1
|
Benitez S, Puig N, Rives J, Solé A, Sánchez-Quesada JL. Can Electronegative LDL Act as a Multienzymatic Complex? Int J Mol Sci 2023; 24:ijms24087074. [PMID: 37108253 PMCID: PMC10138509 DOI: 10.3390/ijms24087074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Electronegative LDL (LDL(-)) is a minor form of LDL present in blood for which proportions are increased in pathologies with increased cardiovascular risk. In vitro studies have shown that LDL(-) presents pro-atherogenic properties, including a high susceptibility to aggregation, the ability to induce inflammation and apoptosis, and increased binding to arterial proteoglycans; however, it also shows some anti-atherogenic properties, which suggest a role in controlling the atherosclerotic process. One of the distinctive features of LDL(-) is that it has enzymatic activities with the ability to degrade different lipids. For example, LDL(-) transports platelet-activating factor acetylhydrolase (PAF-AH), which degrades oxidized phospholipids. In addition, two other enzymatic activities are exhibited by LDL(-). The first is type C phospholipase activity, which degrades both lysophosphatidylcholine (LysoPLC-like activity) and sphingomyelin (SMase-like activity). The second is ceramidase activity (CDase-like). Based on the complementarity of the products and substrates of these different activities, this review speculates on the possibility that LDL(-) may act as a sort of multienzymatic complex in which these enzymatic activities exert a concerted action. We hypothesize that LysoPLC/SMase and CDase activities could be generated by conformational changes in apoB-100 and that both activities occur in proximity to PAF-AH, making it feasible to discern a coordinated action among them.
Collapse
Affiliation(s)
- Sonia Benitez
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de la Santa Creu i Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER of Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Núria Puig
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de la Santa Creu i Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - José Rives
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de la Santa Creu i Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - Arnau Solé
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de la Santa Creu i Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de la Santa Creu i Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER of Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Law SH, Chan HC, Ke GM, Kamatam S, Marathe GK, Ponnusamy VK, Ke LY. Untargeted Lipidomic Profiling Reveals Lysophosphatidylcholine and Ceramide as Atherosclerotic Risk Factors in apolipoprotein E Knockout Mice. Int J Mol Sci 2023; 24:ijms24086956. [PMID: 37108120 PMCID: PMC10138920 DOI: 10.3390/ijms24086956] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Despite the availability and use of numerous cholesterol-lowering drugs, atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of mortality globally. Many researchers have focused their effort on identifying modified lipoproteins. However, lipid moieties such as lysophosphatidylcholine (LPC) and ceramide (CER) contribute to atherogenic events. LPC and CER both cause endothelial mitochondrial dysfunction, leading to fatty acid and triglyceride (TG) accumulation. In addition, they cause immune cells to differentiate into proinflammatory phenotypes. To uncover alternative therapeutic approaches other than cholesterol- and TG-lowering medications, we conducted untargeted lipidomic investigations to assess the alteration of lipid profiles in apolipoprotein E knockout (apoE-/-) mouse model, with or without feeding a high-fat diet (HFD). Results indicated that, in addition to hypercholesterolemia and hyperlipidemia, LPC levels were two to four times higher in apoE-/- mice compared to wild-type mice in C57BL/6 background, regardless of whether they were 8 or 16 weeks old. Sphingomyelin (SM) and CER were elevated three- to five-fold in apoE-/- mice both at the basal level and after 16 weeks when compared to wild-type mice. After HFD treatment, the difference in CER levels elevated more than ten-fold. Considering the atherogenic properties of LPC and CER, they may also contribute to the early onset of atherosclerosis in apoE-/- mice. In summary, the HFD-fed apoE-/- mouse shows elevated LPC and CER contents and is a suitable model for developing LPC- and CER-lowering therapies.
Collapse
Affiliation(s)
- Shi-Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hua-Chen Chan
- Department of Medical Laboratory Science, College of Medicine, I-Shou University, Kaohsiung 84001, Taiwan
- Center for Lipid Biosciences, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Guan-Ming Ke
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Swetha Kamatam
- Department of Studies in Biochemistry and Molecular Biology, University of Mysore, Manasagangothri, Mysuru 570006, India
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry and Molecular Biology, University of Mysore, Manasagangothri, Mysuru 570006, India
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Lipid Biosciences, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
3
|
Cheng CC, Ke GM, Chu PY, Ke LY. Elucidating the Implications of Norovirus N- and O-Glycosylation, O-GlcNAcylation, and Phosphorylation. Viruses 2023; 15:v15030798. [PMID: 36992506 PMCID: PMC10054809 DOI: 10.3390/v15030798] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Norovirus is the most common cause of foodborne gastroenteritis, affecting millions of people worldwide annually. Among the ten genotypes (GI-GX) of norovirus, only GI, GII, GIV, GVIII, and GIX infect humans. Some genotypes reportedly exhibit post-translational modifications (PTMs), including N- and O-glycosylation, O-GlcNAcylation, and phosphorylation, in their viral antigens. PTMs have been linked to increased viral genome replication, viral particle release, and virulence. Owing to breakthroughs in mass spectrometry (MS) technologies, more PTMs have been discovered in recent years and have contributed significantly to preventing and treating infectious diseases. However, the mechanisms by which PTMs act on noroviruses remain poorly understood. In this section, we outline the current knowledge of the three common types of PTM and investigate their impact on norovirus pathogenesis. Moreover, we summarize the strategies and techniques for the identification of PTMs.
