1
|
Chen Y, Wu Y, Tian X, Shao G, Lin Q, Sun A. Golgiphagy: a novel selective autophagy to the fore. Cell Biosci 2024; 14:130. [PMID: 39438975 PMCID: PMC11495120 DOI: 10.1186/s13578-024-01311-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
The Golgi apparatus is the central hub of the cellular endocrine pathway and plays a crucial role in processing, transporting, and sorting proteins and lipids. Simultaneously, it is a highly dynamic organelle susceptible to degradation or fragmentation under various physiological or pathological conditions, potentially contributing to the development of numerous human diseases. Autophagy serves as a vital pathway for eukaryotes to manage intracellular and extracellular stress and maintain homeostasis by targeting damaged or redundant organelles for removal. Recent research has revealed that autophagy mechanisms can specifically degrade Golgi components, known as Golgiphagy. This review summarizes recent findings on Golgiphagy while also addressing unanswered questions regarding its mechanisms and regulation, aiming to advance our understanding of the role of Golgiphagy in human disease.
Collapse
Affiliation(s)
- Yifei Chen
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yihui Wu
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xianyan Tian
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Genbao Shao
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qiong Lin
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China.
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Aiqin Sun
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China.
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
2
|
Singh D, Mittal N, Mittal P, Tiwari N, Khan SUD, Ali MAM, Chaudhary AA, Siddiqui MH. In silico molecular screening of bioactive natural compounds of rosemary essential oil and extracts for pharmacological potentials against rhinoviruses. Sci Rep 2024; 14:17426. [PMID: 39075176 PMCID: PMC11286848 DOI: 10.1038/s41598-024-68450-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024] Open
Abstract
Rhinoviruses (RVs) cause upper respiratory tract infections and pneumonia in children and adults. These non-enveloped viruses contain viral coats of four capsid proteins: VP1, VP2, VP3, and VP4. The canyon on VP1 used cell surface receptor ICAM-1 as the site of attachment and for the internalization of viruses. To date, there has been no drug or vaccine available against RVs. In this study, bioactive natural compounds of rosemary (Salvia rosmarinus L.), which are known for their pharmacological potential, were considered to target the VP1 protein. A total of 30 bioactive natural compounds of rosemary were taken as ligands to target viral proteins. The PkCSM tool was used to detect their adherence to Lipinski's rule of five and the ADMET properties of the selected ligands. Further, the CB-Dock tool was used for molecular docking studies between the VP1 protein and ligands. Based on the molecular docking and ADMET profiling results, phenethyl amine (4 methoxy benzyl) was selected as the lead compound. A comparative study was performed between the lead compound and two antiviral drugs, Placonaril and Nitazoxanide, to investigate the higher potential of natural compounds over synthetic drugs. Placonaril also targets VP1 but failed in clinical trials while Nitazoxanide was examined in clinical trials against rhinoviruses. It was discovered from this study that the (4 methoxy benzyl) phenethyl amine exhibited less toxicity in comparison to other tested drugs against RVs. More research is needed to determine its potential and make it a good medication against RVs.
Collapse
Affiliation(s)
- Dhananjay Singh
- Department of Biosciences, Integral University, Kursi Road, Lucknow, 226026, India
| | - Nishu Mittal
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, 225003, India
| | - Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Neeraj Tiwari
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, 225003, India
| | - Salah Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| | - Mohamed A M Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia.
| | | |
Collapse
|
3
|
G Vishakantegowda A, Hwang D, Chakrasali P, Jung E, Lee JY, Shin JS, Jung YS. Highly potent and selective phosphatidylinositol 4-kinase IIIβ inhibitors as broad-spectrum anti-rhinoviral agents. RSC Med Chem 2024; 15:704-719. [PMID: 38389877 PMCID: PMC10880896 DOI: 10.1039/d3md00630a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/08/2023] [Indexed: 02/24/2024] Open
Abstract
Human rhinoviruses (hRVs) cause upper and lower respiratory tract infections and exacerbate asthma and chronic obstructive pulmonary disease. hRVs comprise more than 160 strains with considerable genetic variation. Their high diversity and strain-specific interactions with antisera hinder the development of anti-hRV therapeutic agents. Phosphatidylinositol-4-kinase IIIβ (PI4KIIIβ) is a key enzyme in the phosphoinositide signalling pathway that is crucial for the replication and survival of various viruses. We identified novel PI4KIIIβ inhibitors, N-(4-methyl-5-arylthiazol)-2-amide derivatives, by generating a hit compound, 1a, from the high-throughput screening of a chemical library, followed by the optimization study of 1a. Inhibitor 7e exhibited the highest activity (EC50 = 0.008, 0.0068, and 0.0076 μM for hRV-B14, hRV-A16, and hRV-A21, respectively) and high toxicity (CC50 = 6.1 μM). Inhibitor 7f showed good activity and low toxicity and provided the highest selectivity index (SI ≥ 4638, >3116, and >2793 for hRV-B14, hRV-A16, and hRV-A21, respectively). Furthermore, 7f showed broad-spectrum activities against various hRVs, coxsackieviruses, and other enteroviruses, such as EV-A71 and EV-D68. The binding mode of the inhibitors was investigated using 7f, and the experimental results of plaque reduction, replicon and cytotoxicity, and time-of-drug-addition assays suggested that 7f acts as a PI4KIIIβ inhibitor. The kinase inhibition activity of this series of compounds against PI4KIIIα and PI4KIIIβ was assessed, and 7f demonstrated kinase inhibition activity with an IC50 value of 0.016 μM for PI4KIIIβ, but not for PI4KIIIα (>10 μM). Therefore, 7f represents a highly potent and selective PI4KIIIβ inhibitor for the further development of antiviral therapy against hRVs or other enteroviruses.
Collapse
Affiliation(s)
- Avinash G Vishakantegowda
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology Daejeon 34113 Republic of Korea
| | - Dasom Hwang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Laboratory of Veterinary Virology, College of Veterinary Medicine, Chungbuk National University Cheongju 28644 Republic of Korea
| | - Prashant Chakrasali
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Eunhye Jung
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Joo-Youn Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Jin Soo Shin
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Young-Sik Jung
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology Daejeon 34113 Republic of Korea
| |
Collapse
|
4
|
Li G, Wu Y, Zhang Y, Wang H, Li M, He D, Guan W, Yao H. Research progress on phosphatidylinositol 4-kinase inhibitors. Biochem Pharmacol 2024; 220:115993. [PMID: 38151075 DOI: 10.1016/j.bcp.2023.115993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Phosphatidylinositol 4-kinases (PI4Ks) could phosphorylate phosphatidylinositol (PI) to produce phosphatidylinositol 4-phosphate (PI4P) and maintain its metabolic balance and location. PI4P, the most abundant monophosphate inositol in eukaryotic cells, is a precursor of higher phosphoinositols and an essential substrate for the PLC/PKC and PI3K/Akt signaling pathways. PI4Ks regulate vesicle transport, signal transduction, cytokinesis, and cell unity, and are involved in various physiological and pathological processes, including infection and growth of parasites such as Plasmodium and Cryptosporidium, replication and survival of RNA viruses, and the development of tumors and nervous system diseases. The development of novel drugs targeting PI4Ks and PI4P has been the focus of the research and clinical application of drugs, especially in recent years. In particular, PI4K inhibitors have made great progress in the treatment of malaria and cryptosporidiosis. We describe the biological characteristics of PI4Ks; summarize the physiological functions and effector proteins of PI4P; and analyze the structural basis of selective PI4K inhibitors for the treatment of human diseases in this review. Herein, this review mainly summarizes the developments in the structure and enzyme activity of PI4K inhibitors.
Collapse
Affiliation(s)
- Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Yanting Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Huamin Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Mengjie Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Dengqin He
- School of Biotechnology and Health Science, Wuyi University, 22 Dongchengcun, Jiangmen, Guangdong, 529020, China
| | - Wen Guan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China.
| |
Collapse
|
5
|
Guo S, Xun M, Fan T, Li X, Yao H, Li X, Wu B, Yang H, Ma C, Wang H. Construction of coxsackievirus B5 viruses with luciferase reporters and their applications in vitro and in vivo. Virol Sin 2023; 38:549-558. [PMID: 37244518 PMCID: PMC10436053 DOI: 10.1016/j.virs.2023.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023] Open
Abstract
Coxsackievirus belongs to the Picornaviridae family and is one of the major pathogens that cause hand, foot and mouth disease (HFMD) in infants and children with potential serious complications and even deaths. The pathogenesis of this virus is not fully elucidated and no vaccine or antiviral drug has been approved. In this study, a full-length infectious cDNA clone of coxsackievirus B5 virus was assembled and the recombinant virus displayed similar growth kinetics and ability to cause cytopathic effects as the parental virus. Luciferase reporter was then incorporated to generate both full-length and subgenomic replicon (SGR) reporter viruses. The full-length reporter virus is suitable for high-throughput antiviral screening, while the SGR is a useful tool to study viral-host interactions. More importantly, the full-length reporter virus has also been shown to infect the suckling mouse model and the reporter gene could be detected using an in vivo imaging system, thus providing a powerful tool to track viruses in vivo. In summary, we have generated coxsackievirus B5 reporter viruses and provided unique tools for studying virus-host interactions in vitro and in vivo as well as for high-throughput screenings (HTS) to identify novel antivirals.
Collapse
Affiliation(s)
- Shangrui Guo
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Meng Xun
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Tingting Fan
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xinyu Li
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Haoyan Yao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaozhen Li
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Bo Wu
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Hang Yang
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Chaofeng Ma
- Department of Viral Diseases Laboratory, Xi'an Center for Disease Control and Prevention, Xi'an, 710061, China
| | - Hongliang Wang
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
6
|
Bura A, Čabrijan S, Đurić I, Bruketa T, Jurak Begonja A. A Plethora of Functions Condensed into Tiny Phospholipids: The Story of PI4P and PI(4,5)P 2. Cells 2023; 12:1411. [PMID: 37408244 PMCID: PMC10216963 DOI: 10.3390/cells12101411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Phosphoinositides (PIs) are small, phosphorylated lipids that serve many functions in the cell. They regulate endo- and exocytosis, vesicular trafficking, actin reorganization, and cell mobility, and they act as signaling molecules. The most abundant PIs in the cell are phosphatidylinositol-4-monophosphate (PI4P) and phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. PI4P is mostly localized at the Golgi apparatus where it regulates the anterograde trafficking from the Golgi apparatus to the plasma membrane (PM), but it also localizes at the PM. On the other hand, the main localization site of PI(4,5)P2 is the PM where it regulates the formation of endocytic vesicles. The levels of PIs are regulated by many kinases and phosphatases. Four main kinases phosphorylate the precursor molecule phosphatidylinositol into PI4P, divided into two classes (PI4KIIα, PI4KIIβ, PI4KIIIα, and PI4KIIIβ), and three main kinases phosphorylate PI4P to form PI(4,5)P2 (PI4P5KIα, PI4P5KIβ, and PI4P5KIγ). In this review, we discuss the localization and function of the kinases that produce PI4P and PI(4,5)P2, as well as the localization and function of their product molecules with an overview of tools for the detection of these PIs.
