1,2,4-triazole moiety that acts as a broad-spectrum antiviral. It is on the World Health Organization (WHO) list of essential medicines. However, this important drug therapy causes several side effects due to its nonspecific mechanism of action. There is thus a need for a continuous study of its scaffold. A particular approach consists of connecting d-ribose to the nitrogen-containing base with a C-C bond. It provides more stability against enzymatic action and a better pharmacologic profile. The coronavirus disease (COVID) pandemic has increased the need for more solutions for the treatment of viral infections. Among these solutions, remdesivir, the first C-nucleoside, has been approved by the Food and Drug Administration (FDA) for clinical use against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It drew attention to the study of the C-nucleoside scaffold. Different C-nucleoside patterns have been synthesized over the years. They show many important activities against viruses and cancer cell lines. 1,2,3-Triazolyl-C-nucleoside derivatives are a prolific and efficient subclass of RBV analogs close to the already-known RBV with a C-C bond modification. These compounds are often prepared by alkynylation of the d-ribose ring followed by azide-alkyne cycloaddition. They are reported to be active against the Crimean-Congo hemorrhagic fever virus and several tumoral cell lines, showing promising biological potential. In this review, we explore such approaches to 1,2,3-triazolyl-C-nucleosides and their evolution over the years.
Collapse
Affiliation(s)
| | - Angélique Ferry
- CY Cergy Paris Université, CNRS, BioCIS, Cergy-Pontoise, France
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | - Florian Gallier
- CY Cergy Paris Université, CNRS, BioCIS, Cergy-Pontoise, France
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | - Nadège Lubin-Germain
- CY Cergy Paris Université, CNRS, BioCIS, Cergy-Pontoise, France
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | - Jacques Uziel
- CY Cergy Paris Université, CNRS, BioCIS, Cergy-Pontoise, France
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | - Simon Gonzales
- CY Cergy Paris Université, CNRS, BioCIS, Cergy-Pontoise, France
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | | |
Collapse
|
10
|
Hu LY, Zhang SY, Zhu L, Li Y, Luo K, Wu L. "Boomerang" Strategy in Carbohydrate Chemistry: Diastereoselective Synthesis of C-Glycosylated Benzothiazoles from ortho-Isocyanophenyl Thioglycosides. Org Lett 2024; 26:215-220. [PMID: 38117978 DOI: 10.1021/acs.orglett.3c03817] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
This paper reveals a novel "boomerang" strategy in the expedient and diastereoselective synthesis of C-nucleoside analogues. Bench-stable ortho-isocyanophenyl thioglycosides can be converted to glycosyl radicals through rapid and efficient C-S bond homolysis when they are irradiated by visible light. The glycosyl radicals are subsequently trapped by the corresponding leaving group or other radical acceptors to provide diverse C-nucleoside analogues under mild conditions.
Collapse
Affiliation(s)
- Li-Yan Hu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Shen-Yuan Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Li Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
11
|
Abd Al Moaty MN, El Kilany Y, Awad LF, Ibrahim NA, Abu-Serie MM, El-Yazbi A, Teleb M. Discovery of novel benzimidazole acyclic C-nucleoside DNA intercalators halting breast cancer growth. Arch Pharm (Weinheim) 2024; 357:e2300454. [PMID: 37867206 DOI: 10.1002/ardp.202300454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
Breast cancer continues to be the most frequent cancer worldwide. In practice, successful clinical outcomes were achieved via targeting DNA. Along with the advances in introducing new DNA-targeting agents, the "sugar approach" design was employed herein to develop new intercalators bearing pharmacophoric motifs tethered to carbohydrate appendages. Accordingly, new benzimidazole acyclic C-nucleosides were rationally designed, synthesized and assayed via MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay to evaluate their cytotoxicity against MCF-7 and MDA-MB-231 breast cancer cells compared to normal fibroblasts (Wi-38), compared to doxorubicin. (1S,2R,3S,4R)-2-(1,2,3,4,5-Pentahydroxy)pentyl-1H-5,6-dichlorobenzimidazole 7 and (1S,2R,3S,4R)-2-(1,2,3,4,5-pentahydroxy)pentyl-1H-naphthimidazole 13 were the most potent and selective derivatives against MCF-7 (half-maximal inhibitory concentration [IC50 ] = 0.060 and 0.080 µM, selectivity index [SI] = 9.68 and 8.27, respectively) and MDA-MB-231 cells (IC50 = 0.299 and 0.166 µM, SI = 1.94 and 3.98, respectively). Thus, they were identified as the study hits for mechanistic studies. Both derivatives induced DNA damage at 0.24 and 0.29 μM, respectively. The DNA damage kinetics were studied compared to doxorubicin, where they both induced faster damage than doxorubicin. This indicated that 7 and 13 showed a more potent DNA-damaging effect than doxorubicin. Docking simulations within the DNA double strands highlighted the role of both the heterocyclic core and the sugar side chain in exhibiting key H-bond interactions with DNA bases.
Collapse
Affiliation(s)
| | - Yeldez El Kilany
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Laila Fathy Awad
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nihal Ahmed Ibrahim
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Amira El-Yazbi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Xiao X, Han P, Wan JP, Liu J. Stereoselective Synthesis of Indolyl- C-glycosides Enabled by Sequential Aminopalladation and Heck Glycosylation of 2-Alkynylanilines with Glycals. Org Lett 2023; 25:7170-7175. [PMID: 37756216 DOI: 10.1021/acs.orglett.3c02688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
An efficient and general approach for the synthesis of indolyl-C-glycosides via aminopalladation and subsequent Heck-type glycosylation of easily available 2-alkynylanilines and glycals has been developed. This protocol features excellent stereoselectivity, a broad substrate scope, and mild reaction conditions. In addition, 2,3-pseudoglycals also successfully participated in this cascade reaction, affording C2/C3-branched indolyl glycosides with high regio-/stereoselectivity. The utility of this protocol was also demonstrated by a large-scale reaction and diversified synthetic transformations of the desired products.
Collapse
Affiliation(s)
- Xiao Xiao
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Puren Han
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Jianchao Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| |
Collapse
|
13
|
Dörrenhaus R, Wagner PK, Kath-Schorr S. Two are not enough: synthetic strategies and applications of unnatural base pairs. Biol Chem 2023; 404:883-896. [PMID: 37354104 DOI: 10.1515/hsz-2023-0169] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 06/26/2023]
Abstract
Nucleic acid chemistry is a rapidly evolving field, and the need for novel nucleotide modifications and artificial nucleotide building blocks for diagnostic and therapeutic use, material science or for studying cellular processes continues unabated. This review focusses on the development and application of unnatural base pairs as part of an expanded genetic alphabet. Not only recent developments in "nature-like" artificial base pairs are presented, but also current synthetic methods to get access to C-glycosidic nucleotides. Wide-ranging viability in synthesis is a prerequisite for the successful use of unnatural base pairs in a broader spectrum and will be discussed.