Collapse
Affiliation(s)
- Chia-Chi Cheng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Guan-Ming Ke
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Pei-Yu Chu
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Center for Lipid Biosciences, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
4
|
Effect of Sphingomyelinase-Treated LDLs on HUVECs. Molecules 2023; 28:molecules28052100. [PMID: 36903354 PMCID: PMC10004656 DOI: 10.3390/molecules28052100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Low-density lipoproteins (LDLs) exert a key role in the transport of esterified cholesterol to tissues. Among the atherogenic modifications of LDLs, the oxidative modification has been mainly investigated as a major risk factor for accelerating atherogenesis. Since LDL sphingolipids are also emerging as important regulators of the atherogenic process, increasing attention is devoted to the effects of sphingomyelinase (SMase) on LDL structural and atherogenic properties. The aims of the study were to investigate the effect of SMase treatment on the physical-chemical properties of LDLs. Moreover, we evaluated cell viability, apoptosis, and oxidative and inflammatory status in human umbilical vein endothelial cells (HUVECs) treated with either ox-LDLs or SMase-treated LDLs (SMase-LDLs). Both treatments were associated with the accrual of the intracellular ROS and upregulation of the antioxidant Paraoxonase 2 (PON2), while only SMase-LDLs induced an increase of superoxide dismutase 2 (SOD2), suggesting the activation of a feedback loop to restrain the detrimental effects of ROS. The increased caspase-3 activity and reduced viability observed in cells treated with SMase-LDLs and ox-LDLs suggest a pro-apoptotic effect of these modified lipoproteins on endothelial cells. Moreover, a strong proinflammatory effect of SMase-LDLs compared to ox-LDLs was confirmed by an increased activation of NF-κB and consequent increased expression of its downstream cytokines IL-8 and IL-6 in HUVECs.
Collapse
|
5
|
Presence of Ceramidase Activity in Electronegative LDL. Int J Mol Sci 2022; 24:ijms24010165. [PMID: 36613609 PMCID: PMC9820682 DOI: 10.3390/ijms24010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/25/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Electronegative low-density lipoprotein (LDL(-)) is a minor modified fraction of human plasma LDL with several atherogenic properties. Among them is increased bioactive lipid mediator content, such as lysophosphatidylcholine (LPC), non-esterified fatty acids (NEFA), ceramide (Cer), and sphingosine (Sph), which are related to the presence of some phospholipolytic activities, including platelet-activating factor acetylhydrolase (PAF-AH), phospholipase C (PLC), and sphingomyelinase (SMase), in LDL(-). However, these enzymes' activities do not explain the increased Sph content, which typically derives from Cer degradation. In the present study, we analyzed the putative presence of ceramidase (CDase) activity, which could explain the increased Sph content. Thin layer chromatography (TLC) and lipidomic analysis showed that Cer, Sph, and NEFA spontaneously increased in LDL(-) incubated alone at 37 °C, in contrast with native LDL(+). An inhibitor of neutral CDase prevented the formation of Sph and, in turn, increased Cer content in LDL(-). In addition, LDL(-) efficiently degraded fluorescently labeled Cer (NBD-Cer) to form Sph and NEFA. These observations defend the existence of the CDase-like activity's association with LDL(-). However, neither the proteomic analysis nor the Western blot detected the presence of an enzyme with known CDase activity. Further studies are thus warranted to define the origin of the CDase-like activity detected in LDL(-).
Collapse
|
6
|
Vincristine-doxorubicin co-loaded artificial low-density lipoproteins towards solid tumours. Eur J Med Chem 2021; 226:113802. [PMID: 34543934 DOI: 10.1016/j.ejmech.2021.113802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/24/2022]
Abstract
To construct an artificial low-density lipoprotein (aLDL) that highly mimics low-density lipoprotein (LDL) in vivo, and deliver vincristine (VCR) - doxorubicin (DOX) simultaneously, the 100 nm and 35 nm DOX-VCR-aLDLs (DV-aLDLs) were constructed, then the physicochemical characteristics were evaluated. Through in vitro inverse gravity diffusion experiment, the tumour cake and sphere model experiment, draw a conclusion that the diffusion of 35 nm DV-aLDLs was stronger than 100 nm DV-aLDLs, and the tumour retention of 35 nm DV-aLDLs was better than the DV-solution. In addition, the three-dimension (3D) in vivo distribution imaging of aLDLs was performed on HepG-2 tumour-bearing nude mice, followed by the biodistribution and therapeutic efficacy on these xenograft models. Taking advantage of better diffusion capacity in tumour tissue, as well as the synergistic effect of VCR and DOX, the 35 nm DV-aLDL had the strongest efficacy and the lowest toxicity. High entrapment efficiency and stability, both active and passive targeting, making aLDL a potential carrier for tumour-targeted therapy at the same time.