Collapse
Affiliation(s)
| | | | | | | | - Antonija Jurak Begonja
- Laboratory of Hematopoiesis, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia
| |
Collapse
|
7
|
Burke JE, Triscott J, Emerling BM, Hammond GRV. Beyond PI3Ks: targeting phosphoinositide kinases in disease. Nat Rev Drug Discov 2023; 22:357-386. [PMID: 36376561 PMCID: PMC9663198 DOI: 10.1038/s41573-022-00582-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Lipid phosphoinositides are master regulators of almost all aspects of a cell's life and death and are generated by the tightly regulated activity of phosphoinositide kinases. Although extensive efforts have focused on drugging class I phosphoinositide 3-kinases (PI3Ks), recent years have revealed opportunities for targeting almost all phosphoinositide kinases in human diseases, including cancer, immunodeficiencies, viral infection and neurodegenerative disease. This has led to widespread efforts in the clinical development of potent and selective inhibitors of phosphoinositide kinases. This Review summarizes our current understanding of the molecular basis for the involvement of phosphoinositide kinases in disease and assesses the preclinical and clinical development of phosphoinositide kinase inhibitors.
Collapse
Affiliation(s)
- John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Joanna Triscott
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Ljubin-Sternak S, Meštrović T. Rhinovirus—A True Respiratory Threat or a Common Inconvenience of Childhood? Viruses 2023; 15:v15040825. [PMID: 37112805 PMCID: PMC10144685 DOI: 10.3390/v15040825] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
A decade-long neglect of rhinovirus as an important agent of disease in humans was primarily due to the fact that they were seen as less virulent and capable of causing only mild respiratory infections such as common cold. However, with an advent of molecular diagnostic methods, an increasing number of reports placed them among the pathogens found in the lower respiratory tract and recognized them as important risk factors for asthma-related pathology in childhood. As the spread of rhinovirus was not severely affected by the implementation of social distancing and other measures during the coronavirus disease 2019 (COVID-19) pandemic, its putative pathogenic role has become even more evident in recent years. By concentrating on children as the most vulnerable group, in this narrative review we first present classification and main traits of rhinovirus, followed by epidemiology and clinical presentation, risk factors for severe forms of the disease, long-term complications and the pathogenesis of asthma, as well as a snapshot of treatment trials and studies. Recent evidence suggests that the rhinovirus is a significant contributor to respiratory illness in both high-risk and low-risk populations of children.
Collapse
|
9
|
McPhail JA, Burke JE. Molecular mechanisms of PI4K regulation and their involvement in viral replication. Traffic 2023; 24:131-145. [PMID: 35579216 DOI: 10.1111/tra.12841] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/07/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
Lipid phosphoinositides are master signaling molecules in eukaryotic cells and key markers of organelle identity. Because of these important roles, the kinases and phosphatases that generate phosphoinositides must be tightly regulated. Viruses can manipulate this regulation, with the Type III phosphatidylinositol 4-kinases (PI4KA and PI4KB) being hijacked by many RNA viruses to mediate their intracellular replication through the formation of phosphatidylinositol 4-phosphate (PI4P)-enriched replication organelles (ROs). Different viruses have evolved unique approaches toward activating PI4K enzymes to form ROs, through both direct binding of PI4Ks and modulation of PI4K accessory proteins. This review will focus on PI4KA and PI4KB and discuss their roles in signaling, functions in membrane trafficking and manipulation by viruses. Our focus will be the molecular basis for how PI4KA and PI4KB are activated by both protein-binding partners and post-translational modifications, with an emphasis on understanding the different molecular mechanisms viruses have evolved to usurp PI4Ks. We will also discuss the chemical tools available to study the role of PI4Ks in viral infection.
Collapse
Affiliation(s)
- Jacob A McPhail
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Lysosome exocytosis is required for mitosis in mammalian cells. Biochem Biophys Res Commun 2022; 626:211-219. [PMID: 35998546 DOI: 10.1016/j.bbrc.2022.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022]
Abstract
Mitosis, the accurate segregation of duplicated genetic material into what will become two new daughter cells, is accompanied by extensive membrane remodelling and membrane trafficking activities. Early in mitosis, adherent cells partially detach from the substratum, round up and their surface area decreases. This likely results from an endocytic uptake of plasma membrane material. As cells enter cytokinesis they re-adhere, flatten and exhibit an associated increase in surface area. The identity of the membrane donor for this phase of mitosis remains unclear. In this paper we demonstrate how lysosomes dynamically redistribute during mitosis and exocytose. Antagonism of lysosomal exocytosis by pharmacological and genetic approaches causes mitosis failure in a significant proportion of cells. We speculate that either lysosomal membrane or luminal content release, possibly both, are therefore required for normal mitosis progression. These findings are important as they reveal a new process required for successful cell division.
Collapse
|
11
|
Crivelli SM, Giovagnoni C, Zhu Z, Tripathi P, Elsherbini A, Quadri Z, Pu J, Zhang L, Ferko B, Berkes D, Spassieva SD, Martinez‐Martinez P, Bieberich E. Function of ceramide transfer protein for biogenesis and sphingolipid composition of extracellular vesicles. J Extracell Vesicles 2022; 11:e12233. [PMID: 35642450 PMCID: PMC9156972 DOI: 10.1002/jev2.12233] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/16/2022] Open
Abstract
The formation of extracellular vesicles (EVs) is induced by the sphingolipid ceramide. How this pathway is regulated is not entirely understood. Here, we report that the ceramide transport protein (CERT) mediates a non-vesicular transport of ceramide between the endoplasmic reticulum (ER) and the multivesicular endosome at contact sites. The process depends on the interaction of CERT's PH domain with PI4P generated by PI4KIIα at endosomes. Furthermore, a complex is formed between the START domain of CERT, which carries ceramide, and the Tsg101 protein, which is part of the endosomal sorting complex required for transport (ESCRT-I). Inhibition of ceramide biosynthesis reduces CERT-Tsg101 complex formation. Overexpression of CERT increases EV secretion while its inhibition reduces EV formation and the concentration of ceramides and sphingomyelins in EVs. In conclusion, we discovered a function of CERT in regulating the sphingolipid composition and biogenesis of EVs, which links ceramide to the ESCRT-dependent pathway.
Collapse
Affiliation(s)
- Simone M. Crivelli
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
- Veterans Affairs Medical CenterLexingtonKentuckyUSA
| | - Caterina Giovagnoni
- Department of Psychiatry and NeuropsychologySchool for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Zhihui Zhu
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Priyanka Tripathi
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
- Veterans Affairs Medical CenterLexingtonKentuckyUSA
| | - Ahmed Elsherbini
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Zainuddin Quadri
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
- Veterans Affairs Medical CenterLexingtonKentuckyUSA
| | - Jian Pu
- Department of SurgeryUniversity of KentuckyLexingtonKentuckyUSA
| | - Liping Zhang
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
- Veterans Affairs Medical CenterLexingtonKentuckyUSA
| | - Branislav Ferko
- Department of Organic ChemistrySlovak University of TechnologyBratislavaSlovak Republic
| | - Dusan Berkes
- Department of Organic ChemistrySlovak University of TechnologyBratislavaSlovak Republic
| | | | - Pilar Martinez‐Martinez
- Department of Psychiatry and NeuropsychologySchool for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Erhard Bieberich
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
- Veterans Affairs Medical CenterLexingtonKentuckyUSA
| |
Collapse
|
12
|
Bajaj R, Warner AN, Fradette JF, Gibbons DL. Dance of The Golgi: Understanding Golgi Dynamics in Cancer Metastasis. Cells 2022; 11:1484. [PMID: 35563790 PMCID: PMC9102947 DOI: 10.3390/cells11091484] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/17/2022] Open
Abstract
The Golgi apparatus is at the center of protein processing and trafficking in normal cells. Under pathological conditions, such as in cancer, aberrant Golgi dynamics alter the tumor microenvironment and the immune landscape, which enhances the invasive and metastatic potential of cancer cells. Among these changes in the Golgi in cancer include altered Golgi orientation and morphology that contribute to atypical Golgi function in protein trafficking, post-translational modification, and exocytosis. Golgi-associated gene mutations are ubiquitous across most cancers and are responsible for modifying Golgi function to become pro-metastatic. The pharmacological targeting of the Golgi or its associated genes has been difficult in the clinic; thus, studying the Golgi and its role in cancer is critical to developing novel therapeutic agents that limit cancer progression and metastasis. In this review, we aim to discuss how disrupted Golgi function in cancer cells promotes invasion and metastasis.
Collapse
Affiliation(s)
- Rakhee Bajaj
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Amanda N. Warner
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jared F. Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
13
|
Lesage S, Chazal M, Beauclair G, Batalie D, Cerboni S, Couderc E, Lescure A, Del Nery E, Tangy F, Martin A, Manel N, Jouvenet N. Discovery of Genes that Modulate Flavivirus Replication in an Interferon-Dependent Manner. J Mol Biol 2022; 434:167277. [PMID: 34599939 PMCID: PMC8480147 DOI: 10.1016/j.jmb.2021.167277] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022]
Abstract
Establishment of the interferon (IFN)-mediated antiviral state provides a crucial initial line of defense against viral infection. Numerous genes that contribute to this antiviral state remain to be identified. Using a loss-of-function strategy, we screened an original library of 1156 siRNAs targeting 386 individual curated human genes in stimulated microglial cells infected with Zika virus (ZIKV), an emerging RNA virus that belongs to the flavivirus genus. The screen recovered twenty-one potential host proteins that modulate ZIKV replication in an IFN-dependent manner, including the previously known IFITM3 and LY6E. Further characterization contributed to delineate the spectrum of action of these genes towards other pathogenic RNA viruses, including Hepatitis C virus and SARS-CoV-2. Our data revealed that APOL3 acts as a proviral factor for ZIKV and several other related and unrelated RNA viruses. In addition, we showed that MTA2, a chromatin remodeling factor, possesses potent flavivirus-specific antiviral functions induced by IFN. Our work identified previously unrecognized genes that modulate the replication of RNA viruses in an IFN-dependent manner, opening new perspectives to target weakness points in the life cycle of these viruses.