Collapse
|
14
|
Jiang Y, Zhang Y, Lee BC, Koh MJ. Diversification of Glycosyl Compounds via Glycosyl Radicals. Angew Chem Int Ed Engl 2023; 62:e202305138. [PMID: 37278303 DOI: 10.1002/anie.202305138] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/07/2023]
Abstract
Glycosyl radical functionalization is one of the central topics in synthetic carbohydrate chemistry. Recent advances in metal-catalyzed cross-coupling chemistry and metallaphotoredox catalysis provided powerful platforms for glycosyl radical diversification. In particular, the discovery of new glycosyl radical precursors in conjunction with these advanced reaction technologies have significantly expanded the space for glycosyl compound synthesis. In this Review, we highlight the most recent progress in this area starting from 2021, and the reports included will be categorized based on different reaction types for better clarity.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Yijun Zhang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Boon Chong Lee
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| |
Collapse
|
15
|
Kamzeeva PN, Aralov AV, Alferova VA, Korshun VA. Recent Advances in Molecular Mechanisms of Nucleoside Antivirals. Curr Issues Mol Biol 2023; 45:6851-6879. [PMID: 37623252 PMCID: PMC10453654 DOI: 10.3390/cimb45080433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
The search for new drugs has been greatly accelerated by the emergence of new viruses and drug-resistant strains of known pathogens. Nucleoside analogues (NAs) are a prospective class of antivirals due to known safety profiles, which are important for rapid repurposing in the fight against emerging pathogens. Recent improvements in research methods have revealed new unexpected details in the mechanisms of action of NAs that can pave the way for new approaches for the further development of effective drugs. This review accounts advanced techniques in viral polymerase targeting, new viral and host enzyme targeting approaches, and prodrug-based strategies for the development of antiviral NAs.
Collapse
Affiliation(s)
| | | | | | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (P.N.K.); (A.V.A.); (V.A.A.)
| |
Collapse
|
16
|
Parida SP, Das T, Ahemad MA, Pati T, Mohapatra S, Nayak S. Recent advances on synthesis of C-glycosides. Carbohydr Res 2023; 530:108856. [PMID: 37315353 DOI: 10.1016/j.carres.2023.108856] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/16/2023]
Abstract
In recent years, C-glycosides have emerged as significant building blocks for many naturally occurring alkaloids and pharmaceutically active drug molecules. Therefore, significant efforts have been devoted to the construction of structurally important C-glycosidic linkages in carbohydrate compounds. Herein, we have summarized the recent developments of diverse synthesis of C-glycoside core between the time period from 2019 to 2022 focusing on different catalytic strategies, such as (i) transition-metal, and (ii) metal-free catalytic approaches. Further, the transition metal catalyzed C-glycosylations have been categorized into four sub classes: (a) metal based C-H activation, (b) cross-coupling reaction, (c) glycosyl radical intermediate-based process, and (d) Others.
Collapse
Affiliation(s)
| | - Tapaswini Das
- Department of Chemistry, Ravenshaw University, Cuttack, 753003, India
| | | | - Tapaswini Pati
- Department of Chemistry, Ravenshaw University, Cuttack, 753003, India
| | | | - Sabita Nayak
- Department of Chemistry, Ravenshaw University, Cuttack, 753003, India.
| |
Collapse
|
17
|
Ghouilem J, Bazzi S, Grimblat N, Retailleau P, Gandon V, Messaoudi S. Transient imine as a directing group for the Pd-catalyzed anomeric C(sp 3)-H arylation of 3-aminosugars. Chem Commun (Camb) 2023; 59:2497-2500. [PMID: 36752765 DOI: 10.1039/d3cc00046j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The first example of Pd(II)-catalyzed anomeric arylation of 3-aminosugars is reported by using an L,X-type transient directing group (TDG) approach combined with an external 2-pyridone ligand. The released free amine was in situ transformed into an azide function, which was then exploited in a CuAAC to increase the molecular complexity and prepare a variety of complex substituted C3-triazolo C-glycosides in good yields.
Collapse
Affiliation(s)
- Juba Ghouilem
- Universite Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| | - Sokna Bazzi
- Universite Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| | - Nicolas Grimblat
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, Palaiseau 91120, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Universite Paris-Saclay, avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Vincent Gandon
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, Palaiseau 91120, France.,Université Paris-Saclay, CNRS, ICMMO, 91405, Orsay cedex, France
| | - Samir Messaoudi
- Universite Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| |
Collapse
|
18
|
Kurahayashi K, Hanaya K, Sugai T, Hirai G, Higashibayashi S. Copper-Catalyzed Stereoselective Borylation and Palladium-Catalyzed Stereospecific Cross-Coupling to Give Aryl C-Glycosides. Chemistry 2023; 29:e202203376. [PMID: 36344464 DOI: 10.1002/chem.202203376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
Metabolically stable C-glycosides are an essential family of compounds in bioactive natural products, therapeutic agents, and biological probes. For their application, development of synthetic methods by connecting glycosides and aglycons with strict stereocontrol at the anomeric carbon, as well as with high functional-group compatibility and environmental compatibility is a pivotal issue. Although Suzuki-Miyaura-type C(sp3 )-C(sp2 ) cross-coupling using glycosyl boronates is a potential candidate for the construction of C-glycosides, neither the cross-coupling itself nor the facile synthesis of the coupling precursor, glycosyl boronates, have been achieved to date. Herein, it was succeeded to develop a copper-catalyzed stereoselective one-step borylation of glycosyl bromides to glycosyl boronates and palladium-catalyzed stereospecific cross-coupling of β-glycosyl borates with aryl bromides to give aryl β-C-glycosides, in which the β-configuration of the anomeric carbon of the glycosyl trifluoroborates is stereoretentively transferred to that of the resulting aryl C-glycosides.
Collapse
Affiliation(s)
- Kazuki Kurahayashi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kengo Hanaya
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Takeshi Sugai
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Go Hirai
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shuhei Higashibayashi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| |
Collapse
|
19
|
Chen Y, Guo Y, Li S, Xu J, Ning W, Zhao C, Wang J, Qu Y, Zhang M, Zhou W, Cui Q, Zhang H. Remdesivir inhibits the progression of glioblastoma by enhancing endoplasmic reticulum stress. Biomed Pharmacother 2023; 157:114037. [PMID: 36427388 DOI: 10.1016/j.biopha.2022.114037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive primary malignant brain tumors. The major challenge is the lack of effective therapeutic drugs due to the blood-brain barrier (BBB) and tumor heterogeneity. Remdesivir (RDV), a new member of the nucleotide analog family, has previously been shown to have excellent antiviral effects and BBB penetration, and was predicted here to have anti-GBM effects. In vitro experiments, RDV significantly inhibited the growth of GBM cells, with IC50 values markedly lower than those of normal cell lines or the same cell lines treated with temozolomide. Moreover, in multiple mouse models, RDV not only distinctly inhibited the progression and improved the prognosis of GBM but also exhibited a promising biosafety profile, as manifested by the lack of significant body weight loss, liver or kidney dysfunction or organ structural damage after administration. Furthermore, we investigated the anti-GBM mechanism by RNA-seq and identified that RDV might induce apoptosis of GBM cells by enhancing endoplasmic reticulum (ER) stress and activating the PERK-mediated unfolded protein response. In conclusion, our results indicated that RDV might serve as a novel agent for GBM treatment by increasing ER stress and inducing apoptosis in GBM cells.