Collapse
|
7
|
Zingg JM, Vlad A, Ricciarelli R. Oxidized LDLs as Signaling Molecules. Antioxidants (Basel) 2021; 10:antiox10081184. [PMID: 34439432 PMCID: PMC8389018 DOI: 10.3390/antiox10081184] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Levels of oxidized low-density lipoproteins (oxLDLs) are usually low in vivo but can increase whenever the balance between formation and scavenging of free radicals is impaired. Under normal conditions, uptake and degradation represent the physiological cellular response to oxLDL exposure. The uptake of oxLDLs is mediated by cell surface scavenger receptors that may also act as signaling molecules. Under conditions of atherosclerosis, monocytes/macrophages and vascular smooth muscle cells highly exposed to oxLDLs tend to convert to foam cells due to the intracellular accumulation of lipids. Moreover, the atherogenic process is accelerated by the increased expression of the scavenger receptors CD36, SR-BI, LOX-1, and SRA in response to high levels of oxLDL and oxidized lipids. In some respects, the effects of oxLDLs, involving cell proliferation, inflammation, apoptosis, adhesion, migration, senescence, and gene expression, can be seen as an adaptive response to the rise of free radicals in the vascular system. Unlike highly reactive radicals, circulating oxLDLs may signal to cells at more distant sites and possibly trigger a systemic antioxidant defense, thus elevating the role of oxLDLs to that of signaling molecules with physiological relevance.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (J.-M.Z.); (R.R.); Tel.: +1-(305)-2433531 (J.-M.Z.); +39-010-3538831 (R.R.)
| | - Adelina Vlad
- Physiology Department, “Carol Davila” UMPh, 020021 Bucharest, Romania;
| | - Roberta Ricciarelli
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence: (J.-M.Z.); (R.R.); Tel.: +1-(305)-2433531 (J.-M.Z.); +39-010-3538831 (R.R.)
| |
Collapse
|
8
|
Ke LY, Law SH, Mishra VK, Parveen F, Chan HC, Lu YH, Chu CS. Molecular and Cellular Mechanisms of Electronegative Lipoproteins in Cardiovascular Diseases. Biomedicines 2020; 8:biomedicines8120550. [PMID: 33260304 PMCID: PMC7760527 DOI: 10.3390/biomedicines8120550] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of glucose and lipid metabolism increases plasma levels of lipoproteins and triglycerides, resulting in vascular endothelial damage. Remarkably, the oxidation of lipid and lipoprotein particles generates electronegative lipoproteins that mediate cellular deterioration of atherosclerosis. In this review, we examined the core of atherosclerotic plaque, which is enriched by byproducts of lipid metabolism and lipoproteins, such as oxidized low-density lipoproteins (oxLDL) and electronegative subfraction of LDL (LDL(−)). We also summarized the chemical properties, receptors, and molecular mechanisms of LDL(−). In combination with other well-known markers of inflammation, namely metabolic diseases, we concluded that LDL(−) can be used as a novel prognostic tool for these lipid disorders. In addition, through understanding the underlying pathophysiological molecular routes for endothelial dysfunction and inflammation, we may reassess current therapeutics and might gain a new direction to treat atherosclerotic cardiovascular diseases, mainly targeting LDL(−) clearance.
Collapse
Affiliation(s)
- Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
- Graduate Institute of Medicine, College of Medicine and Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
| | - Shi Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Vineet Kumar Mishra
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Farzana Parveen
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Hua-Chen Chan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
| | - Ye-Hsu Lu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
| | - Chih-Sheng Chu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Correspondence: ; Tel.: +886-73121101 (ext. 2297); Fax: +886-73111996
| |
Collapse
|
9
|
An Increased Plasma Level of ApoCIII-Rich Electronegative High-Density Lipoprotein May Contribute to Cognitive Impairment in Alzheimer's Disease. Biomedicines 2020; 8:biomedicines8120542. [PMID: 33256187 PMCID: PMC7761422 DOI: 10.3390/biomedicines8120542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 02/02/2023] Open
Abstract
High-density lipoprotein (HDL) plays a vital role in lipid metabolism and anti-inflammatory activities; a dysfunctional HDL impairs cholesterol efflux pathways. To understand HDL's role in patients with Alzheimer's disease (AD), we analyzed the chemical properties and function. HDL from AD patients (AD-HDL) was separated into five subfractions, H1-H5, using fast-protein liquid chromatography equipped with an anion-exchange column. Subfraction H5, defined as the most electronegative HDL, was increased 5.5-fold in AD-HDL (23.48 ± 17.83%) in comparison with the control HDL (4.24 ± 3.22%). By liquid chromatography mass spectrometry (LC/MSE), AD-HDL showed that the level of apolipoprotein (apo)CIII was elevated but sphingosine-1-phosphate (S1P)-associated apoM and anti-oxidative paraoxonase 1 (PON1) were reduced. AD-HDL showed a lower cholesterol efflux capacity that was associated with the post-translational oxidation of apoAI. Exposure of murine macrophage cell line, RAW 264.7, to AD-HDL induced a vibrant expression of ganglioside GM1 in colocalization with apoCIII on lipid rafts alongside a concomitant increase of tumor necrosis factor-α (TNF-α) detectable in the cultured medium. In conclusion, AD-HDL had a higher proportion of H5, an apoCIII-rich electronegative HDL subfraction. The associated increase in pro-inflammatory (apoCIII, TNF-α) components might favor Amyloid β assembly and neural inflammation. A compromised cholesterol efflux capacity of AD-HDL may also contribute to cognitive impairment.