Collapse
Affiliation(s)
- Sarah Lesage
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus Sensing and Signaling Unit, F-75015 Paris, France
| | - Maxime Chazal
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus Sensing and Signaling Unit, F-75015 Paris, France
| | - Guillaume Beauclair
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus Sensing and Signaling Unit, F-75015 Paris, France; Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Damien Batalie
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Molecular Genetics of RNA Viruses Unit, F-75015 Paris, France
| | - Silvia Cerboni
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Elodie Couderc
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus Sensing and Signaling Unit, F-75015 Paris, France; Institut Pasteur, Université de Paris, CNRS UMR 2000, Insect-Virus Interactions Unit, F-75015 Paris, France
| | - Aurianne Lescure
- Institut Curie, PSL Research University, Department of Translational Research-Biophenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Elaine Del Nery
- Institut Curie, PSL Research University, Department of Translational Research-Biophenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Frédéric Tangy
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Viral Genomics and Vaccination Unit, F-75015 Paris, France
| | - Annette Martin
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Molecular Genetics of RNA Viruses Unit, F-75015 Paris, France
| | - Nicolas Manel
- Institut Curie, PSL Research University, INSERM U932, Paris, France. https://twitter.com/NicolasManellab
| | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus Sensing and Signaling Unit, F-75015 Paris, France.
| |
Collapse
|
14
|
Li YP, Mikrani R, Hu YF, Faran Ashraf Baig MM, Abbas M, Akhtar F, Xu M. Research progress of phosphatidylinositol 4-kinase and its inhibitors in inflammatory diseases. Eur J Pharmacol 2021; 907:174300. [PMID: 34217706 DOI: 10.1016/j.ejphar.2021.174300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023]
Abstract
Phosphatidylinositol 4-kinase (PI4K) is a lipid kinase that can catalyze the transfer of phosphate group from ATP to the inositol ring of phosphatidylinositol (PtdIns) resulting in the phosphorylation of PtdIns at 4-OH sites, to generate phosphatidylinositol 4-phosphate (PI4P). Studies on biological functions reveal that PI4K is closely related to the occurrence and development of various inflammatory diseases such as obesity, cancer, viral infections, malaria, Alzheimer's disease, etc. PI4K-related inhibitors have been found to have the effects of inhibiting virus replication, anti-cancer, treating malaria and reducing rejection in organ transplants, among which MMV390048, an anti-malaria drug, has entered phase II clinical trial. This review discusses the classification, structure, distribution and related inhibitors of PI4K and their role in the progression of cancer, viral replication, and other inflammation induced diseases to explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Yan-Ping Li
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Reyaj Mikrani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Yi-Fan Hu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mirza Muhammad Faran Ashraf Baig
- Laboratory of Biomedical Engineering for Novel Bio-functional and Pharmaceutical Nano-materials, Prince Philip Dental Hospital, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Muhammad Abbas
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Fahad Akhtar
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
15
|
Design, synthesis, and evaluation of transition-state analogs as inhibitors of the bacterial quorum sensing autoinducer synthase CepI. Bioorg Med Chem Lett 2021; 39:127873. [PMID: 33631369 DOI: 10.1016/j.bmcl.2021.127873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/28/2020] [Accepted: 02/09/2021] [Indexed: 11/23/2022]
Abstract
Quorum sensing is a bacterial signaling system that involves the synthesis, secretion and detection of signal molecules called autoinducers. The main autoinducer in Gram-negative bacteria are acylated homoserine lactones, produced by the LuxI family of autoinducer synthases and detected by the LuxR family of autoinducer receptors. Quorum sensing allows for changes in gene expression and bacterial behaviors in a coordinated, cell density dependent manner. Quorum sensing controls the expression of virulence factors in some human pathogens, making quorum sensing an antibacterial drug target. Here we describe the design and synthesis of transition-state analogs of the autoinducer synthase enzymatic reaction and the evaluation of these compounds as inhibitors of the synthase CepI. One such compound potently inhibits CepI and constitutes a new type of inhibitor against this underdeveloped antibacterial target.
Collapse
|
16
|
Yesudhas D, Srivastava A, Gromiha MM. COVID-19 outbreak: history, mechanism, transmission, structural studies and therapeutics. Infection 2021; 49:199-213. [PMID: 32886331 PMCID: PMC7472674 DOI: 10.1007/s15010-020-01516-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE The coronavirus outbreak emerged as a severe pandemic, claiming more than 0.8 million lives across the world and raised a major global health concern. We survey the history and mechanism of coronaviruses, and the structural characteristics of the spike protein and its key residues responsible for human transmissions. METHODS We have carried out a systematic review to summarize the origin, transmission and etiology of COVID-19. The structural analysis of the spike protein and its disordered residues explains the mechanism of the viral transmission. A meta-data analysis of the therapeutic compounds targeting the SARS-CoV-2 is also included. RESULTS Coronaviruses can cross the species barrier and infect humans with unexpected consequences for public health. The transmission rate of SARS-CoV-2 infection is higher compared to that of the closely related SARS-CoV infections. In SARS-CoV-2 infection, intrinsically disordered regions are observed at the interface of the spike protein and ACE2 receptor, providing a shape complementarity to the complex. The key residues of the spike protein have stronger binding affinity with ACE2. These can be probable reasons for the higher transmission rate of SARS-CoV-2. In addition, we have also discussed the therapeutic compounds and the vaccines to target SARS-CoV-2, which can help researchers to develop effective drugs/vaccines for COVID-19. The overall history and mechanism of entry of SARS-CoV-2 along with structural study of spike-ACE2 complex provide insights to understand disease pathogenesis and development of vaccines and drugs.
Collapse
Affiliation(s)
- Dhanusha Yesudhas
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Ambuj Srivastava
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
- School of Computing, Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.
| |
Collapse
|
17
|
Tan X, Banerjee P, Pham EA, Rutaganira FUN, Basu K, Bota-Rabassedas N, Guo HF, Grzeskowiak CL, Liu X, Yu J, Shi L, Peng DH, Rodriguez BL, Zhang J, Zheng V, Duose DY, Solis LM, Mino B, Raso MG, Behrens C, Wistuba II, Scott KL, Smith M, Nguyen K, Lam G, Choong I, Mazumdar A, Hill JL, Gibbons DL, Brown PH, Russell WK, Shokat K, Creighton CJ, Glenn JS, Kurie JM. PI4KIIIβ is a therapeutic target in chromosome 1q-amplified lung adenocarcinoma. Sci Transl Med 2021; 12:12/527/eaax3772. [PMID: 31969487 DOI: 10.1126/scitranslmed.aax3772] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/14/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022]
Abstract
Heightened secretion of protumorigenic effector proteins is a feature of malignant cells. Yet, the molecular underpinnings and therapeutic implications of this feature remain unclear. Here, we identify a chromosome 1q region that is frequently amplified in diverse cancer types and encodes multiple regulators of secretory vesicle biogenesis and trafficking, including the Golgi-dedicated enzyme phosphatidylinositol (PI)-4-kinase IIIβ (PI4KIIIβ). Molecular, biochemical, and cell biological studies show that PI4KIIIβ-derived PI-4-phosphate (PI4P) synthesis enhances secretion and accelerates lung adenocarcinoma progression by activating Golgi phosphoprotein 3 (GOLPH3)-dependent vesicular release from the Golgi. PI4KIIIβ-dependent secreted factors maintain 1q-amplified cancer cell survival and influence prometastatic processes in the tumor microenvironment. Disruption of this functional circuitry in 1q-amplified cancer cells with selective PI4KIIIβ antagonists induces apoptosis and suppresses tumor growth and metastasis. These results support a model in which chromosome 1q amplifications create a dependency on PI4KIIIβ-dependent secretion for cancer cell survival and tumor progression.
Collapse
Affiliation(s)
- Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Priyam Banerjee
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Edward A Pham
- Departments of Medicine and Microbiology & Immunology, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Florentine U N Rutaganira
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kaustabh Basu
- Departments of Medicine and Microbiology & Immunology, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Neus Bota-Rabassedas
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hou-Fu Guo
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Caitlin L Grzeskowiak
- Department of Molecular and Human Genetics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin Liu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiang Yu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Shi
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David H Peng
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - B Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiaqi Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Veronica Zheng
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dzifa Y Duose
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luisa M Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Barbara Mino
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carmen Behrens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenneth L Scott
- Department of Molecular and Human Genetics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark Smith
- Departments of Medicine and Microbiology & Immunology, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Stanford ChEM-H Medicinal Chemistry Knowledge Center, Stanford University, CA 94305, USA
| | - Khanh Nguyen
- Departments of Medicine and Microbiology & Immunology, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Grace Lam
- Departments of Medicine and Microbiology & Immunology, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ingrid Choong
- Departments of Medicine and Microbiology & Immunology, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Abhijit Mazumdar
- Department of Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jamal L Hill
- Department of Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Powel H Brown
- Department of Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kevan Shokat
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chad J Creighton
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA. .,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey S Glenn
- Departments of Medicine and Microbiology & Immunology, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA. .,Veterans Administration Medical Center, Palo Alto, CA 94304, USA
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Li X, Wang M, Cheng A, Wen X, Ou X, Mao S, Gao Q, Sun D, Jia R, Yang Q, Wu Y, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Chen X. Enterovirus Replication Organelles and Inhibitors of Their Formation. Front Microbiol 2020; 11:1817. [PMID: 32973693 PMCID: PMC7468505 DOI: 10.3389/fmicb.2020.01817] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022] Open
Abstract
Enteroviral replication reorganizes the cellular membrane. Upon infection, viral proteins and hijacked host factors generate unique structures called replication organelles (ROs) to replicate their viral genomes. ROs promote efficient viral genome replication, coordinate the steps of the viral replication cycle, and protect viral RNA from host immune responses. More recent researches have focused on the ultrastructure structures, formation mechanism, and functions in the virus life cycle of ROs. Dynamic model of enterovirus ROs structure is proposed, and the secretory pathway, the autophagy pathway, and lipid metabolism are found to be associated in the formation of ROs. With deeper understanding of ROs, some compounds have been found to show inhibitory effects on viral replication by targeting key proteins in the process of ROs formation. Here, we review the recent findings concerning the role, morphology, biogenesis, formation mechanism, and inhibitors of enterovirus ROs.
Collapse
Affiliation(s)
- Xinhong Li
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
19
|
Colodette NM, Franco LS, Maia RC, Fokoue HH, Sant'Anna CMR, Barreiro EJ. Novel phosphatidylinositol 4-kinases III beta (PI4KIIIβ) inhibitors discovered by virtual screening using free energy models. J Comput Aided Mol Des 2020; 34:1091-1103. [PMID: 32601839 PMCID: PMC7324290 DOI: 10.1007/s10822-020-00327-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
Herein, the LASSBio Chemical Library is presented as a valuable source of compounds for screening to identify hits suitable for subsequent hit-to-lead optimization stages. A feature of the LASSBio Chemical Library worth highlighting is the fact that it is a smart library designed by medicinal chemists with pharmacological activity as the main priority. The great majority of the compounds part of this library have shown in vivo activity in animal models, which is an indication that they possess overall favorable bioavailability properties and, hence, adequate pharmacokinetic profiles. This, in turn, is supported by the fact that approximately 85% of the compounds are compliant with Lipinski's rule of five and ca. 95% are compliant with Veber's rules, two important guidelines for oral bioavailability. In this work it is presented a virtual screening methodology combining a pharmacophore-based model and an empirical Gibbs free energy-based model for the ligand-protein interaction to explore the LASSBio Chemical Library as a source of new hits for the inhibition of the phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ) enzyme, which is related to the development of viral infections (including enteroviruses, SARS coronavirus, and hepatitis C virus), cancers and neurological diseases. The approach resulted in the identification of two hits, LASSBio-1799 (7) and LASSBio-1814 (10), which inhibited the target enzyme with IC50 values of 3.66 μM and IC50 and 6.09 μM, respectively. This study also enabled the determination of the structural requirements for interactions with the active site of PI4KIIIβ, demonstrating the importance of both acceptor and donor hydrogen bonding groups for forming interactions with binding site residues Val598 and Lys549.