Collapse
Affiliation(s)
- Yujia Chen
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yuduo Guo
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Shenglun Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jiacheng Xu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Weihai Ning
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Chao Zhao
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jun Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yanming Qu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Mingshan Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Wanlu Zhou
- Co., Ltd of JeaMoon Technology, 6Rd Middle Zuojiazhuang, Beijing 100028, China
| | - Qinghua Cui
- Co., Ltd of JeaMoon Technology, 6Rd Middle Zuojiazhuang, Beijing 100028, China.
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China.
| |
Collapse
|
20
|
Li W, Girt GC, Radadiya A, Stewart JJP, Richards NGJ, Naismith JH. Experimental and computational snapshots of C-C bond formation in a C-nucleoside synthase. Open Biol 2023; 13:220287. [PMID: 36629016 PMCID: PMC9832568 DOI: 10.1098/rsob.220287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/30/2022] [Indexed: 01/12/2023] Open
Abstract
The biosynthetic enzyme, ForT, catalyses the formation of a C-C bond between 4-amino-1H-pyrazoledicarboxylic acid and MgPRPP to produce a C-nucleoside precursor of formycin A. The transformation catalysed by ForT is of chemical interest because it is one of only a few examples in which C-C bond formation takes place via an electrophilic substitution of a small, aromatic heterocycle. In addition, ForT is capable of discriminating between the aminopyrazoledicarboxylic acid and an analogue in which the amine is replaced by a hydroxyl group; a remarkable feat given the steric and electronic similarities of the two molecules. Here we report biophysical measurements, structural biology and quantum chemical calculations that provide a detailed molecular picture of ForT-catalysed C-C bond formation and the conformational changes that are coupled to catalysis. Our findings set the scene for employing engineered ForT variants in the biocatalytic production of novel, anti-viral C-nucleoside and C-nucleotide analogues.
Collapse
Affiliation(s)
- Wenbo Li
- Structural Biology, The Rosalind Franklin Institute, Didcot OX11 0QS, UK
- Division of Structural Biology, Nuffield Department of Medicine, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Georgina C. Girt
- Structural Biology, The Rosalind Franklin Institute, Didcot OX11 0QS, UK
| | - Ashish Radadiya
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | | | - Nigel G. J. Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
- Foundation for Applied Molecular Evolution, Alachua, FL 32615, USA
| | - James H. Naismith
- Structural Biology, The Rosalind Franklin Institute, Didcot OX11 0QS, UK
- Division of Structural Biology, Nuffield Department of Medicine, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
21
|
Serrano JL. Water-Soluble Pd-Imidate Complexes as Versatile Catalysts for the Modification of Unprotected Halonucleosides. CHEM REC 2022; 22:e202200179. [PMID: 36094784 DOI: 10.1002/tcr.202200179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/24/2022] [Indexed: 12/15/2022]
Abstract
Modification of unprotected nucleosides has been attracting continuous interest, since these building blocks themselves and their phosphate-upgraded corresponding nucleotides have shown a plethora of uses in fields like biochemistry or pharmacy. Pd-catalyzed cross-coupling reactions, conducted in water or its mixtures with polar organic solvents, have frequently been the researchers' choice for the functionalization of the purine/pyrimidine base of the unprotected nucleosides. In this scenario, the availability of hydrophilic ligands and its water-soluble palladium complexes has markedly set the pace of the advances. The approach of our group to the synthesis of such complexes, Pd-imidates specifically, has faced critical stages, namely the jump to synthesize water soluble complexes from our experience working in conventional solvents, the preparation of phosphine free complexes and the overall goal of getting catalytic systems able to work close to room temperature. The continuous feedback with Kapdi's group, experienced in the chemistry of nucleosides, has produced over the last decade the interesting results in both fields presented here.
Collapse
Affiliation(s)
- José Luis Serrano
- Departamento de Ingeniería Química y Ambiental., Área de Química Inorgánica, Universidad Politécnica de Cartagena member of European University of Technology, 30203, Cartagena, Spain
| |
Collapse
|
22
|
Ghosh T, Nokami T. Recent development of stereoselective C-glycosylation via generation of glycosyl radical. Carbohydr Res 2022; 522:108677. [DOI: 10.1016/j.carres.2022.108677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022]
|
23
|
Hussain N, Rasool F, Khan S, Saleem M, Maheshwari M. Advances in the Synthesis of Natural Products and Medicinally Relevant Molecules from Glycals. ChemistrySelect 2022. [DOI: 10.1002/slct.202201873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nazar Hussain
- Department of Medicinal Chemistry Banaras Hindu University India
| | - Faheem Rasool
- Department of Chemistry Govt. College for Women, Parade Ground Jammu 180001 India
| | - Shahnawaz Khan
- Department of Chemistry Central University of Jammu 180001 Jammu India
| | - Mohd Saleem
- Department of Chemistry Govt.Postgraduate college Rajouri India
| | | |
Collapse
|
24
|
Wu J, Kaplaneris N, Pöhlmann J, Michiyuki T, Yuan B, Ackermann L. Remote C-H Glycosylation by Ruthenium(II) Catalysis: Modular Assembly of meta-C-Aryl Glycosides. Angew Chem Int Ed Engl 2022; 61:e202208620. [PMID: 35877556 PMCID: PMC9825995 DOI: 10.1002/anie.202208620] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/11/2023]
Abstract
The prevalence of C-aryl glycosides in biologically active natural products and approved drugs has long motivated the development of efficient strategies for their selective synthesis. Cross-couplings have been frequently used, but largely relied on palladium catalyst with prefunctionalized substrates, while ruthenium-catalyzed C-aryl glycoside preparation has thus far proven elusive. Herein, we disclose a versatile ruthenium(II)-catalyzed meta-C-H glycosylation to access meta-C-aryl glycosides from readily available glycosyl halide donors. The robustness of the ruthenium catalysis was reflected by mild reaction conditions, outstanding levels of anomeric selectivity and exclusive meta-site-selectivity.