Collapse
|
10
|
Neutrophils as a Novel Target of Modified Low-Density Lipoproteins and an Accelerator of Cardiovascular Diseases. Int J Mol Sci 2020; 21:ijms21218312. [PMID: 33167592 PMCID: PMC7664187 DOI: 10.3390/ijms21218312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Neutrophil extracellular traps (NETs) significantly contribute to various pathophysiological conditions, including cardiovascular diseases. NET formation in the vasculature exhibits inflammatory and thrombogenic activities on the endothelium. NETs are induced by various stimulants such as exogenous damage-associated molecular patterns (DAMPs). Oxidatively modified low-density lipoprotein (oxLDL) has been physiologically defined as a subpopulation of LDL that comprises various oxidative modifications in the protein components and oxidized lipids, which could act as DAMPs. oxLDL has been recognized as a crucial initiator and accelerator of atherosclerosis through foam cell formation by macrophages; however, recent studies have demonstrated that oxLDL stimulates neutrophils to induce NET formation and enhance NET-mediated inflammatory responses in vascular endothelial cells, thereby suggesting that oxLDL may be involved in cardiovascular diseases through neutrophil activation. As NETs comprise myeloperoxidase and proteases, they have the potential to mediate oxidative modification of LDL. This review summarizes recent updates on the analysis of NETs, their implications for cardiovascular diseases, and prospects for a possible link between NET formation and oxidative modification of lipoproteins.
Collapse
|
11
|
Chu CS, Law SH, Lenzen D, Tan YH, Weng SF, Ito E, Wu JC, Chen CH, Chan HC, Ke LY. Clinical Significance of Electronegative Low-Density Lipoprotein Cholesterol in Atherothrombosis. Biomedicines 2020; 8:biomedicines8080254. [PMID: 32751498 PMCID: PMC7460408 DOI: 10.3390/biomedicines8080254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the numerous risk factors for atherosclerotic cardiovascular diseases (ASCVD), cumulative evidence shows that electronegative low-density lipoprotein (L5 LDL) cholesterol is a promising biomarker. Its toxicity may contribute to atherothrombotic events. Notably, plasma L5 LDL levels positively correlate with the increasing severity of cardiovascular diseases. In contrast, traditional markers such as LDL-cholesterol and triglyceride are the therapeutic goals in secondary prevention for ASCVD, but that is controversial in primary prevention for patients with low risk. In this review, we point out the clinical significance and pathophysiological mechanisms of L5 LDL, and the clinical applications of L5 LDL levels in ASCVD can be confidently addressed. Based on the previously defined cut-off value by receiver operating characteristic curve, the acceptable physiological range of L5 concentration is proposed to be below 1.7 mg/dL. When L5 LDL level surpass this threshold, clinically relevant ASCVD might be present, and further exams such as carotid intima-media thickness, pulse wave velocity, exercise stress test, or multidetector computed tomography are required. Notably, the ultimate goal of L5 LDL concentration is lower than 1.7 mg/dL. Instead, with L5 LDL greater than 1.7 mg/dL, lipid-lowering treatment may be required, including statin, ezetimibe or PCSK9 inhibitor, regardless of the low-density lipoprotein cholesterol (LDL-C) level. Since L5 LDL could be a promising biomarker, we propose that a high throughput, clinically feasible methodology is urgently required not only for conducting a prospective, large population study but for developing therapeutics strategies to decrease L5 LDL in the blood.
Collapse
Affiliation(s)
- Chih-Sheng Chu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan;
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Shi Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.H.L.); (D.L.); (Y.-H.T.); (E.I.)
| | - David Lenzen
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.H.L.); (D.L.); (Y.-H.T.); (E.I.)
| | - Yong-Hong Tan
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.H.L.); (D.L.); (Y.-H.T.); (E.I.)
| | - Shih-Feng Weng
- Department of Healthcare Administration and Medical Informatics, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Etsuro Ito
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.H.L.); (D.L.); (Y.-H.T.); (E.I.)
- Department of Biology, Waseda University, Tokyo 162-8480, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Jung-Chou Wu
- Division of Cardiology, Department of Internal Medicine, Pingtung Christian Hospital, Pingtung 90059, Taiwan;
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA;
| | - Hua-Chen Chan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan;
- Correspondence: (H.-C.C.); (L.-Y.K.); Tel.: +886-73121101 (ext. 2296); Fax: +886-73111996 (L.-Y.K.)
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.H.L.); (D.L.); (Y.-H.T.); (E.I.)