Collapse
Affiliation(s)
- Natalie M Colodette
- LASSBio - Laboratório de Avaliação e Síntese de Substâncias Bioativas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Avenida Carlos Chagas Filho 373, Rio de Janeiro, RJ, ZIP 21941-910, Brazil.,Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Lucas S Franco
- LASSBio - Laboratório de Avaliação e Síntese de Substâncias Bioativas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Avenida Carlos Chagas Filho 373, Rio de Janeiro, RJ, ZIP 21941-910, Brazil.,Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Rodolfo C Maia
- LASSBio - Laboratório de Avaliação e Síntese de Substâncias Bioativas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Avenida Carlos Chagas Filho 373, Rio de Janeiro, RJ, ZIP 21941-910, Brazil
| | - Harold H Fokoue
- LASSBio - Laboratório de Avaliação e Síntese de Substâncias Bioativas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Avenida Carlos Chagas Filho 373, Rio de Janeiro, RJ, ZIP 21941-910, Brazil
| | - Carlos Mauricio R Sant'Anna
- LASSBio - Laboratório de Avaliação e Síntese de Substâncias Bioativas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Avenida Carlos Chagas Filho 373, Rio de Janeiro, RJ, ZIP 21941-910, Brazil.,Departamento de Química Fundamental, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Rodovia BR465, km 7, Seropédica, RJ, ZIP 23897-000, Brazil
| | - Eliezer J Barreiro
- LASSBio - Laboratório de Avaliação e Síntese de Substâncias Bioativas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Avenida Carlos Chagas Filho 373, Rio de Janeiro, RJ, ZIP 21941-910, Brazil. .,Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro, RJ, Brazil. .,Programa de Pesquisas em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
20
|
Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, O'Meara MJ, Guo JZ, Swaney DL, Tummino TA, Huettenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M, Kim M, Haas P, Polacco BJ, Braberg H, Fabius JM, Eckhardt M, Soucheray M, Bennett MJ, Cakir M, McGregor MJ, Li Q, Naing ZZC, Zhou Y, Peng S, Kirby IT, Melnyk JE, Chorba JS, Lou K, Dai SA, Shen W, Shi Y, Zhang Z, Barrio-Hernandez I, Memon D, Hernandez-Armenta C, Mathy CJP, Perica T, Pilla KB, Ganesan SJ, Saltzberg DJ, Ramachandran R, Liu X, Rosenthal SB, Calviello L, Venkataramanan S, Liboy-Lugo J, Lin Y, Wankowicz SA, Bohn M, Sharp PP, Trenker R, Young JM, Cavero DA, Hiatt J, Roth TL, Rathore U, Subramanian A, Noack J, Hubert M, Roesch F, Vallet T, Meyer B, White KM, Miorin L, Rosenberg OS, Verba KA, Agard D, Ott M, Emerman M, Ruggero D, García-Sastre A, Jura N, von Zastrow M, Taunton J, Ashworth A, Schwartz O, Vignuzzi M, d'Enfert C, Mukherjee S, Jacobson M, Malik HS, Fujimori DG, Ideker T, Craik CS, Floor S, Fraser JS, Gross J, Sali A, Kortemme T, Beltrao P, Shokat K, Shoichet BK, Krogan NJ. A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.03.22.002386. [PMID: 32511329 PMCID: PMC7239059 DOI: 10.1101/2020.03.22.002386] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 290,000 people since the end of 2019, killed over 12,000, and caused worldwide social and economic disruption1,2. There are currently no antiviral drugs with proven efficacy nor are there vaccines for its prevention. Unfortunately, the scientific community has little knowledge of the molecular details of SARS-CoV-2 infection. To illuminate this, we cloned, tagged and expressed 26 of the 29 viral proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), which identified 332 high confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 67 druggable human proteins or host factors targeted by 69 existing FDA-approved drugs, drugs in clinical trials and/or preclinical compounds, that we are currently evaluating for efficacy in live SARS-CoV-2 infection assays. The identification of host dependency factors mediating virus infection may provide key insights into effective molecular targets for developing broadly acting antiviral therapeutics against SARS-CoV-2 and other deadly coronavirus strains.
Collapse
Affiliation(s)
- David E Gordon
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Gwendolyn M Jang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Mehdi Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Jiewei Xu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Kirsten Obernier
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey Z Guo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Danielle L Swaney
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Tia A Tummino
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - Ruth Huettenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Robyn M Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Alicia L Richards
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Beril Tutuncuoglu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Helene Foussard
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Jyoti Batra
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Kelsey Haas
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Maya Modak
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Minkyu Kim
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Paige Haas
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Benjamin J Polacco
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Hannes Braberg
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Jacqueline M Fabius
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Manon Eckhardt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Margaret Soucheray
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Melanie J Bennett
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Merve Cakir
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Michael J McGregor
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Qiongyu Li
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Zun Zar Chi Naing
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Yuan Zhou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Shiming Peng
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - Ilsa T Kirby
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - James E Melnyk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - John S Chorba
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - Kevin Lou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - Shizhong A Dai
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - Wenqi Shen
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - Ying Shi
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - Ziyang Zhang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - Inigo Barrio-Hernandez
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Danish Memon
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Claudia Hernandez-Armenta
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Christopher J P Mathy
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
- The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
| | - Tina Perica
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - Kala B Pilla
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - Sai J Ganesan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - Daniel J Saltzberg
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - Rakesh Ramachandran
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - Xi Liu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - Sara B Rosenthal
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego
| | - Lorenzo Calviello
- Department of Cell and Tissue Biology, University of California, San Francisco
| | | | - Jose Liboy-Lugo
- Department of Cell and Tissue Biology, University of California, San Francisco
| | - Yizhu Lin
- Department of Cell and Tissue Biology, University of California, San Francisco
| | - Stephanie A Wankowicz
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- Biophysics Graduate Program, University of California, San Francisco
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - Markus Bohn
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - Phillip P Sharp
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Raphael Trenker
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center
| | - Devin A Cavero
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Joseph Hiatt
- Medical Scientist Training Program, University of California, San Francisco, CA 94143, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Theodore L Roth
- Medical Scientist Training Program, University of California, San Francisco, CA 94143, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ujjwal Rathore
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Advait Subramanian
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, UC San Francisco
| | - Julia Noack
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, UC San Francisco
| | - Mathieu Hubert
- Virus and Immunity Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Ferdinand Roesch
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Björn Meyer
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Kris M White
- Department for Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Lisa Miorin
- Department for Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Oren S Rosenberg
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Chan-Zuckerberg Biohub
| | - Kliment A Verba
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - David Agard
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- Biochemistry & Biophysics and Quantitative Biosciences Institute UCSF 600 16th St San Francisco, CA 94143
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98103
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Adolfo García-Sastre
- Department for Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Natalia Jura
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Mark von Zastrow
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Psychiatry, San Francisco, CA, 94158, USA
| | - Jack Taunton
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Alan Ashworth
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, USA
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Christophe d'Enfert
- Direction Scientifique, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Shaeri Mukherjee
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, UC San Francisco
| | - Matt Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center
| | - Danica G Fujimori
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California San Diego
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, USA
| | - Stephen Floor
- Department of Cell and Tissue Biology, University of California, San Francisco
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, USA
| | - James S Fraser
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - John Gross
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - Andrej Sali
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - Tanja Kortemme
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
- The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
| | - Pedro Beltrao
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Kevan Shokat
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - Brian K Shoichet
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - Nevan J Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| |
Collapse
|
21
|
Jackman JA, Cho NJ. Supported Lipid Bilayer Formation: Beyond Vesicle Fusion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1387-1400. [PMID: 31990559 DOI: 10.1021/acs.langmuir.9b03706] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Supported lipid bilayers (SLBs) are cell-membrane-mimicking platforms that can be formed on solid surfaces and integrated with a wide range of surface-sensitive measurement techniques. SLBs are useful for unravelling details of fundamental membrane biology and biophysics as well as for various medical, biotechnology, and environmental science applications. Thus, there is high interest in developing simple and robust methods to fabricate SLBs. Currently, vesicle fusion is a popular method to form SLBs and involves the adsorption and spontaneous rupture of lipid vesicles on a solid surface. However, successful vesicle fusion depends on high-quality vesicle preparation, and it typically works with a narrow range of material supports and lipid compositions. In this Feature Article, we summarize current progress in developing two new SLB fabrication techniques termed the solvent-assisted lipid bilayer (SALB) and bicelle methods, which have compelling advantages such as simple sample preparation and compatibility with a wide range of material supports and lipid compositions. The molecular self-assembly principles underpinning the two strategies and important experimental parameters are critically discussed, and recent application examples are presented. Looking forward, we envision that these emerging SLB fabrication strategies can be widely adopted by specialists and nonspecialists alike, paving the way to enriching our understanding of lipid membrane properties and realizing new application possibilities.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Chemical Engineering , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| |
Collapse
|
22
|
McPhail JA, Burke JE. Drugging the Phosphoinositide 3-Kinase (PI3K) and Phosphatidylinositol 4-Kinase (PI4K) Family of Enzymes for Treatment of Cancer, Immune Disorders, and Viral/Parasitic Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:203-222. [DOI: 10.1007/978-3-030-50621-6_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Chahal V, Nirwan S, Kakkar R. Combined approach of homology modeling, molecular dynamics, and docking: computer-aided drug discovery. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2019-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
With the continuous development in software, algorithms, and increase in computer speed, the field of computer-aided drug design has been witnessing reduction in the time and cost of the drug designing process. Structure based drug design (SBDD), which is based on the 3D structure of the enzyme, is helping in proposing novel inhibitors. Although a number of crystal structures are available in various repositories, there are various proteins whose experimental crystallization is difficult. In such cases, homology modeling, along with the combined application of MD and docking, helps in establishing a reliable 3D structure that can be used for SBDD. In this review, we have reported recent works, which have employed these three techniques for generating structures and further proposing novel inhibitors, for cytoplasmic proteins, membrane proteins, and metal containing proteins. Also, we have discussed these techniques in brief in terms of the theory involved and the various software employed. Hence, this review can give a brief idea about using these tools specifically for a particular problem.
Collapse
|
24
|
Chalupska D, Różycki B, Klima M, Boura E. Structural insights into Acyl-coenzyme A binding domain containing 3 (ACBD3) protein hijacking by picornaviruses. Protein Sci 2019; 28:2073-2079. [PMID: 31583778 DOI: 10.1002/pro.3738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 01/20/2023]
Abstract
Many picornaviruses hijack the Golgi resident Acyl-coenzyme A binding domain containing 3 (ACBD3) protein in order to recruit the phosphatidylinositol 4-kinase B (PI4KB) to viral replication organelles (ROs). PI4KB, once recruited and activated by ACBD3 protein, produces the lipid phosphatidylinositol 4-phosphate (PI4P), which is a key step in the biogenesis of viral ROs. To do so, picornaviruses use their small nonstructural protein 3A that binds the Golgi dynamics domain of the ACBD3 protein. Here, we present the analysis of the highly flexible ACBD3 proteins and the viral 3A protein in solution using small-angle X-ray scattering and computer simulations. Our analysis revealed that both the ACBD3 protein and the 3A:ACBD3 protein complex have an extended and flexible conformation in solution.