Collapse
Affiliation(s)
- Jun Wu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Julia Pöhlmann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Takuya Michiyuki
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
- Wöhler Research Institute for Sustainable ChemistryTammanstraße 237077GöttingenGermany
| | - Binbin Yuan
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
- Wöhler Research Institute for Sustainable ChemistryTammanstraße 237077GöttingenGermany
| |
Collapse
|
25
|
Sun T, Jin R, Yang Y, Jia Y, Hu S, Jin Y, Wang Q, Li Z, Zhang Y, Wu J, Jiang Y, Lv X, Liu S. Direct α-C-H Alkylation of Structurally Diverse Alcohols via Combined Tavaborole and Photoredox Catalysis. Org Lett 2022; 24:7637-7642. [PMID: 36218287 DOI: 10.1021/acs.orglett.2c03117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report a method that uses antifungal tavaborole as a co-catalyst for direct α-C-H alkylation of structurally diverse alcohols through photoredox catalysis. The protocol features mild conditions, remarkable scope, and wide functional group tolerance, which allows for the construction of a wide array of highly functionalized alcohols, including homoserine derivatives and C-glycosyl amino acids. We also demonstrate the synthetic applications of this methodology to the late-stage functionalization of pharmaceuticals and natural products.
Collapse
Affiliation(s)
- Tianyi Sun
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Ruyi Jin
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Yan Yang
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Yuqi Jia
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Shuxu Hu
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Yanqi Jin
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Qin Wang
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Ziyu Li
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Yifan Zhang
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Jiming Wu
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Yuxin Jiang
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Xiaoqing Lv
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Shihui Liu
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| |
Collapse
|
26
|
Bozinovic N, Aguiar VMD, Ferry A, Gallier F, Lubin-Germain N, Uziel J, Miranda LSDME. Studies on the synthesis of 1'-CN-triazolyl- C-ribosides. Org Biomol Chem 2022; 20:7261-7269. [PMID: 36069280 DOI: 10.1039/d2ob01403c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The search for broad-spectrum antiviral compounds is a continuous mandatory effort. The recent approval of the first C-nucleoside carrying a nitrile as a substituent at the C1' position of the ribose ring has raised interest in this underexplored substitution pattern. We have previously reported the development of different 1,2,3-triazolyl-C-ribonucleosides with anticancer and antiviral activities. Herein we report our results on the incorporation of a C1'-CN group in 1,2,3-triazolyl-C-ribonucleosides.
Collapse
Affiliation(s)
- Nina Bozinovic
- CY Cergy Paris Université, CNRS, BioCIS, 95000, Cergy-Pontoise, France
| | - Viviane Marques de Aguiar
- Biocatalysis and Organic Synthesis Group, Universidade Federal do Rio de Janeiro, Av Athos da Silveira Ramos 149, Centro de Tecnologia, Bl A, 21941909 Ilha do Fundão, Rio de Janeiro, Brazil.
| | - Angélique Ferry
- CY Cergy Paris Université, CNRS, BioCIS, 95000, Cergy-Pontoise, France
| | - Florian Gallier
- CY Cergy Paris Université, CNRS, BioCIS, 95000, Cergy-Pontoise, France
| | | | - Jacques Uziel
- CY Cergy Paris Université, CNRS, BioCIS, 95000, Cergy-Pontoise, France
| | - Leandro Soter de Mariz E Miranda
- CY Cergy Paris Université, CNRS, BioCIS, 95000, Cergy-Pontoise, France.,Biocatalysis and Organic Synthesis Group, Universidade Federal do Rio de Janeiro, Av Athos da Silveira Ramos 149, Centro de Tecnologia, Bl A, 21941909 Ilha do Fundão, Rio de Janeiro, Brazil.
| |
Collapse
|
27
|
Transition Metal Catalyzed Hiyama Cross-Coupling: Recent Methodology Developments and Synthetic Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175654. [PMID: 36080422 PMCID: PMC9458230 DOI: 10.3390/molecules27175654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
Hiyama cross-coupling is a versatile reaction in synthetic organic chemistry for the construction of carbon-carbon bonds. It involves the coupling of organosilicons with organic halides using transition metal catalysts in good yields and high enantioselectivities. In recent years, hectic progress has been made by researchers toward the synthesis of diversified natural products and pharmaceutical drugs using the Hiyama coupling reaction. This review emphasizes the recent synthetic developments and applications of Hiyama cross-coupling.
Collapse
|
28
|
Gonzalez S, Brzuska G, Ouarti A, Gallier F, Solarte C, Ferry A, Uziel J, Krol E, Lubin-Germain N. Anti-HCV and Zika activities of ribavirin C-nucleosides analogues. Bioorg Med Chem 2022; 68:116858. [PMID: 35661850 DOI: 10.1016/j.bmc.2022.116858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/27/2022]
Abstract
Ribavirin is an unnatural nucleoside exhibiting broad spectrum of antiviral and antitumor activities, still very widely studied particularly in a repositioning approach. C-triazolyl nucleoside analogues of ribavirin have been synthesized, as well as prodrugs and glycosylated or peptide conjugates to allow a better activity by vectorization into the liver or by facilitating uptake into the cells. The antiviral properties of all synthesized compounds have been evaluated in vitro against two important human viral pathogens belonging to the Flaviviridae family: hepatitis C virus (HCV) and Zika virus (ZIKV). There are no therapeutic options for Zika virus, whereas those available for HCV can be still improved. Our results indicated that compound 2 carrying an N-hydroxy carboxamide function exhibits the most inhibitory activities against both viruses. This compound moderately inhibited the propagation of HCV with an IC50 value of 49.1 μM and Zika virus with an IC50 of 33.2 μM comparable to ribavirin in the Vero cell line. The results suggest that compound 2 and its new derivatives may be candidates for further development of new anti-HCV and anti-ZIKV antiviral drugs.
Collapse
Affiliation(s)
- Simon Gonzalez
- CY Cergy Paris Université, CNRS, BioCIS, 95000 Cergy Pontoise, France; Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Gabriela Brzuska
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Abdelhakim Ouarti
- CY Cergy Paris Université, CNRS, BioCIS, 95000 Cergy Pontoise, France; Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Florian Gallier
- CY Cergy Paris Université, CNRS, BioCIS, 95000 Cergy Pontoise, France; Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Carmen Solarte
- CY Cergy Paris Université, CNRS, BioCIS, 95000 Cergy Pontoise, France; Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Angélique Ferry
- CY Cergy Paris Université, CNRS, BioCIS, 95000 Cergy Pontoise, France; Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Jacques Uziel
- CY Cergy Paris Université, CNRS, BioCIS, 95000 Cergy Pontoise, France; Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| | - Nadège Lubin-Germain
- CY Cergy Paris Université, CNRS, BioCIS, 95000 Cergy Pontoise, France; Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France.