- Graduate Institute of Medicine, College of Medicine, & Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Correspondence: (H.-C.C.); (L.-Y.K.); Tel.: +886-73121101 (ext. 2296); Fax: +886-73111996 (L.-Y.K.)
| |
Collapse
|
12
|
Ke LY, Chan HC, Chen CC, Chang CF, Lu PL, Chu CS, Lai WT, Shin SJ, Liu FT, Chen CH. Increased APOE glycosylation plays a key role in the atherogenicity of L5 low-density lipoprotein. FASEB J 2020; 34:9802-9813. [PMID: 32501643 DOI: 10.1096/fj.202000659r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/22/2022]
Abstract
Low-density lipoprotein (LDL) is heterogeneous, composed of particles with variable atherogenicity. Electronegative L5 LDL exhibits atherogenic properties in vitro and in vivo, and its levels are elevated in patients with increased cardiovascular risk. Apolipoprotein E (APOE) content is increased in L5, but what role APOE plays in L5 function remains unclear. Here, we characterized the contributions of APOE posttranslational modification to L5's atherogenicity. Using two-dimensional electrophoresis and liquid chromatography-mass spectrometry, we studied APOE's posttranslational modification in L5 from human plasma. APOE structures with various glycan residues were predicted. Molecular docking and molecular dynamics simulation were performed to examine the functional changes of APOE resulting from glycosylation. We also examined the effects of L5 deglycosylation on endothelial cell apoptosis. The glycan sequence N-acetylgalactosamine, galactose, and sialic acid was consistently expressed on serine 94, threonine 194, and threonine 289 of APOE in L5 and was predicted to contribute to L5's negative surface charge and hydrophilicity. The electrostatic force between the negatively charged sialic acid-containing glycan residue of APOE and positively charged amino acids at the receptor-binding area suggested that glycosylation interferes with APOE's attraction to receptors, lipid-binding ability, and lipid transportation and metabolism functions. Importantly, L5 containing glycosylated APOE induced apoptosis in cultured endothelial cells through lectin-like oxidized LDL receptor-1 (LOX-1) signaling, and glycosylation removal from L5 attenuated L5-induced apoptosis. APOE glycosylation may contribute to the atherogenicity of L5 and be a useful biomarker for rapidly quantifying L5.
Collapse
Affiliation(s)
- Liang-Yin Ke
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, USA.,Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hua-Chen Chan
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, USA.,Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chuan-Fa Chang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Liang Lu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Sheng Chu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wen-Ter Lai
- Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shyi-Jang Shin
- Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Dermatology, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, USA.,New York Heart Research Foundation, New York, NY, USA
| |
Collapse
|
13
|
Chen C, Ke L, Chan H, Chu C, Lee A, Lin K, Lee M, Hsiao P, Chen C, Shin S. Electronegative low-density lipoprotein of patients with metabolic syndrome induces pathogenesis of aorta through disruption of the stimulated by retinoic acid 6 cascade. J Diabetes Investig 2020; 11:535-544. [PMID: 31597015 PMCID: PMC7232312 DOI: 10.1111/jdi.13158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/01/2019] [Accepted: 10/06/2019] [Indexed: 12/26/2022] Open
Abstract
AIMS/INTRODUCTION Electronegative low-density lipoprotein (L5) is the most atherogenic fraction of low-density lipoprotein and is elevated in people with metabolic syndrome (MetS), whereas the retinol-binding protein 4 receptor (stimulated by retinoic acid 6 [STRA6]) cascade is disrupted in various organs of patients with obesity-related diseases. Our objective was to investigate whether L5 from MetS patients capably induces pathogenesis of aorta through disrupting the STRA6 cascade. MATERIAL AND METHODS We examined the in vivo and in vitro effects of L5 on the STRA6 cascade and aortic atherogenic markers. To investigate the role of this cascade on atherosclerotic formation, crbp1 transfection was carried out in vitro. RESULTS This study shows that L5 activates atherogenic markers (p38 mitogen-activated protein kinases, pSmad2 and matrix metallopeptidase 9) and simultaneously suppresses STRA6 signals (STRA6, cellular retinol-binding protein 1, lecithin-retinol acyltransferase, retinoic acid receptor-α and retinoid X receptor-α) in aortas of L5-injected mice and L5-treated human aortic endothelial cell lines and human aortic smooth muscle cell lines. These L5-induced changes of the STRA6 cascade and atherogenic markers were reversed in aortas of LOX1-/- mice and in LOX1 ribonucleic acid-silenced human aortic endothelial cell lines and human aortic smooth muscle cell lines. Furthermore, crbp1 gene transfection reversed the disruption of the STRA6 cascade, the phosphorylation of p38 mitogen-activated protein kinases and Smad2, and the elevation of matrix metallopeptidase 9 in L5-treated human aortic endothelial cell lines. CONCLUSIONS This study shows that L5 from MetS patients induces atherogenic markers by disrupting STRA6 signaling. Suppression of STRA6 might be one novel pathogenesis of aorta in patients with MetS.