Collapse
Affiliation(s)
- Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Bartosz Różycki
- Institute of Physics of the Polish Academy of Sciences, Warsaw, Poland
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
25
|
The Great Escape: how phosphatidylinositol 4-kinases and PI4P promote vesicle exit from the Golgi (and drive cancer). Biochem J 2019; 476:2321-2346. [DOI: 10.1042/bcj20180622] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
Abstract
Phosphatidylinositol 4-phosphate (PI4P) is a membrane glycerophospholipid and a major regulator of the characteristic appearance of the Golgi complex as well as its vesicular trafficking, signalling and metabolic functions. Phosphatidylinositol 4-kinases, and in particular the PI4KIIIβ isoform, act in concert with PI4P to recruit macromolecular complexes to initiate the biogenesis of trafficking vesicles for several Golgi exit routes. Dysregulation of Golgi PI4P metabolism and the PI4P protein interactome features in many cancers and is often associated with tumour progression and a poor prognosis. Increased expression of PI4P-binding proteins, such as GOLPH3 or PITPNC1, induces a malignant secretory phenotype and the release of proteins that can remodel the extracellular matrix, promote angiogenesis and enhance cell motility. Aberrant Golgi PI4P metabolism can also result in the impaired post-translational modification of proteins required for focal adhesion formation and cell–matrix interactions, thereby potentiating the development of aggressive metastatic and invasive tumours. Altered expression of the Golgi-targeted PI 4-kinases, PI4KIIIβ, PI4KIIα and PI4KIIβ, or the PI4P phosphate Sac1, can also modulate oncogenic signalling through effects on TGN-endosomal trafficking. A Golgi trafficking role for a PIP 5-kinase has been recently described, which indicates that PI4P is not the only functionally important phosphoinositide at this subcellular location. This review charts new developments in our understanding of phosphatidylinositol 4-kinase function at the Golgi and how PI4P-dependent trafficking can be deregulated in malignant disease.
Collapse
|
26
|
Phosphoregulation of the oncogenic protein regulator of cytokinesis 1 (PRC1) by the atypical CDK16/CCNY complex. Exp Mol Med 2019; 51:1-17. [PMID: 30992425 PMCID: PMC6467995 DOI: 10.1038/s12276-019-0242-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/11/2018] [Accepted: 01/02/2019] [Indexed: 01/03/2023] Open
Abstract
CDK16 (also known as PCTAIRE1 or PCTK1) is an atypical member of the cyclin-dependent kinase (CDK) family that forms an active complex with cyclin Y (CCNY). Although both proteins have been recently implicated in cancer pathogenesis, it is still unclear how the CDK16/CCNY complex exerts its biological activity. To understand the CDK16/CCNY network, we used complementary proteomic approaches to identify potential substrates of this complex. We identified several candidates implicating the CDK16/CCNY complex in cytoskeletal dynamics, and we focused on the microtubule-associated protein regulator of cytokinesis (PRC1), an essential protein for cell division that organizes antiparallel microtubules and whose deregulation may drive genomic instability in cancer. Using analog-sensitive (AS) CDK16 generated by CRISPR-Cas9 mutagenesis in 293T cells, we found that specific inhibition of CDK16 induces PRC1 dephosphorylation at Thr481 and delocalization to the nucleus during interphase. The observation that CDK16 inhibition and PRC1 downregulation exhibit epistatic effects on cell viability confirms that these proteins can act through a single pathway. In conclusion, we identified PRC1 as the first substrate of the CDK16/CCNY complex and demonstrated that the proliferative function of CDK16 is mediated by PRC1 phosphorylation. As CDK16 is emerging as a critical node in cancer, our study reveals novel potential therapeutic targets. Studying the activity of proteins that work together to control cell division is revealing several that might be suitable targets for new drugs to fight cancer. Researchers led by Josep Clotet and Mariana Ribeiro at the International University of Catalonia, Barcelona, Spain, investigated the activities of the complex formed between two proteins, CDK16 and CCNY. CDK16 is an enzyme that modifies other molecules by adding phosphate groups (PO4) to them. CCNY is a protein that controls the activity of CDK16 and other proteins. Previous research has suggested a role for the complex in the development of cancer, but the mechanism has been unclear. The researchers found that the CDK16/CCNY complex activates proteins that control the network of microtubules in cells known as the cytoskeleton. One of these proteins, PRC1, is essential for cell division.
Collapse
|
27
|
Genevini P, Colombo MN, Venditti R, Marcuzzo S, Colombo SF, Bernasconi P, De Matteis MA, Borgese N, Navone F. VAPB depletion alters neuritogenesis and phosphoinositide balance in motoneuron-like cells: relevance to VAPB-linked amyotrophic lateral sclerosis. J Cell Sci 2019; 132:jcs.220061. [PMID: 30745341 DOI: 10.1242/jcs.220061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
VAPB and VAPA are ubiquitously expressed endoplasmic reticulum membrane proteins that play key roles in lipid exchange at membrane contact sites. A mutant, aggregation-prone, form of VAPB (P56S) is linked to a dominantly inherited form of amyotrophic lateral sclerosis; however, it has been unclear whether its pathogenicity is due to toxic gain of function, to negative dominance, or simply to insufficient levels of the wild-type protein produced from a single allele (haploinsufficiency). To investigate whether reduced levels of functional VAPB, independently from the presence of the mutant form, affect the physiology of mammalian motoneuron-like cells, we generated NSC34 clones, from which VAPB was partially or nearly completely depleted. VAPA levels, determined to be over fourfold higher than those of VAPB in untransfected cells, were unaffected. Nonetheless, cells with even partially depleted VAPB showed an increase in Golgi- and acidic vesicle-localized phosphatidylinositol-4-phosphate (PI4P) and reduced neurite extension when induced to differentiate. Conversely, the PI4 kinase inhibitors PIK93 and IN-10 increased neurite elongation. Thus, for long-term survival, motoneurons might require the full dose of functional VAPB, which may have unique function(s) that VAPA cannot perform.
Collapse
Affiliation(s)
- Paola Genevini
- Consiglio Nazionale delle Ricerche Neuroscience Institute and BIOMETRA Department, Università degli Studi di Milano, Milan 20129, Italy
| | - Maria Nicol Colombo
- Consiglio Nazionale delle Ricerche Neuroscience Institute and BIOMETRA Department, Università degli Studi di Milano, Milan 20129, Italy
| | | | - Stefania Marcuzzo
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico 'Carlo Besta', Milan 20133, Italy
| | - Sara Francesca Colombo
- Consiglio Nazionale delle Ricerche Neuroscience Institute and BIOMETRA Department, Università degli Studi di Milano, Milan 20129, Italy
| | - Pia Bernasconi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico 'Carlo Besta', Milan 20133, Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, Pozzuoli 80078, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80133, Italy
| | - Nica Borgese
- Consiglio Nazionale delle Ricerche Neuroscience Institute and BIOMETRA Department, Università degli Studi di Milano, Milan 20129, Italy
| | - Francesca Navone
- Consiglio Nazionale delle Ricerche Neuroscience Institute and BIOMETRA Department, Università degli Studi di Milano, Milan 20129, Italy
| |
Collapse
|
28
|
Ibrahim MAA, Abdelrahman AHM, Hassan AMA. Identification of novel Plasmodium falciparum PI4KB inhibitors as potential anti-malarial drugs: Homology modeling, molecular docking and molecular dynamics simulations. Comput Biol Chem 2019; 80:79-89. [PMID: 30928871 DOI: 10.1016/j.compbiolchem.2019.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 01/18/2019] [Accepted: 03/22/2019] [Indexed: 11/19/2022]
Abstract
The current study was set to discover selective Plasmodium falciparum phosphatidylinositol-4-OH kinase type III beta (pfPI4KB) inhibitors as potential antimalarial agents using combined structure-based and ligand-based drug discovery approach. A comparative model of pfPI4KB was first constructed and validated using molecular docking techniques. Performance of Autodock4.2 and Vina4 software in predicting the inhibitor-PI4KB binding mode and energy was assessed based on two Test Sets: Test Set I contained five ligands with resolved crystal structures with PI4KB, while Test Set II considered eleven compounds with known IC50 value towards PI4KB. The outperformance of Autodock as compared to Vina was reported, giving a correlation coefficient (R2) value of 0.87 and 0.90 for Test Set I and Test Set II, respectively. Pharmacophore-based screening was then conducted to identify drug-like molecules from ZINC database with physicochemical similarity to two potent pfPI4KB inhibitors -namely cpa and cpb. For each query inhibitor, the best 1000 hits in terms of TanimotoCombo scores were selected and subjected to molecular docking and molecular dynamics (MD) calculations. Binding energy was then estimated using molecular mechanics-generalized Born surface area (MM-GBSA) approach over 50 ns MD simulations of the inhibitor-pfPI4KB complexes. According to the calculated MM-GBSA binding energies, ZINC78988474 and ZINC20564116 were identified as potent pfPI4KB inhibitors with binding energies better than those of cpa and cpb, with ΔGbinding ≥ -34.56 kcal/mol. The inhibitor-pfPI4KB interaction and stability were examined over 50 ns MD simulation; as well the selectivity of the identified inhibitors towards pfPI4KB over PI4KB was reported.
Collapse
Affiliation(s)
- Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt.
| | - Alaa H M Abdelrahman
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Alaa M A Hassan
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
29
|
Mao D, Lin G, Tepe B, Zuo Z, Tan KL, Senturk M, Zhang S, Arenkiel BR, Sardiello M, Bellen HJ. VAMP associated proteins are required for autophagic and lysosomal degradation by promoting a PtdIns4P-mediated endosomal pathway. Autophagy 2019; 15:1214-1233. [PMID: 30741620 DOI: 10.1080/15548627.2019.1580103] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations in the ER-associated VAPB/ALS8 protein cause amyotrophic lateral sclerosis and spinal muscular atrophy. Previous studies have argued that ER stress may underlie the demise of neurons. We find that loss of VAP proteins (VAPs) leads to an accumulation of aberrant lysosomes and impairs lysosomal degradation. VAPs mediate ER to Golgi tethering and their loss may affect phosphatidylinositol-4-phosphate (PtdIns4P) transfer between these organelles. We found that loss of VAPs elevates PtdIns4P levels in the Golgi, leading to an expansion of the endosomal pool derived from the Golgi. Fusion of these endosomes with lysosomes leads to an increase in lysosomes with aberrant acidity, contents, and shape. Importantly, reducing PtdIns4P levels with a PtdIns4-kinase (PtdIns4K) inhibitor, or removing a single copy of Rab7, suppress macroautophagic/autophagic degradation defects as well as behavioral defects observed in Drosophila Vap33 mutant larvae. We propose that a failure to tether the ER to the Golgi when VAPs are lost leads to an increase in Golgi PtdIns4P levels, and an expansion of endosomes resulting in an accumulation of dysfunctional lysosomes and a failure in proper autophagic lysosomal degradation. Abbreviations: ALS: amyotrophic lateral sclerosis; CSF: cerebrospinal fluid; CERT: ceramide transfer protein; FFAT: two phenylalanines in an acidic tract; MSP: major sperm proteins; OSBP: oxysterol binding protein; PH: pleckstrin homology; PtdIns4P: phosphatidylinositol-4-phosphate; PtdIns4K: phosphatidylinositol 4-kinase; UPR: unfolded protein response; VAMP: vesicle-associated membrane protein; VAPA/B: mammalian VAPA and VAPB proteins; VAPs: VAMP-associated proteins (referring to Drosophila Vap33, and human VAPA and VAPB).