| |
Collapse
|
29
|
Sepúlveda CS, García CC, Damonte EB. Inhibitors of Nucleotide Biosynthesis as Candidates for a Wide Spectrum of Antiviral Chemotherapy. Microorganisms 2022; 10:1631. [PMID: 36014049 PMCID: PMC9413629 DOI: 10.3390/microorganisms10081631] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Emerging and re-emerging viruses have been a challenge in public health in recent decades. Host-targeted antivirals (HTA) directed at cellular molecules or pathways involved in virus multiplication represent an interesting strategy to combat viruses presently lacking effective chemotherapy. HTA could provide a wide range of agents with inhibitory activity against current and future viruses that share similar host requirements and reduce the possible selection of antiviral-resistant variants. Nucleotide metabolism is one of the more exploited host metabolic pathways as a potential antiviral target for several human viruses. This review focuses on the antiviral properties of the inhibitors of pyrimidine and purine nucleotide biosynthesis, with an emphasis on the rate-limiting enzymes dihydroorotate dehydrogenase (DHODH) and inosine monophosphate dehydrogenase (IMPDH) for which there are old and new drugs active against a broad spectrum of pathogenic viruses.
Collapse
Affiliation(s)
- Claudia Soledad Sepúlveda
- Laboratory of Virology, Biochemistry Department, School of Sciences, University of Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires 1428, Argentina
- Institute of Biochemistry of the School of Sciences (IQUIBICEN), CONICET-UBA, Ciudad Universitaria, Buenos Aires 1428, Argentina
| | - Cybele Carina García
- Laboratory of Virology, Biochemistry Department, School of Sciences, University of Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires 1428, Argentina
- Institute of Biochemistry of the School of Sciences (IQUIBICEN), CONICET-UBA, Ciudad Universitaria, Buenos Aires 1428, Argentina
| | - Elsa Beatriz Damonte
- Laboratory of Virology, Biochemistry Department, School of Sciences, University of Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires 1428, Argentina
- Institute of Biochemistry of the School of Sciences (IQUIBICEN), CONICET-UBA, Ciudad Universitaria, Buenos Aires 1428, Argentina
| |
Collapse
|
30
|
Wu J, Kaplaneris N, Pöhlmann J, Michiyuki T, Yuan B, Ackermann L. Remote C–H Glycosylation by Ruthenium(II) Catalysis: Modular Assembly of meta‐C‐Aryl Glycosides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jun Wu
- University of Göttingen: Georg-August-Universitat Gottingen WISCh GERMANY
| | | | - Julia Pöhlmann
- University of Göttingen: Georg-August-Universitat Gottingen WISCh GERMANY
| | - Takuya Michiyuki
- University of Göttingen: Georg-August-Universitat Gottingen WISCh GERMANY
| | - Binbin Yuan
- University of Göttingen: Georg-August-Universitat Gottingen WISCh GERMANY
| | - Lutz Ackermann
- Georg-August-Universitaet Goettingen Institut fuer Organische und Biomolekulare Chemie Tammannstr. 2 37077 Goettingen GERMANY
| |
Collapse
|
31
|
The role of the maleimide ring system on the structure-activity relationship of showdomycin. Eur J Med Chem 2022; 237:114342. [DOI: 10.1016/j.ejmech.2022.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 11/20/2022]
|
32
|
Wang Z, He Y, Liao L, Zhang Y, Zhao Y, Xiao Y, Jiang X, Qiao F. Forming coumarin C-glycosides via biocatalysis: Characterization of a C-glycosyltransferase from Angelica decursiva. Biochem Biophys Res Commun 2022; 614:85-91. [DOI: 10.1016/j.bbrc.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
|
33
|
Zhang Y, Geng H, Zhang J, He K. An update mini-review on the progress of azanucleoside analogues. Chem Pharm Bull (Tokyo) 2022; 70:469-476. [PMID: 35753803 DOI: 10.1248/cpb.c22-00088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The development of structurally novel nucleoside analogues is an active area in medicinal chemistry, since these drugs have proven clinical efficacy for decades. Azanucleosides are nucleoside analogues in which the sugar moieties are composed of nitrogen-containing rings or chains. In recent years, many azanucleosides have demonstrated therapeutic potential. In this short review, we describe recent advancements in azanucleosides, which may translate in a better understanding of the molecular design, biological activity, structure-activity relationship, and their related mechanism of action. The information summarized in this paper should encourage medicinal chemists in their future efforts to create more potent and effective chemotherapeutic agents.
Collapse
Affiliation(s)
| | - Hao Geng
- College of Science, Xichang University
| | | | - Kehan He
- College of Science, Xichang University
| |
Collapse
|
34
|
Ren D, Lee YH, Wang SA, Liu HW. Characterization of the Oxazinomycin Biosynthetic Pathway Revealing the Key Role of a Nonheme Iron-Dependent Mono-oxygenase. J Am Chem Soc 2022; 144:10968-10977. [PMID: 35687050 DOI: 10.1021/jacs.2c04080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxazinomycin is a C-nucleoside natural product with antibacterial and antitumor activities. In addition to the characteristic C-glycosidic linkage shared with other C-nucleosides, oxazinomycin also features a structurally unusual 1,3-oxazine moiety, the biosynthesis of which had previously been unknown. Herein, complete in vitro reconstitution of the oxazinomycin biosynthetic pathway is described. Construction of the C-glycosidic bond between ribose 5-phosphate and an oxygen-labile pyridine heterocycle is catalyzed by the C-glycosidase OzmB and involves formation of an enzyme-substrate Schiff base intermediate. The DUF4243 family protein OzmD is shown to catalyze oxygen insertion and rearrangement of the pyridine C-nucleoside intermediate to generate the 1,3-oxazine moiety along with the elimination of cyanide. Spectroscopic analysis and mutagenesis studies indicate that OzmD is a novel nonheme iron-dependent enzyme in which the catalytic iron center is likely coordinated by four histidine residues. These results provide the first example of 1,3-oxazine biosynthesis catalyzed by an unprecedented iron-dependent mono-oxygenase.
Collapse
Affiliation(s)
- Daan Ren
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yu-Hsuan Lee
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Shao-An Wang
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.,Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
35
|
Desantis J, Felicetti T, Cannalire R. An overview on small molecules acting as broad spectrum-agents for yellow fever infection. Expert Opin Drug Discov 2022; 17:755-773. [PMID: 35638299 DOI: 10.1080/17460441.2022.2084529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Yellow Fever virus (YFV) is a mosquito-borne flavivirus, endemic in 47 countries in Africa and South America, which causes febrile symptoms that can evolve in 15% of the patients to serious haemorrhagic conditions, liver injury, and multiorgan failure. Although a highly effective vaccine (YF-17D vaccine) is available, to date, no antiviral drugs have been approved for the prevention and treatment of YFV infections. AREAS COVERED This review article focuses on the description of viral targets that have been considered within YFV and flavivirus drug discovery studies and on the most relevant candidates reported so far that elicit broad-spectrum inhibition against relevant strains and mutants of YFV. EXPERT OPINION Considering the growing interest on (re)emerging vector-borne viral infections, it is expected that flavivirus drug discovery will quickly deliver potential candidates for clinical evaluation. Due to similarity among flaviviral targets, several candidates identified against different flaviviruses have shown broad-spectrum activity, thus exhibiting anti-YFV activity, as well. In this regard, it would be desirable to routinely include the assessment of antiviral activity against different YFV strains. On the other hand, the development of host targeting agents are still at an initial stage and deserve further focused efforts.