Collapse
Affiliation(s)
- Chao‐Hung Chen
- School of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Divison of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Liang‐Yin Ke
- Lipid Science and Aging Research CenterKaohsiung Medical UniversityKaohsiungTaiwan
- Department of Medical Laboratory Science and BiotechnologyCollege of Health SciencesKaohsiung Medical UniversityKaohsiungTaiwan
| | - Hua‐Chen Chan
- Department of Medical Laboratory Science and BiotechnologyCollege of Health SciencesKaohsiung Medical UniversityKaohsiungTaiwan
| | - Chih‐Sheng Chu
- Division of CardiologyDepartment of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - An‐Sheng Lee
- Department of MedicineMackay Medical CollegeNew TaipeiTaiwan
| | - Kun‐Der Lin
- School of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Divison of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
- Vascular and Medical ResearchTexas Heart InstituteHoustonTexasUSA
| | - Mei‐Yueh Lee
- School of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Divison of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Pi‐Jung Hsiao
- School of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Divison of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Chu‐Huang Chen
- Lipid Science and Aging Research CenterKaohsiung Medical UniversityKaohsiungTaiwan
- Vascular and Medical ResearchTexas Heart InstituteHoustonTexasUSA
- Department of Internal MedicineKaohsiung Ta‐Tung Municipal HospitalKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Shyi‐Jang Shin
- School of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Divison of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
- Department of Medical Laboratory Science and BiotechnologyCollege of Health SciencesKaohsiung Medical UniversityKaohsiungTaiwan
| |
Collapse
|
14
|
Chan HC, Chan HC, Liang CJ, Lee HC, Su H, Lee AS, Shiea J, Tsai WC, Ou TT, Wu CC, Chu CS, Dixon RA, Ke LY, Yen JH, Chen CH. Role of Low-Density Lipoprotein in Early Vascular Aging Associated With Systemic Lupus Erythematosus. Arthritis Rheumatol 2020; 72:972-984. [PMID: 31994323 DOI: 10.1002/art.41213] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 01/21/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Patients with systemic lupus erythematosus (SLE) often have atherosclerotic complications at a young age but normal low-density lipoprotein (LDL) levels. This study was undertaken to investigate the role of LDL composition in promoting early vascular aging in SLE patients. METHODS Plasma LDL from 45 SLE patients (SLE-LDL) and from 37 normal healthy controls (N-LDL) was chromatographically divided into 5 subfractions (L1-L5), and the subfraction composition was analyzed. Correlations between subfraction levels and signs of early vascular aging were assessed. Mechanisms of lipid-mediated endothelial dysfunction were explored using in vitro assays and experiments in apoE-/- mice. RESULTS The L5 percentage was increased 3.4 times in the plasma of SLE patients compared with normal controls. This increased percentage of SLE-L5 was positively correlated with the mean blood pressure (r = 0.27, P = 0.04), carotid intima-media thickness (IMT) (right carotid IMT, r = 0.4, P = 0.004; left carotid IMT, r = 0.36, P = 0.01), pulse wave velocity (r = 0.29, P = 0.04), and blood levels of CD16+ monocytes (r = 0.35, P = 0.004) and CX3CL1 cytokines (r = 0.43, P < 0.001) in SLE patients. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis revealed that plasma levels of lysophosphatidylcholine (LPC) and platelet-activating factor (PAF) were increased in SLE-LDL and in the SLE-L5 plasma subfraction. Injecting SLE-LDL, SLE-L5, or LPC into young, male apoE-/- mice caused increases in plasma CX3CL1 levels, aortic fatty-streak areas, aortic vascular aging, and macrophage infiltration into the aortic wall, whereas injection of N-LDL or SLE-L1 had negligible effects (n = 3-8 mice per group). In vitro, SLE-L5 lipid extracts induced increases in CX3CR1 and CD16 expression in human monocytes; synthetic PAF and LPC had similar effects. Furthermore, lipid extracts of SLE-LDL and SLE-L5 induced the expression of CX3CL1 and enhanced monocyte-endothelial cell adhesion in assays with bovine aortic endothelial cells. CONCLUSION An increase in plasma L5 levels, not total LDL concentration, may promote early vascular aging in SLE patients, leading to premature atherosclerosis.
Collapse
Affiliation(s)
- Hua-Chen Chan
- Kaohsiung Medical University Hospital and Kaohsiung Medical University, Kaohsiung, Taiwan, and Texas Heart Institute, Houston
| | - Hsiu-Chuan Chan
- Kaohsiung Medical University, Kaohsiung, Taiwan, and Texas Heart Institute, Houston
| | | | - Hsiang-Chun Lee
- Kaohsiung Medical University Hospital and Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung Su
- National Sun Yat-sen University, Kaohsiung, Taiwan
| | | | | | - Wen-Chan Tsai
- Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Tsan-Teng Ou
- Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Cheng-Chin Wu
- Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Sheng Chu
- Kaohsiung Medical University Hospital and Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Liang-Yin Ke