Collapse
Affiliation(s)
- Dongxue Mao
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Guang Lin
- b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Burak Tepe
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Zhongyuan Zuo
- b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Kai Li Tan
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Mumine Senturk
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Sheng Zhang
- c The Brown Foundation Institute of Molecular Medicine , University of Texas McGovern Medical School at Houston , Houston , TX , USA.,d Department of Neurobiology and Anatomy , University of Texas McGovern Medical School at Houston , Houston , TX , USA.,e Programs in Genetics & Epigenetics and Neuroscience , University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS) , Houston , TX , USA
| | - Benjamin R Arenkiel
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA.,b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,f Texas Children's Hospital , Jan and Dan Duncan Neurological Research Institute , Houston , TX , USA.,g Department of Neuroscience , Baylor College of Medicine , Houston , TX , USA
| | - Marco Sardiello
- b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,f Texas Children's Hospital , Jan and Dan Duncan Neurological Research Institute , Houston , TX , USA
| | - Hugo J Bellen
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA.,b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,f Texas Children's Hospital , Jan and Dan Duncan Neurological Research Institute , Houston , TX , USA.,g Department of Neuroscience , Baylor College of Medicine , Houston , TX , USA.,h Baylor College of Medicine , Howard Hughes Medical Institute , Houston , TX , USA
| |
Collapse
|
30
|
Abstract
Since I started doing scientific research, I've been fascinated by the interplay of protein structure and dynamics and how they together mediate protein function. A particular area of interest has been in understanding the mechanistic basis of how lipid-signaling enzymes function on membrane surfaces. In this award lecture article, I will describe my laboratory's studies on the structure and dynamics of lipid-signaling enzymes on membrane surfaces. This is important, as many lipid-signaling enzymes are regulated through dynamic regulatory mechanisms that control their enzymatic activity. This article will discuss my continued enthusiasm in using a synergistic application of hydrogen-deuterium exchange MS (HDX-MS) with other structural biology techniques to probe the mechanistic basis for how membrane-localized signaling enzymes are regulated and how these approaches can be used to understand how they are misregulated in disease. I will discuss specific examples of how we have used HDX-MS to study phosphoinositide kinases and the protein kinase Akt. An important focus will be on a description of how HDX-MS can be used as a powerful tool to optimize the design of constructs for X-ray crystallography and EM. The use of a diverse toolbox of biophysical methods has revealed novel insight into the complex and varied regulatory networks that control the function of lipid-signaling enzymes and enabled unique insight into the mechanics of membrane recruitment.
Collapse
Affiliation(s)
- John E Burke
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
31
|
Chalupska D, Różycki B, Humpolickova J, Faltova L, Klima M, Boura E. Phosphatidylinositol 4-kinase IIIβ (PI4KB) forms highly flexible heterocomplexes that include ACBD3, 14-3-3, and Rab11 proteins. Sci Rep 2019; 9:567. [PMID: 30679637 PMCID: PMC6345845 DOI: 10.1038/s41598-018-37158-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022] Open
Abstract
Phosphatidylinositol 4-kinase IIIβ (PI4KB) is a key enzyme of the Golgi system because it produces its lipid hallmark - the phosphatidylinositol 4-phosphate (PI4P). It is recruited to Golgi by the Golgi resident ACBD3 protein, regulated by 14-3-3 proteins and it also serves as an adaptor because it recruits the small GTPase Rab11. Here, we analyzed the protein complexes formed by PI4KB in vitro using small angle x-ray scattering (SAXS) and we discovered that these protein complexes are highly flexible. The 14-3-3:PI4KB:Rab11 protein complex has 2:1:1 stoichiometry and its different conformations are rather compact, however, the ACBD3:PI4KB protein complex has both, very compact and very extended conformations. Furthermore, in vitro reconstitution revealed that the membrane is necessary for the formation of ACBD3:PI4KB:Rab11 protein complex at physiological (nanomolar) concentrations.
Collapse
Affiliation(s)
- Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2., Prague, Czech Republic
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668, Warsaw, Poland
| | - Jana Humpolickova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2., Prague, Czech Republic
| | - Lenka Faltova
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232, Villigen, PSI, Switzerland
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2., Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2., Prague, Czech Republic.
| |
Collapse
|
32
|
Fernández-Oliva A, Ortega-González P, Risco C. Targeting host lipid flows: Exploring new antiviral and antibiotic strategies. Cell Microbiol 2019; 21:e12996. [PMID: 30585688 PMCID: PMC7162424 DOI: 10.1111/cmi.12996] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 12/28/2022]
Abstract
Bacteria and viruses pose serious challenges for humans because they evolve continuously. Despite ongoing efforts, antiviral drugs to treat many of the most troubling viruses have not been approved yet. The recent launch of new antimicrobials is generating hope as more and more pathogens around the world become resistant to available drugs. But extra effort is still needed. One of the current strategies for antiviral and antibiotic drug development is the search for host cellular pathways used by many different pathogens. For example, many viruses and bacteria alter lipid synthesis and transport to build their own organelles inside infected cells. The characterization of these interactions will be fundamental to identify new targets for antiviral and antibiotic drug development. This review discusses how viruses and bacteria subvert cell machineries for lipid synthesis and transport and summarises the most promising compounds that interfere with these pathways.
Collapse
Affiliation(s)
| | | | - Cristina Risco
- Cell Structure Lab, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| |
Collapse
|
33
|
Tian S, Zeng J, Liu X, Chen J, Zhang JZH, Zhu T. Understanding the selectivity of inhibitors toward PI4KIIIα and PI4KIIIβ based molecular modeling. Phys Chem Chem Phys 2019; 21:22103-22112. [DOI: 10.1039/c9cp03598b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Molecular dynamics simulations and binding free energy calculations are combined to investigate the selectivity of inhibitors toward type III phosphatidylinositol 4 kinases.
Collapse
Affiliation(s)
- Shuaizhen Tian
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Jinzhe Zeng
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Xiao Liu
- School of Mathematics, Physics and Statistics
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Jianzhong Chen
- School of Science
- Shandong Jiaotong University
- Jinan 250357
- China
| | - John Z. H. Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| |
Collapse
|
34
|
Structural Basis for Regulation of Phosphoinositide Kinases and Their Involvement in Human Disease. Mol Cell 2018; 71:653-673. [DOI: 10.1016/j.molcel.2018.08.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/22/2018] [Accepted: 07/30/2018] [Indexed: 01/09/2023]
|
35
|
Liang X, Li F, Chen C, Jiang Z, Wang A, Liu X, Ge J, Hu Z, Yu K, Wang W, Zou F, Liu Q, Wang B, Wang L, Zhang S, Wang Y, Liu Q, Liu J. Discovery of (S)-2-amino-N-(5-(6-chloro-5-(3-methylphenylsulfonamido)pyridin-3-yl)-4-methylthiazol-2-yl)-3-methylbutanamide (CHMFL-PI3KD-317) as a potent and selective phosphoinositide 3-kinase delta (PI3Kδ) inhibitor. Eur J Med Chem 2018; 156:831-846. [DOI: 10.1016/j.ejmech.2018.07.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/05/2018] [Accepted: 07/15/2018] [Indexed: 01/02/2023]
|
36
|
Reuberson J, Horsley H, Franklin RJ, Ford D, Neuss J, Brookings D, Huang Q, Vanderhoydonck B, Gao LJ, Jang MY, Herdewijn P, Ghawalkar A, Fallah-Arani F, Khan AR, Henshall J, Jairaj M, Malcolm S, Ward E, Shuttleworth L, Lin Y, Li S, Louat T, Waer M, Herman J, Payne A, Ceska T, Doyle C, Pitt W, Calmiano M, Augustin M, Steinbacher S, Lammens A, Allen R. Discovery of a Potent, Orally Bioavailable PI4KIIIβ Inhibitor (UCB9608) Able To Significantly Prolong Allogeneic Organ Engraftment in Vivo. J Med Chem 2018; 61:6705-6723. [PMID: 29952567 DOI: 10.1021/acs.jmedchem.8b00521] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The primary target of a novel series of immunosuppressive 7-piperazin-1-ylthiazolo[5,4- d]pyrimidin-5-amines was identified as the lipid kinase, PI4KIIIβ. Evaluation of the series highlighted their poor solubility and unwanted off-target activities. A medicinal chemistry strategy was put in place to optimize physicochemical properties within the series, while maintaining potency and improving selectivity over other lipid kinases. Compound 22 was initially identified and profiled in vivo, before further modifications led to the discovery of 44 (UCB9608), a vastly more soluble, selective compound with improved metabolic stability and excellent pharmacokinetic profile. A co-crystal structure of 44 with PI4KIIIβ was solved, confirming the binding mode of this class of inhibitor. The much-improved in vivo profile of 44 positions it as an ideal tool compound to further establish the link between PI4KIIIβ inhibition and prolonged allogeneic organ engraftment, and suppression of immune responses in vivo.
Collapse
Affiliation(s)
- James Reuberson
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Helen Horsley
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Richard J Franklin
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Daniel Ford
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Judi Neuss
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Daniel Brookings
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Qiuya Huang
- Interface Valorization Platform , KU Leuven , Campus St.-Rafaël, Blok I, 8°, Kapucijnenvoer 33 B 7001 , 3000 Leuven , Belgium
| | - Bart Vanderhoydonck
- Interface Valorization Platform , KU Leuven , Campus St.-Rafaël, Blok I, 8°, Kapucijnenvoer 33 B 7001 , 3000 Leuven , Belgium
| | - Ling-Jie Gao
- Interface Valorization Platform , KU Leuven , Campus St.-Rafaël, Blok I, 8°, Kapucijnenvoer 33 B 7001 , 3000 Leuven , Belgium
| | - Mi-Yeon Jang
- Interface Valorization Platform , KU Leuven , Campus St.-Rafaël, Blok I, 8°, Kapucijnenvoer 33 B 7001 , 3000 Leuven , Belgium
| | - Piet Herdewijn
- Interface Valorization Platform , KU Leuven , Campus St.-Rafaël, Blok I, 8°, Kapucijnenvoer 33 B 7001 , 3000 Leuven , Belgium
| | - Anant Ghawalkar
- SAI Life Sciences Ltd , International Biotech Park , Hinjewadi, Pune 411 057 , India
| | | | - Adnan R Khan
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Jamie Henshall
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Mark Jairaj
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Sarah Malcolm
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Eleanor Ward
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | | | - Yuan Lin
- Interface Valorization Platform , KU Leuven , Campus St.-Rafaël, Blok I, 8°, Kapucijnenvoer 33 B 7001 , 3000 Leuven , Belgium
| | - Shengqiao Li
- Interface Valorization Platform , KU Leuven , Campus St.-Rafaël, Blok I, 8°, Kapucijnenvoer 33 B 7001 , 3000 Leuven , Belgium
| | - Thierry Louat
- Interface Valorization Platform , KU Leuven , Campus St.-Rafaël, Blok I, 8°, Kapucijnenvoer 33 B 7001 , 3000 Leuven , Belgium
| | - Mark Waer
- Interface Valorization Platform , KU Leuven , Campus St.-Rafaël, Blok I, 8°, Kapucijnenvoer 33 B 7001 , 3000 Leuven , Belgium
| | - Jean Herman
- Interface Valorization Platform , KU Leuven , Campus St.-Rafaël, Blok I, 8°, Kapucijnenvoer 33 B 7001 , 3000 Leuven , Belgium
| | - Andrew Payne
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Tom Ceska
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Carl Doyle
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Will Pitt
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Mark Calmiano
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Martin Augustin
- Proteros Biostructures GmbH , Bunsenstrasse 7a , 82152 Martinsried , Germany
| | - Stefan Steinbacher
- Proteros Biostructures GmbH , Bunsenstrasse 7a , 82152 Martinsried , Germany
| | - Alfred Lammens
- Proteros Biostructures GmbH , Bunsenstrasse 7a , 82152 Martinsried , Germany
| | - Rodger Allen
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| |
Collapse
|
37
|
Dornan GL, Dalwadi U, Hamelin DJ, Hoffmann RM, Yip CK, Burke JE. Probing the Architecture, Dynamics, and Inhibition of the PI4KIIIα/TTC7/FAM126 Complex. J Mol Biol 2018; 430:3129-3142. [PMID: 30031006 DOI: 10.1016/j.jmb.2018.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 11/16/2022]
Abstract
Phosphatidylinositol 4-kinase IIIα (PI4KIIIα) is the lipid kinase primarily responsible for generating the lipid phosphatidylinositol 4-phosphate (PI4P) at the plasma membrane, which acts as the substrate for generation of the signaling lipids PIP2 and PIP3. PI4KIIIα forms a large heterotrimeric complex with two regulatory partners, TTC7 and FAM126. We describe using an integrated electron microscopy and hydrogen-deuterium exchange mass spectrometry (HDX-MS) approach to probe the architecture and dynamics of the complex of PI4KIIIα/TTC7/FAM126. HDX-MS reveals that the majority of the PI4KIIIα sequence was protected from exchange in short deuterium pulse experiments, suggesting presence of secondary structure, even in putative unstructured regions. Negative stain electron microscopy reveals the shape and architecture of the full-length complex, revealing an overall dimer of PI4KIIIα/TTC7/FAM126 trimers. HDX-MS reveals conformational changes in the TTC7/FAM126 complex upon binding PI4KIIIα, including both at the direct TTC7-PI4KIIIα interface and at the putative membrane binding surface. Finally, HDX-MS experiments of PI4KIIIα bound to the highly potent and selective inhibitor GSK-A1 compared to that bound to the non-specific inhibitor PIK93 revealed substantial conformational changes throughout an extended region of the kinase domain. Many of these changes were distant from the putative inhibitor binding site, showing a large degree of allosteric conformational changes that occur upon inhibitor binding. Overall, our results reveal novel insight into the regulation of PI4KIIIα by its regulatory proteins TTC7/FAM126, as well as additional dynamic information on how selective inhibition of PI4KIIIα is achieved.