Collapse
Affiliation(s)
- Jenny Desantis
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Rolando Cannalire
- Department of Pharmacy, University of Napoli "Federico II", Via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
36
|
Thadathil DA, Varghese A, Ahamed CVS, Krishnakumar K, Varma SS, Lankalapalli RS, Radhakrishnan KV. Enzyme based bioelectrocatalysis over laccase immobilized poly-thiophene supported carbon fiber paper for the oxidation of D-ribofuranose to D-ribonolactone. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Takizawa N, Takada H, Umekita M, Igarashi M, Takahashi Y. Anti-influenza Virus Activity of Methylthio-Formycin Distinct From That of T-705. Front Microbiol 2022; 13:802671. [PMID: 35250924 PMCID: PMC8894184 DOI: 10.3389/fmicb.2022.802671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Seasonal influenza virus epidemics result in severe illness, and occasionally influenza pandemics cause significant morbidity and mortality, although vaccines and anti-influenza virus drugs are available. By screening an in-house library, we identified methylthio-formycin (SMeFM), an adenosine analog, as a potent inhibitor of influenza virus propagation. SMeFM inhibited the propagation of influenza A and B viruses (IC50: 34.1 and 37.9 nM, respectively) and viruses showing reduced susceptibility to baloxavir and neuraminidase inhibitors but not T-705 (Favipiravir). However, the combination of T-705 and SMeFM inhibited the propagation of the influenza virus not in an antagonistic but in a slightly synergistic manner, suggesting that SMeFM has targets distinct from that of T-705. SMeFM induced A-to-C transversion mutations in virus genome RNA, and SMeFM triphosphate did not inhibit in vitro viral RNA synthesis. Our results show that SMeFM inhibits the propagation of the influenza virus by a mechanism different from that of T-705 and is a potential drug candidate to develop for anti-influenza drug.
Collapse
|
38
|
Lu K, Ma Y, Liu S, Guo S, Zhang Y. Highly Stereoselective
C‐Glycosylation
by Photocatalytic Decarboxylative Alkynylation on Anomeric Position: A Facile Access to Alkynyl
C
‐Glycosides. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- KaiLin Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology Shanghai 200237 China
| | - Yingying Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology Shanghai 200237 China
| | - Shihui Liu
- College of Medicine, Jiaxing University, Jiaxing Zhejiang 314001 China
| | - Shixun Guo
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology Shanghai 200237 China
| | - Yongqiang Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
39
|
Pereira AG, Gerolis LGL, Gonçalves LS, Moreira LMC, Gastelois PL, Neves MJ. Radiolytic synthesis and characterization of selenium nanoparticles: comparative biosafety evaluation with selenite and ionizing radiation. World J Microbiol Biotechnol 2022; 38:33. [PMID: 34989895 DOI: 10.1007/s11274-021-03218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/19/2021] [Indexed: 10/19/2022]
Abstract
The goal of this work is use a green chemistry route to synthesize selenium nanoparticles (SeNPs) that do not trigger oxidative stress, typical of metallic, oxide metallic and carbonaceous nanostructures, and supply the same beneficial effects as selenium nanostructures. SeNPs were synthesized using a radiolytic method involving irradiating a solution containing sodium selenite (Se4+) as the precursor in 1% Yeast extract, 2% Peptone, 2% Glucose (YPG) liquid medium with gamma-rays (60Cobalt). The method did not employ any hazardous reducing agents. Saccharomyces cerevisiae cells were incubated with 1 mM SeNPs for 24 h and/or then challenged with 400 Gy of ionizing radiation were assessed for viability and biomarkers of oxidative stress: lipid peroxidation, protein carbonylation, free radical generation, and total sulfhydryl content. Spherical SeNPs with variable diameters (from 100 to 200 nm) were formed after reactions of sodium selenite with hydrated electrons (eaq-) and hydrogen radicals (H·). Subsequent structural characterizations indicated an amorphous structure composed of elemental selenium (Se0). Compared to 1 mM selenite, SeNPs were considered safe and less toxic to Saccharomyces cerevisiae cells as did not elicit significant modifications in cell viability or oxidative stress parameters except for increased protein carbonylation. Furthermore, SeNPs treatment afforded some protection against ionizing radiation exposure. SeNPs produced using green chemistry attenuated the reactive oxygen species generation after in vitro ionizing radiation exposure opens up tremendous possibilities for radiosensitizer development.
Collapse
Affiliation(s)
- Alline Gomes Pereira
- Laboratório de Radiobiologia, Serviço de Radiofármacos (SERFA) Centro de Desenvolvimento da Tecnologia Nuclear/Comissão Nacional de Energia Nuclear (CDTN/CNEN), Cx Postal 0941, Belo Horizonte, MG, CEP 30161-970, Brazil
| | - Luanai Graziele Luquini Gerolis
- Laboratório de Radiobiologia, Serviço de Radiofármacos (SERFA) Centro de Desenvolvimento da Tecnologia Nuclear/Comissão Nacional de Energia Nuclear (CDTN/CNEN), Cx Postal 0941, Belo Horizonte, MG, CEP 30161-970, Brazil
| | - Letícia Satler Gonçalves
- Laboratório de Radiobiologia, Serviço de Radiofármacos (SERFA) Centro de Desenvolvimento da Tecnologia Nuclear/Comissão Nacional de Energia Nuclear (CDTN/CNEN), Cx Postal 0941, Belo Horizonte, MG, CEP 30161-970, Brazil
| | - Luciana Mara Costa Moreira
- Laboratório de Pesquisa Clínica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, CEP, 30130-100, Brazil
| | - Pedro Lana Gastelois
- Serviço de Nanotecnologia e Materiais Nucleares (SENAN), CDTN/CNEN, Belo Horizonte, MG, Brazil
| | - Maria Jose Neves
- Laboratório de Radiobiologia, Serviço de Radiofármacos (SERFA) Centro de Desenvolvimento da Tecnologia Nuclear/Comissão Nacional de Energia Nuclear (CDTN/CNEN), Cx Postal 0941, Belo Horizonte, MG, CEP 30161-970, Brazil.