- Kaohsiung Medical University Hospital and Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jeng-Hsien Yen
- Kaohsiung Medical University Hospital, Kaohsiung Medical University, and National Sun Yat-sen University, Kaohsiung, Taiwan, and National Chiao Tung University, Hsinchu, Taiwan
| | - Chu-Huang Chen
- Kaohsiung Medical University Hospital and Kaohsiung Medical University, Kaohsiung, Taiwan, and Texas Heart Institute, Houston, and New York Heart Research Foundation, Mineola
| |
Collapse
|
15
|
Puig N, Estruch M, Jin L, Sanchez-Quesada JL, Benitez S. The Role of Distinctive Sphingolipids in the Inflammatory and Apoptotic Effects of Electronegative LDL on Monocytes. Biomolecules 2019; 9:biom9080300. [PMID: 31344975 PMCID: PMC6722802 DOI: 10.3390/biom9080300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/17/2019] [Accepted: 07/20/2019] [Indexed: 01/18/2023] Open
Abstract
Electronegative low-density lipoprotein (LDL(-)) is a minor LDL subfraction that is present in blood with inflammatory and apoptotic effects. We aimed to evaluate the role of sphingolipids ceramide (Cer), sphingosine (Sph), and sphingosine-1-phosphate (S1P) in the LDL(-)-induced effect on monocytes. Total LDL was subfractioned into native LDL and LDL(-) by anion-exchange chromatography and their sphingolipid content evaluated by mass spectrometry. LDL subfractions were incubated with monocytes in the presence or absence of enzyme inhibitors: chlorpromazine (CPZ), d-erythro-2-(N-myristoyl amino)-1-phenyl-1-propanol (MAPP), and N,N-dimethylsphingosine (DMS), which inhibit Cer, Sph, and S1P generation, respectively. After incubation, we evaluated cytokine release by enzyme-linked immunosorbent assay (ELISA) and apoptosis by flow cytometry. LDL(-) had an increased content in Cer and Sph compared to LDL(+). LDL(-)-induced cytokine release from cultured monocytes was inhibited by CPZ and MAPP, whereas DMS had no effect. LDL(-) promoted monocyte apoptosis, which was inhibited by CPZ, but increased with the addition of DMS. LDL enriched with Sph increased cytokine release in monocytes, and when enriched with Cer, reproduced both the apoptotic and inflammatory effects of LDL(-). These observations indicate that Cer content contributes to the inflammatory and apoptotic effects of LDL(-) on monocytes, whereas Sph plays a more important role in LDL(-)-induced inflammation, and S1P counteracts apoptosis.
Collapse
Affiliation(s)
- Núria Puig
- Cardiovascular Biochemistry. Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain. C/Sant Quinti 77-79, 08041 Barcelona, Spain
- Molecular Biology and Biochemistry Department, Universitat Autònoma de Barcelona (UAB) Faculty of Medicine. Building M. Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Montserrat Estruch
- Cardiovascular Biochemistry. Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain. C/Sant Quinti 77-79, 08041 Barcelona, Spain
| | - Lei Jin
- Cardiovascular Biochemistry. Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain. C/Sant Quinti 77-79, 08041 Barcelona, Spain
| | - Jose Luis Sanchez-Quesada
- Cardiovascular Biochemistry. Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain. C/Sant Quinti 77-79, 08041 Barcelona, Spain
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain
| | - Sonia Benitez
- Cardiovascular Biochemistry. Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain. C/Sant Quinti 77-79, 08041 Barcelona, Spain.
| |
Collapse
|
16
|
Rivas-Urbina A, Rull A, Ordóñez-Llanos J, Sánchez-Quesada JL. Electronegative LDL: An Active Player in Atherogenesis or a By- Product of Atherosclerosis? Curr Med Chem 2019; 26:1665-1679. [PMID: 29600751 DOI: 10.2174/0929867325666180330093953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/12/2017] [Accepted: 12/11/2017] [Indexed: 12/16/2022]
Abstract
Low-density lipoproteins (LDLs) are the major plasma carriers of cholesterol. However, LDL particles must undergo various molecular modifications to promote the development of atherosclerotic lesions. Modified LDL can be generated by different mechanisms, but as a common trait, show an increased electronegative charge of the LDL particle. A subfraction of LDL with increased electronegative charge (LDL(-)), which can be isolated from blood, exhibits several pro-atherogenic characteristics. LDL(-) is heterogeneous, due to its multiple origins but is strongly related to the development of atherosclerosis. Nevertheless, the implication of LDL(-) in a broad array of pathologic conditions is complex and in some cases anti-atherogenic LDL(-) properties have been reported. In fact, several molecular modifications generating LDL(-) have been widely studied, but it remains unknown as to whether these different mechanisms are specific or common to different pathological disorders. In this review, we attempt to address these issues examining the most recent findings on the biology of LDL(-) and discussing the relationship between this LDL subfraction and the development of different diseases with increased cardiovascular risk. Finally, the review highlights the importance of minor apolipoproteins associated with LDL(-) which would play a crucial role in the different properties displayed by these modified LDL particles.