Collapse
Affiliation(s)
- Gillian L Dornan
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2
| | - Udit Dalwadi
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - David J Hamelin
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2
| | - Reece M Hoffmann
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2.
| |
Collapse
|
38
|
Zappa F, Failli M, De Matteis MA. The Golgi complex in disease and therapy. Curr Opin Cell Biol 2018; 50:102-116. [PMID: 29614425 DOI: 10.1016/j.ceb.2018.03.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/02/2018] [Accepted: 03/11/2018] [Indexed: 10/17/2022]
Abstract
The Golgi complex occupies a strategic position in the endomembrane system and acts not only as a key trafficking and sorting station and a vital biosynthetic center for glycoproteins and lipids, but also as an active signaling hub. As such, the Golgi complex participates in the establishment and maintenance of cell compartmentalization and in general, cell processes such as cell growth and apoptosis. The different functions of the Golgi complex are executed by composite molecular machineries that have been exhaustively dissected over the last three decades. These machineries can become dysfunctional as a result of mutations in the respective encoding genes or may be hijacked by infectious agents or misregulated in the course of multifactorial diseases such as neurodegeneration and cancer. Small molecules targeting components of these machineries have been instrumental in dissecting their functions in in vitro studies and some of them have been developed or are currently under development for clinical use.
Collapse
Affiliation(s)
- Francesca Zappa
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Mario Failli
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy; Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy.
| |
Collapse
|
39
|
Dubankova A, Humpolickova J, Klima M, Boura E. Negative charge and membrane-tethered viral 3B cooperate to recruit viral RNA dependent RNA polymerase 3D pol. Sci Rep 2017; 7:17309. [PMID: 29230036 PMCID: PMC5725453 DOI: 10.1038/s41598-017-17621-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 11/29/2017] [Indexed: 12/28/2022] Open
Abstract
Most single stranded plus RNA viruses hijack phosphatidylinositol 4-kinases (PI4Ks) to generate membranes highly enriched in phosphatidylinositol 4-phosphate (PI4P). These membranous compartments known as webs, replication factories or replication organelles are essential for viral replication because they provide protection from the innate intracellular immune response while serving as platforms for viral replication. Using purified recombinant proteins and biomimetic model membranes we show that the nonstructural viral 3A protein is sufficient to promote membrane hyper-phosphorylation given the proper intracellular cofactors (PI4KB and ACBD3). However, our bio-mimetic in vitro reconstitution assay revealed that rather than the presence of PI4P specifically, negative charge alone is sufficient for the recruitment of 3Dpol enzymes to the surface of the lipid bilayer. Additionally, we show that membrane tethered viral 3B protein (also known as Vpg) works in combination with the negative charge to increase the efficiency of membrane recruitment of 3Dpol.
Collapse
Affiliation(s)
- Anna Dubankova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Humpolickova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
40
|
Chalupska D, Eisenreichova A, Różycki B, Rezabkova L, Humpolickova J, Klima M, Boura E. Structural analysis of phosphatidylinositol 4-kinase IIIβ (PI4KB) - 14-3-3 protein complex reveals internal flexibility and explains 14-3-3 mediated protection from degradation in vitro. J Struct Biol 2017; 200:36-44. [PMID: 28864297 DOI: 10.1016/j.jsb.2017.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/31/2022]
Abstract
Phosphatidylinositol 4-kinase IIIβ (PI4KB) is responsible for the synthesis of the Golgi and trans-Golgi network (TGN) pool of phosphatidylinositol 4-phospahte (PI4P). PI4P is the defining lipid hallmark of Golgi and TGN and also serves as a signaling lipid and as a precursor for higher phosphoinositides. In addition, PI4KB is hijacked by many single stranded plus RNA (+RNA) viruses to generate PI4P-rich membranes that serve as viral replication organelles. Given the importance of this enzyme in cells, it has to be regulated. 14-3-3 proteins bind PI4KB upon its phosphorylation by protein kinase D, however, the structural basis of PI4KB recognition by 14-3-3 proteins is unknown. Here, we characterized the PI4KB:14-3-3 protein complex biophysically and structurally. We discovered that the PI4KB:14-3-3 protein complex is tight and is formed with 2:2 stoichiometry. Surprisingly, the enzymatic activity of PI4KB is not directly modulated by 14-3-3 proteins. However, 14-3-3 proteins protect PI4KB from proteolytic degradation in vitro. Our structural analysis revealed that the PI4KB:14-3-3 protein complex is flexible but mostly within the disordered regions connecting the 14-3-3 binding site of the PI4KB with the rest of the PI4KB enzyme. It also predicted no direct modulation of PI4KB enzymatic activity by 14-3-3 proteins and that 14-3-3 binding will not interfere with PI4KB recruitment to the membrane by the ACBD3 protein. In addition, the structural analysis explains the observed protection from degradation; it revealed that several disordered regions of PI4KB become protected from proteolytical degradation upon 14-3-3 binding. All the structural predictions were subsequently biochemically validated.
Collapse
Affiliation(s)
- Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Andrea Eisenreichova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Lenka Rezabkova
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Jana Humpolickova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic.
| |
Collapse
|
41
|
Masson GR, Jenkins ML, Burke JE. An overview of hydrogen deuterium exchange mass spectrometry (HDX-MS) in drug discovery. Expert Opin Drug Discov 2017; 12:981-994. [PMID: 28770632 DOI: 10.1080/17460441.2017.1363734] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful methodology to study protein dynamics, protein folding, protein-protein interactions, and protein small molecule interactions. The development of novel methodologies and technical advancements in mass spectrometers has greatly expanded the accessibility and acceptance of this technique within both academia and industry. Areas covered: This review examines the theoretical basis of how amide exchange occurs, how different mass spectrometer approaches can be used for HDX-MS experiments, as well as the use of HDX-MS in drug development, specifically focusing on how HDX-MS is used to characterize bio-therapeutics, and its use in examining protein-protein and protein small molecule interactions. Expert opinion: HDX-MS has been widely accepted within the pharmaceutical industry for the characterization of bio-therapeutics as well as in the mapping of antibody drug epitopes. However, there is room for this technique to be more widely used in the drug discovery process. This is particularly true in the use of HDX-MS as a complement to other high-resolution structural approaches, as well as in the development of small molecule therapeutics that can target both active-site and allosteric binding sites.
Collapse
Affiliation(s)
- Glenn R Masson
- a Protein and Nucleic Acid Chemistry Division , MRC Laboratory of Molecular Biology , Cambridge , UK
| | - Meredith L Jenkins
- b Department of Biochemistry and Microbiology , University of Victoria , Victoria , Canada
| | - John E Burke
- b Department of Biochemistry and Microbiology , University of Victoria , Victoria , Canada
| |
Collapse
|
42
|
Arita M, Dobrikov G, Pürstinger G, Galabov AS. Allosteric Regulation of Phosphatidylinositol 4-Kinase III Beta by an Antipicornavirus Compound MDL-860. ACS Infect Dis 2017; 3:585-594. [PMID: 28605587 DOI: 10.1021/acsinfecdis.7b00053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MDL-860 is a broad-spectrum antipicornavirus compound discovered in 1982 and one of the few promising candidates effective in in vivo virus infection. Despite the effectiveness, the target and the mechanism of action of MDL-860 remain unknown. Here, we have characterized antipoliovirus activity of MDL-860 and identified host phosphatidylinositol-4 kinase III beta (PI4KB) as the target. MDL-860 treatment caused covalent modification and irreversible inactivation of PI4KB. A cysteine residue at amino acid 646 of PI4KB, which locates at the bottom of a surface pocket apart from the active site, was identified as the target site of MDL-860. This work reveals the mechanism of action of this class of PI4KB inhibitors and offers insights into novel allosteric regulation of PI4KB activity.
Collapse
Affiliation(s)
- Minetaro Arita
- Department
of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Georgi Dobrikov
- Institute
of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Academician Georgi Bonchev Street, Bl. 9, 1113 Sofia, Bulgaria
| | - Gerhard Pürstinger
- Institute
of Pharmacy, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Angel S. Galabov
- The
Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Academician Georgi Bonchev Street, 1113 Sofia, Bulgaria
| |
Collapse
|
43
|
Hassett MR, Sternberg AR, Roepe PD. Inhibition of Human Class I vs Class III Phosphatidylinositol 3′-Kinases. Biochemistry 2017; 56:4326-4334. [DOI: 10.1021/acs.biochem.7b00413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Matthew R. Hassett
- Department of Chemistry and Department of Biochemistry & Cellular & Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Anna R. Sternberg
- Department of Chemistry and Department of Biochemistry & Cellular & Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Paul D. Roepe
- Department of Chemistry and Department of Biochemistry & Cellular & Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| |
Collapse
|
44
|
Combining properties of different classes of PI3Kα inhibitors to understand the molecular features that confer selectivity. Biochem J 2017; 474:2261-2276. [PMID: 28526744 DOI: 10.1042/bcj20161098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 11/17/2022]
Abstract
Phosphoinositide 3-kinases (PI3Ks) are major regulators of many cellular functions, and hyperactivation of PI3K cell signalling pathways is a major target for anticancer drug discovery. PI3Kα is the isoform most implicated in cancer, and our aim is to selectively inhibit this isoform, which may be more beneficial than concurrent inhibition of all Class I PI3Ks. We have used structure-guided design to merge high-selectivity and high-affinity characteristics found in existing compounds. Molecular docking, including the prediction of water-mediated interactions, was used to model interactions between the ligands and the PI3Kα affinity pocket. Inhibition was tested using lipid kinase assays, and active compounds were tested for effects on PI3K cell signalling. The first-generation compounds synthesized had IC50 (half maximal inhibitory concentration) values >4 μM for PI3Kα yet were selective for PI3Kα over the other Class I isoforms (β, δ and γ). The second-generation compounds explored were predicted to better engage the affinity pocket through direct and water-mediated interactions with the enzyme, and the IC50 values decreased by ∼30-fold. Cell signalling analysis showed that some of the new PI3Kα inhibitors were more active in the H1047R mutant bearing cell lines SK-OV-3 and T47D, compared with the E545K mutant harbouring MCF-7 cell line. In conclusion, we have used a structure-based design approach to combine features from two different compound classes to create new PI3Kα-selective inhibitors. This provides new insights into the contribution of different chemical units and interactions with different parts of the active site to the selectivity and potency of PI3Kα inhibitors.