| |
Collapse
|
40
|
Chemoselective and Diastereoselective Synthesis of
C
‐Aryl Nucleoside Analogues by Nickel‐Catalyzed Cross‐Coupling of Furanosyl Acetates with Aryl Iodides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Li Y, Wang Z, Li L, Tian X, Shao F, Li C. Chemoselective and Diastereoselective Synthesis of C-Aryl Nucleoside Analogues by Nickel-Catalyzed Cross-Coupling of Furanosyl Acetates with Aryl Iodides. Angew Chem Int Ed Engl 2022; 61:e202110391. [PMID: 34664354 DOI: 10.1002/anie.202110391] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 11/08/2022]
Abstract
Canonical nucleosides are vulnerable to enzymatic and chemical degradation, yet their stable mimics-C-aryl nucleosides-have demonstrated potential utility in medicinal chemistry, chemical biology, and synthetic biology, although current synthetic methods remain limited in terms of scope and selectivity. Herein, we report a cross-electrophile coupling to prepare C-aryl nucleoside analogues from readily available furanosyl acetates and aryl iodides. This nickel-catalyzed modular approach is characterized by mild reaction conditions, broad substrate scope, excellent β-selectivity, and high functional-group compatibility. The exclusive chemoselectivity with respect to the aryl iodide enables efficient preparation of a variety of C-aryl halide furanosides suitable for various downstream transformations. The practicality of this transformation is demonstrated through the synthesis of a potent analogue of a naturally occurring NF-κB activator.
Collapse
Affiliation(s)
- Yuxi Li
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.,National Institute of Biological Sciences, Beijing, 102206, China
| | - Zheng Wang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Luyang Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xiaoying Tian
- National Institute of Biological Sciences, Beijing, 102206, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 102206, China
| | - Feng Shao
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.,National Institute of Biological Sciences, Beijing, 102206, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 102206, China
| | - Chao Li
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.,National Institute of Biological Sciences, Beijing, 102206, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 102206, China
| |
Collapse
|
42
|
Robichon M, Branquet D, Uziel J, Lubin‐Germain N, Ferry A. Directed Nickel‐Catalyzed
pseudo
‐Anomeric C−H Alkynylation of Glycals as an Approach towards
C
‐Glycoconjugate Synthesis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Morgane Robichon
- CY Cergy Paris University BioCIS, CNRS 5 mail Gay-Lussac 95000 Cergy-Pontoise cedex France
- Paris-Saclay University BioCIS, CNRS 5 rue J.-B. Clément 92296 Châtenay-Malabry cedex France
| | - David Branquet
- CY Cergy Paris University BioCIS, CNRS 5 mail Gay-Lussac 95000 Cergy-Pontoise cedex France
- Paris-Saclay University BioCIS, CNRS 5 rue J.-B. Clément 92296 Châtenay-Malabry cedex France
| | - Jacques Uziel
- CY Cergy Paris University BioCIS, CNRS 5 mail Gay-Lussac 95000 Cergy-Pontoise cedex France
- Paris-Saclay University BioCIS, CNRS 5 rue J.-B. Clément 92296 Châtenay-Malabry cedex France
| | - Nadège Lubin‐Germain
- CY Cergy Paris University BioCIS, CNRS 5 mail Gay-Lussac 95000 Cergy-Pontoise cedex France
- Paris-Saclay University BioCIS, CNRS 5 rue J.-B. Clément 92296 Châtenay-Malabry cedex France
| | - Angélique Ferry
- CY Cergy Paris University BioCIS, CNRS 5 mail Gay-Lussac 95000 Cergy-Pontoise cedex France
- Paris-Saclay University BioCIS, CNRS 5 rue J.-B. Clément 92296 Châtenay-Malabry cedex France
| |
Collapse
|
43
|
Panda S, Poudel TN, Hegde P, Aldrich CC. Innovative Strategies for the Construction of Diverse 1'-Modified C-Nucleoside Derivatives. J Org Chem 2021; 86:16625-16640. [PMID: 34756029 DOI: 10.1021/acs.joc.1c01920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modified C-nucleosides have proven to be enormously successful as chemical probes to understand fundamental biological processes and as small-molecule drugs for cancer and infectious diseases. Historically, the modification of the glycosyl unit has focused on the 2'-, 3'-, and 4'-positions as well as the ribofuranosyl ring oxygen. By contrast, the 1'-position has rarely been studied due to the labile nature of the anomeric position. However, the improved chemical stability of C-nucleosides allows the modification of the 1'-position with substituents not found in conventional N-nucleosides. Herein, we disclose new chemistry for the installation of diverse substituents at the 1'-position of C-nucleosides, including alkyl, alkenyl, difluoromethyl, and fluoromethyl substituents, using the 4-amino-7-(1'-hydroxy-d-ribofuranosyl)pyrrolo[2,1-f][1,2,4]triazine scaffold as a representative purine nucleoside mimetic.
Collapse
Affiliation(s)
- Subhankar Panda
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tej Narayan Poudel
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Pooja Hegde
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
44
|
Wieczorkiewicz PA, Szatylowicz H, Krygowski TM. Energetic and Geometric Characteristics of the Substituents: Part 2: The Case of NO 2, Cl, and NH 2 Groups in Their Mono-Substituted Derivatives of Simple Nitrogen Heterocycles. Molecules 2021; 26:6543. [PMID: 34770951 PMCID: PMC8588088 DOI: 10.3390/molecules26216543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022] Open
Abstract
Variously substituted N-heterocyclic compounds are widespread across bio- and medicinal chemistry. The work aims to computationally evaluate the influence of the type of N-heterocyclic compound and the substitution position on the properties of three model substituents: NO2, Cl, and NH2. For this reason, the energetic descriptor of global substituent effect (Erel), geometry of substituents, and electronic descriptors (cSAR, pEDA, sEDA) are considered, and interdependences between these characteristics are discussed. Furthermore, the existence of an endocyclic N atom may induce proximity effects specific for a given substituent. Therefore, various quantum chemistry methods are used to assess them: the quantum theory of atoms in molecules (QTAIM), analysis of non-covalent interactions using reduced density gradient (RDG) function, and electrostatic potential maps (ESP). The study shows that the energetic effect associated with the substitution is highly dependent on the number and position of N atoms in the heterocyclic ring. Moreover, this effect due to interaction with more than one endo N atom (e.g., in pyrimidines) can be assessed with reasonable accuracy by adding the effects calculated for interactions with one endo N atom in substituted pyridines. Finally, all possible cases of proximity interactions for the NO2, Cl, and NH2 groups are thoroughly discussed.