Collapse
Affiliation(s)
- Andrea Rivas-Urbina
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Cerdanyola, Spain
| | - Anna Rull
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,Hospital Universitari Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Jordi Ordóñez-Llanos
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Cerdanyola, Spain
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,CIBERDEM. Institute of Health Carlos III, Madrid 28029, Spain
| |
Collapse
|
17
|
Wang YC, Lee AS, Lu LS, Ke LY, Chen WY, Dong JW, Lu J, Chen Z, Chu CS, Chan HC, Kuzan TY, Tsai MH, Hsu WL, Dixon RAF, Sawamura T, Chang KC, Chen CH. Human electronegative LDL induces mitochondrial dysfunction and premature senescence of vascular cells in vivo. Aging Cell 2018; 17:e12792. [PMID: 29923368 PMCID: PMC6052487 DOI: 10.1111/acel.12792] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2018] [Indexed: 12/30/2022] Open
Abstract
Dysregulation of plasma lipids is associated with age‐related cardiovascular diseases. L5, the most electronegative subfraction of chromatographically resolved low‐density lipoprotein (LDL), induces endothelial dysfunction, whereas the least electronegative subfraction, L1, does not. In this study, we examined the effects of L5 on endothelial senescence and its underlying mechanisms. C57B6/J mice were intravenously injected with L5 or L1 (2 mg kg−1 day−1) from human plasma. After 4 weeks, nuclear γH2AX deposition and senescence‐associated β‐galactosidase staining indicative of DNA damage and premature senescence, respectively, were increased in the aortic endothelium of L5‐treated but not L1‐treated mice. Similar to that, in Syrian hamsters with elevated serum L5 levels induced by a high‐fat diet, nuclear γH2AX deposition and senescence‐associated β‐galactosidase staining were increased in the aortic endothelium. This phenomenon was blocked in the presence of N‐acetyl‐cysteine (free‐radical scavenger) or caffeine (ATM blocker), as well as in lectin‐like oxidized LDL receptor‐1 (LOX‐1) knockout mice. In cultured human aortic endothelial cells, L5 augmented mitochondrial oxygen consumption and mitochondrial free‐radical production, which led to ATM activation, nuclear γH2AX deposition, Chk2 phosphorylation, and TP53 stabilization. L5 also decreased human telomerase reverse transcriptase (hTERT) protein levels and activity. Pharmacologic or genetic manipulation of the reactive oxygen species (ROS)/ATM/Chk2/TP53 pathway efficiently blocked L5‐induced endothelial senescence. In conclusion, L5 may promote mitochondrial free‐radical production and activate the DNA damage response to induce premature vascular endothelial senescence that leads to atherosclerosis. Novel therapeutic strategies that target L5‐induced endothelial senescence may be used to prevent and treat atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Yu-Chen Wang
- Division of Cardiovascular Medicine; Asia University Hospital; Taichung Taiwan
- Department of Biotechnology; Asia University; Taichung Taiwan
- Division of Cardiovascular Medicine; China Medical University Hospital; Taichung Taiwan
| | - An-Sheng Lee
- Department of Medicine; Mackay Medical College; New Taipei City Taiwan
- Cardiovascular Research Laboratory; China Medical University Hospital; Taichung Taiwan
| | - Long-Sheng Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering; College of Biomedical Engineering; Taipei Medical University; Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering; College of Biomedical Engineering; Taipei Medical University; Taipei Taiwan
- Department of Radiation Oncology; Taipei Medical University Hospital; Taipei Taiwan
- Translational Laboratory; Department of Medical Research; Taipei Medical University Hospital; Taipei Taiwan
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology; College of Health Sciences; Kaohsiung Medical University; Kaohsiung Taiwan
- Lipid Science and Aging Research Center; Kaohsiung Medical University; Kaohsiung Taiwan
| | - Wei-Yu Chen
- Department of Medicine; Mackay Medical College; New Taipei City Taiwan
- Graduate Institute of Biomedical Sciences; China Medical University; Taichung Taiwan
| | - Jian-Wen Dong
- Department of Neuro-Oncology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Jonathan Lu
- Vascular and Medicinal Research; Texas Heart Institute; Houston Texas
| | - Zhenping Chen
- Department of Surgery; The University of Texas Medical Branch; Galveston Texas
| | - Chih-Sheng Chu
- Lipid Science and Aging Research Center; Kaohsiung Medical University; Kaohsiung Taiwan
- Center for Lipid Biosciences; Kaohsiung Medical University Hospital; Kaohsiung Taiwan
- Division of Cardiology; Department of Internal Medicine; Kaohsiung Medical University Hospital; Kaohsiung Taiwan
| | - Hua-Chen Chan
- Lipid Science and Aging Research Center; Kaohsiung Medical University; Kaohsiung Taiwan
- Center for Lipid Biosciences; Kaohsiung Medical University Hospital; Kaohsiung Taiwan
| | - Taha Y. Kuzan
- Department of Radiology; Marmara University Medical School; Istanbul Turkey
| | - Ming-Hsien Tsai
- Lipid Science and Aging Research Center; Kaohsiung Medical University; Kaohsiung Taiwan
- Center for Lipid Biosciences; Kaohsiung Medical University Hospital; Kaohsiung Taiwan
| | - Wen-Li Hsu
- Lipid Science and Aging Research Center; Kaohsiung Medical University; Kaohsiung Taiwan
| | | | - Tatsuya Sawamura
- Department of Physiology; Shinshu University School of Medicine; Matsumoto, Nagano Japan
| | - Kuan-Cheng Chang
- Division of Cardiovascular Medicine; China Medical University Hospital; Taichung Taiwan
- Cardiovascular Research Laboratory; China Medical University Hospital; Taichung Taiwan
- Graduate Institute of Biomedical Sciences; China Medical University; Taichung Taiwan
| | - Chu-Huang Chen
- Lipid Science and Aging Research Center; Kaohsiung Medical University; Kaohsiung Taiwan
- Vascular and Medicinal Research; Texas Heart Institute; Houston Texas
- Center for Lipid Biosciences; Kaohsiung Medical University Hospital; Kaohsiung Taiwan
- Graduate Institute of Medicine; College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
| |
Collapse
|