Collapse
|
45
|
Altan-Bonnet N. Lipid Tales of Viral Replication and Transmission. Trends Cell Biol 2017; 27:201-213. [PMID: 27838086 PMCID: PMC5318230 DOI: 10.1016/j.tcb.2016.09.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 12/22/2022]
Abstract
Positive-strand RNA viruses are the largest group of RNA viruses on Earth and cellular membranes are critical for all aspects of their life cycle, from entry and replication to exit. In particular, membranes serve as platforms for replication and as carriers to transmit these viruses to other cells, the latter either as an envelope surrounding a single virus or as the vesicle containing a population of viruses. Notably, many animal and human viruses appear to induce and exploit phosphatidylinositol 4-phosphate/cholesterol-enriched membranes for replication, whereas many plant and insect-vectored animal viruses utilize phosphatidylethanolamine/cholesterol-enriched membranes for the same purpose; and phosphatidylserine-enriched membrane carriers are widely used by both single and populations of viruses for transmission. Here I discuss the implications for viral pathogenesis and therapeutic development of this remarkable convergence on specific membrane lipid blueprints for replication and transmission.
Collapse
Affiliation(s)
- Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
46
|
Humpolickova J, Mejdrová I, Matousova M, Nencka R, Boura E. Fluorescent Inhibitors as Tools To Characterize Enzymes: Case Study of the Lipid Kinase Phosphatidylinositol 4-Kinase IIIβ (PI4KB). J Med Chem 2016; 60:119-127. [PMID: 28004946 DOI: 10.1021/acs.jmedchem.6b01466] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lipid kinase phosphatidylinositol 4-kinase IIIβ (PI4KB) is an essential host factor for many positive-sense single-stranded RNA (+RNA) viruses including human pathogens hepatitis C virus (HCV), Severe acute respiratory syndrome (SARS), coxsackie viruses, and rhinoviruses. Inhibitors of PI4KB are considered to be potential broad-spectrum virostatics, and it is therefore critical to develop a biochemical understanding of the kinase. Here, we present highly potent and selective fluorescent inhibitors that we show to be useful chemical biology tools especially in determination of dissociation constants. Moreover, we show that the coumarin-labeled inhibitor can be used to image PI4KB in cells using fluorescence-lifetime imaging microscopy (FLIM) microscopy.
Collapse
Affiliation(s)
- Jana Humpolickova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Ivana Mejdrová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.,Department of Chemistry of Natural Compounds, Institute of Chemical Technology Prague , Technicka 5, Prague 166 28, Czech Republic
| | - Marika Matousova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
47
|
Mejdrová I, Chalupská D, Plačková P, Müller C, Šála M, Klíma M, Baumlová A, Hřebabecký H, Procházková E, Dejmek M, Strunin D, Weber J, Lee G, Matoušová M, Mertlíková-Kaiserová H, Ziebuhr J, Birkus G, Boura E, Nencka R. Rational Design of Novel Highly Potent and Selective Phosphatidylinositol 4-Kinase IIIβ (PI4KB) Inhibitors as Broad-Spectrum Antiviral Agents and Tools for Chemical Biology. J Med Chem 2016; 60:100-118. [PMID: 28004945 DOI: 10.1021/acs.jmedchem.6b01465] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phosphatidylinositol 4-kinase IIIβ (PI4KB) is indispensable for the replication of various positive-sense single stranded RNA viruses, which hijack this cellular enzyme to remodel intracellular membranes of infected cells to set up the functional replication machinery. Therefore, the inhibition of this PI4K isoform leads to the arrest of viral replication. Here, we report on the synthesis of novel PI4KB inhibitors, which were rationally designed based on two distinct structural types of inhibitors that bind in the ATP binding side of PI4KB. These "hybrids" not only excel in outstanding inhibitory activity but also show high selectivity to PI4KB compared to other kinases. Thus, these compounds exert selective nanomolar or even subnanomolar activity against PI4KB as well as profound antiviral effect against hepatitis C virus, human rhinovirus, and coxsackievirus B3. Our crystallographic analysis unveiled the exact position of the side chains and explains their extensive contribution to the inhibitory activity.
Collapse
Affiliation(s)
- Ivana Mejdrová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.,Department of Chemistry of Natural Compounds, Institute of Chemical Technology Prague , Technická 5, Prague 166 28, Czech Republic
| | - Dominika Chalupská
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Pavla Plačková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Christin Müller
- Institute of Medical Virology, Justus Liebig University Giessen , Schubertstrasse 81, D-35392 Giessen, Germany
| | - Michal Šála
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Martin Klíma
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Adriana Baumlová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Hubert Hřebabecký
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Eliška Procházková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Dmytro Strunin
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Gary Lee
- Department of Chemistry of Natural Compounds, Institute of Chemical Technology Prague , Technická 5, Prague 166 28, Czech Republic
| | - Marika Matoušová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen , Schubertstrasse 81, D-35392 Giessen, Germany
| | - Gabriel Birkus
- Gilead Sciences, Inc. , 333 Lakeside Drive, Foster City, California 94404, United States
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
48
|
McPhail JA, Ottosen EH, Jenkins ML, Burke JE. The Molecular Basis of Aichi Virus 3A Protein Activation of Phosphatidylinositol 4 Kinase IIIβ, PI4KB, through ACBD3. Structure 2016; 25:121-131. [PMID: 27989622 DOI: 10.1016/j.str.2016.11.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/19/2016] [Accepted: 11/18/2016] [Indexed: 01/12/2023]
Abstract
Phosphatidylinositol 4-kinase III beta (PI4KIIIβ) is an essential enzyme in mediating membrane transport, and plays key roles in facilitating viral infection. Many pathogenic positive-sense single-stranded RNA viruses activate PI4KIIIβ to generate phosphatidylinositol 4-phosphate (PI4P)-enriched organelles for viral replication. The molecular basis for PI4KIIIβ activation during viral infection has remained largely unclear. We describe the biochemical reconstitution and characterization of the complex of PI4KIIIβ with the Golgi protein Acyl-coenzyme A binding domain containing protein 3 (ACBD3) and Aichi virus 3A protein on membranes. We find that 3A directly activates PI4KIIIβ, and this activation is sensitized by ACBD3. The interfaces between PI4KIIIβ-ACBD3 and ACBD3-3A were mapped with hydrogen-deuterium exchange mass spectrometry (HDX-MS). Determination of the crystal structure of the ACBD3 GOLD domain revealed a unique N terminus that mediates the interaction with 3A. Rationally designed complex-disrupting mutations in both ACBD3 and PI4KIIIβ completely abrogated the sensitization of 3A activation by ACBD3.
Collapse
Affiliation(s)
- Jacob A McPhail
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Erik H Ottosen
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
49
|
Loundras EA, Herod MR, Harris M, Stonehouse NJ. Foot-and-mouth disease virus genome replication is unaffected by inhibition of type III phosphatidylinositol-4-kinases. J Gen Virol 2016; 97:2221-2230. [PMID: 27323707 DOI: 10.1099/jgv.0.000527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) causes economically damaging infections of cloven-hooved animals, with outbreaks resulting in large financial losses to the agricultural industry. Due to the highly contagious nature of FMDV, research with infectious virus is restricted to a limited number of key facilities worldwide. FMDV sub-genomic replicons are therefore important tools for the study of viral translation and genome replication. The type III phosphatidylinositol-4-kinases (PI4Ks) are a family of enzymes that plays a key role in the production of replication complexes (viral factories) of a number of positive-sense RNA viruses and represents a potential target for novel pan-viral therapeutics. Here, we investigated whether type III PI4Ks also play a role in the FMDV life cycle, using a combination of FMDV sub-genomic replicons and bicistronic internal ribosome entry site (IRES)-containing reporter plasmids. We demonstrated that replication of the FMDV replicon was unaffected by inhibitors of either PI4KIIIα or PI4KIIIβ. However, PIK93, an inhibitor previously demonstrated to target PI4KIIIβ, did inhibit IRES-mediated protein translation. Consistent with this, cells transfected with FMDV replicons did not exhibit elevated levels of phosphatidylinositol-4-phosphate lipids. These results are therefore supportive of the hypothesis that FMDV genome replication does not require type III PI4K activity and does not activate these kinases.
Collapse
Affiliation(s)
- Eleni-Anna Loundras
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Morgan R Herod
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Nicola J Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
50
|
Tabaei SR, Guo F, Rutaganira FU, Vafaei S, Choong I, Shokat KM, Glenn JS, Cho NJ. Multistep Compositional Remodeling of Supported Lipid Membranes by Interfacially Active Phosphatidylinositol Kinases. Anal Chem 2016; 88:5042-5. [PMID: 27118725 PMCID: PMC5291064 DOI: 10.1021/acs.analchem.6b01293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The multienzyme catalytic phosphorylation of phosphatidylinositol (PI) in a supported lipid membrane platform is demonstrated for the first time. One-step treatment with PI 4-kinase IIIβ (PI4Kβ) yielded PI 4-phosphate (PI4P), while a multistep enzymatic cascade of PI4Kβ followed by PIP 5-kinase produced PI-4,5-bisphosphate (PI(4,5)P2 or PIP2). By employing quartz crystal microbalance with dissipation monitoring, we were able to track membrane association of kinase enzymes for the first time as well as detect PI4P and PI(4,5)P2 generation based on subsequent antibody binding to the supported lipid bilayers. Pharmacologic inhibition of PI4Kβ by a small molecule inhibitor was also quantitatively assessed, yielding an EC50 value that agrees well with conventional biochemical readout. Taken together, the development of a PI-containing supported membrane platform coupled with surface-sensitive measurement techniques for kinase studies opens the door to exploring the rich biochemistry and pharmacological targeting of membrane-associated phosphoinositides.
Collapse
Affiliation(s)
- Seyed R. Tabaei
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Feng Guo
- Departments of Medicine, Division of Gastroenterology and Hepatology, and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Florentine U. Rutaganira
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158-2280, United States
| | - Setareh Vafaei
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Ingrid Choong
- Departments of Medicine, Division of Gastroenterology and Hepatology, and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Kevan M. Shokat
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158-2280, United States
| | - Jeffrey S. Glenn
- Departments of Medicine, Division of Gastroenterology and Hepatology, and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
- Palo Alto Veterans Administration Medical Center, Palo Alto, California 94304, United States
| | - Nam-Joon Cho
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|