Collapse
Affiliation(s)
- Paweł A. Wieczorkiewicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
| | - Halina Szatylowicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
| | - Tadeusz M. Krygowski
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
45
|
An Y, Zhang BS, Ding YN, Zhang Z, Gou XY, Li XS, Wang X, Li Y, Liang YM. Palladium-catalyzed C-H glycosylation and retro Diels-Alder tandem reaction via structurally modified norbornadienes (smNBDs). Chem Sci 2021; 12:13144-13150. [PMID: 34745545 PMCID: PMC8513894 DOI: 10.1039/d1sc03569j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/27/2021] [Indexed: 01/12/2023] Open
Abstract
This report describes palladium-catalyzed C–H glycosylation and retro Diels–Alder tandem reaction via structurally modified norbornadienes (smNBDs). smNBDs were proposed to regulate the reactivity of the aryl-norbornadiene-palladacycle (ANP), including its high chemoselectivity and regioselectivity, which were the key to constructing C2 and C3 unsubstituted C4-glycosidic indoles. The scope of this substrate is extensive; the halogenated six-membered and five-membered glycosides were applied to the reaction smoothly, and N-alkyl (primary, secondary and tertiary) C4-glycosidic indoles can also be obtained by this method. In terms of mechanism, the key ANP intermediates characterized by X-ray single-crystal diffraction and further controlled experiments proved that the migration-insertion of smNBDs with phenylpalladium intermediate endows them with high chemo- and regioselectivity. Finally, density functional theory (DFT) calculation further verified the rationality of the mechanism. This report describes palladium-catalyzed C–H glycosylation and retro Diels–Alder tandem reaction via structurally modified norbornadienes (smNBDs).![]()
Collapse
Affiliation(s)
- Yang An
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Bo-Sheng Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Xue-Ya Gou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Yuke Li
- Department of Chemistry, Centre for Scientific Modeling and Computation, Chinese University of Hong Kong Shatin Hong Kong P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
46
|
Wei Y, Lam J, Diao T. Synthesis of C-acyl furanosides via the cross-coupling of glycosyl esters with carboxylic acids. Chem Sci 2021; 12:11414-11419. [PMID: 34667550 PMCID: PMC8447929 DOI: 10.1039/d1sc03596g] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
C-Acyl furanosides are versatile synthetic precursors to a variety of natural products, nucleoside analogues, and pharmaceutical molecules. This report addresses the unmet challenge in preparing C-acyl furanosides by developing a cross-coupling reaction between glycosyl esters and carboxylic acids. A key step is the photoredox activation of the glycosyl ester, which promotes the homolysis of the strong anomeric C–O bond through CO2 evolution to afford glycosyl radicals. This method embraces a large scope of furanoses, pyranoses, and carboxylic acids, and is readily applicable to the synthesis of a thymidine analogue and diplobifuranylone B, as well as the late-stage modification of (+)-sclareolide. The convenient preparation of the redox active glycosyl ester from native sugars and the compatibility with common furanoses exemplifies the potential of this method in medicinal chemistry. A cross-coupling of glycosyl esters with carboxylic acids to prepare C-acyl furanosides and pyranosides. The reaction proceeds through photoredox activation of the glycosyl ester to afford glycosyl radicals.![]()
Collapse
Affiliation(s)
- Yongliang Wei
- Department of Chemistry, New York University 100 Washington Square East New York NY 10003 USA
| | - Jenny Lam
- Department of Chemistry, New York University 100 Washington Square East New York NY 10003 USA
| | - Tianning Diao
- Department of Chemistry, New York University 100 Washington Square East New York NY 10003 USA
| |
Collapse
|
47
|
Ren D, Kim M, Wang SA, Liu HW. Identification of a Pyrrole Intermediate Which Undergoes C-Glycosidation and Autoxidation to Yield the Final Product in Showdomycin Biosynthesis. Angew Chem Int Ed Engl 2021; 60:17148-17154. [PMID: 34048627 DOI: 10.1002/anie.202105667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 02/04/2023]
Abstract
Showdomycin is a C-nucleoside bearing an electrophilic maleimide base. Herein, the biosynthetic pathway of showdomycin is presented. The initial stages of the pathway involve non-ribosomal peptide synthetase (NRPS) mediated assembly of a 2-amino-1H-pyrrole-5-carboxylic acid intermediate. This intermediate is prone to air oxidation whereupon it undergoes oxidative decarboxylation to yield an imine of maleimide, which in turn yields the maleimide upon acidification. It is also shown that this pyrrole intermediate serves as the substrate for the C-glycosidase SdmA in the pathway. After coupling with ribose 5-phosphate, the resulting C-nucleoside undergoes a similar sequence of oxidation, decarboxylation and deamination to afford showdomcyin after exposure to air. These results suggest that showdomycin could be an artifact due to aerobic isolation; however, the autoxidation may also serve to convert an otherwise inert product of the biosynthetic pathway to an electrophilic C-nucleotide thereby endowing showdomycin with its observed bioactivities.
Collapse
Affiliation(s)
- Daan Ren
- Department of Chemistry, Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Minje Kim
- Department of Chemistry, Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Shao-An Wang
- Department of Chemistry, Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Hung-Wen Liu
- Department of Chemistry, Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
48
|
Identification of a Pyrrole Intermediate Which Undergoes C‐Glycosidation and Autoxidation to Yield the Final Product in Showdomycin Biosynthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Vaňková K, Rahm M, Choutka J, Pohl R, Parkan K. Facile Approach to C-Glucosides by Using a Protecting-Group-Free Hiyama Cross-Coupling Reaction: High-Yielding Dapagliflozin Synthesis. Chemistry 2021; 27:10583-10588. [PMID: 34048112 DOI: 10.1002/chem.202101052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 12/16/2022]
Abstract
Access to unprotected (hetero)aryl pseudo-C-glucosides via a mild Pd-catalysed Hiyama cross-coupling reaction of protecting-group-free 1-diisopropylsilyl-d-glucal with various (hetero)aryl halides has been developed. In addition, selected unprotected pseudo-C-glucosides were stereoselectively converted into the corresponding α- and β-C-glucosides, as well as 2-deoxy-β-C-glucosides. This methodology was applied to the efficient and high-yielding synthesis of dapagliflozin, a medicament used to treat type 2 diabetes mellitus. Finally, the versatility of our methodology was proved by the synthesis of other analogues of dapagliflozin.
Collapse
Affiliation(s)
- Karolína Vaňková
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Michal Rahm
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Jan Choutka
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Gilead Sciences & IOCB Research Centre, Flemingovo nám. 2, 166 10, Prague, Czech Republic
| | - Kamil Parkan
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| |
Collapse
|
50
|
Xia L, Fan W, Yuan XA, Yu S. Photoredox-Catalyzed Stereoselective Synthesis of C-Nucleoside Analogues from Glycosyl Bromides and Heteroarenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02088] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Liwen Xia
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023 China
| | - Wenjing Fan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 China
| | - Xiang-Ai Yuan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023 China
| |
Collapse
|