1
|
Hoffer L, Charifi-Hoareau G, Barelier S, Betzi S, Miller T, Morelli X, Roche P. ChemoDOTS: a web server to design chemistry-driven focused libraries. Nucleic Acids Res 2024; 52:W461-W468. [PMID: 38686808 PMCID: PMC11223810 DOI: 10.1093/nar/gkae326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
In drug discovery, the successful optimization of an initial hit compound into a lead molecule requires multiple cycles of chemical modification. Consequently, there is a need to efficiently generate synthesizable chemical libraries to navigate the chemical space surrounding the primary hit. To address this need, we introduce ChemoDOTS, an easy-to-use web server for hit-to-lead chemical optimization freely available at https://chemodots.marseille.inserm.fr/. With this tool, users enter an activated form of the initial hit molecule then choose from automatically detected reactive functions. The server proposes compatible chemical transformations via an ensemble of encoded chemical reactions widely used in the pharmaceutical industry during hit-to-lead optimization. After selection of the desired reactions, all compatible chemical building blocks are automatically coupled to the initial hit to generate a raw chemical library. Post-processing filters can be applied to extract a subset of compounds with specific physicochemical properties. Finally, explicit stereoisomers and tautomers are computed, and a 3D conformer is generated for each molecule. The resulting virtual library is compatible with most docking software for virtual screening campaigns. ChemoDOTS rapidly generates synthetically feasible, hit-focused, large, diverse chemical libraries with finely-tuned physicochemical properties via a user-friendly interface providing a powerful resource for researchers engaged in hit-to-lead optimization.
Collapse
Affiliation(s)
- Laurent Hoffer
- CRCM, CNRS, Inserm, Institut Paoli-Calmettes, Aix-Marseille Univ, Marseille 13273, France
| | | | - Sarah Barelier
- CRCM, CNRS, Inserm, Institut Paoli-Calmettes, Aix-Marseille Univ, Marseille 13273, France
| | - Stéphane Betzi
- CRCM, CNRS, Inserm, Institut Paoli-Calmettes, Aix-Marseille Univ, Marseille 13273, France
| | - Thomas Miller
- CRCM, CNRS, Inserm, Institut Paoli-Calmettes, Aix-Marseille Univ, Marseille 13273, France
| | - Xavier Morelli
- CRCM, CNRS, Inserm, Institut Paoli-Calmettes, Aix-Marseille Univ, Marseille 13273, France
| | - Philippe Roche
- CRCM, CNRS, Inserm, Institut Paoli-Calmettes, Aix-Marseille Univ, Marseille 13273, France
| |
Collapse
|
2
|
Viviano M, Cipriano A, Fabbrizi E, Feoli A, Castellano S, Sbardella G, Mai A, Milite C, Rotili D. Successes and challenges in the development of BD1-selective BET inhibitors: a patent review. Expert Opin Ther Pat 2024; 34:529-545. [PMID: 38465537 DOI: 10.1080/13543776.2024.2327300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION Bromodomain and ExtraTerminal (BET) domain proteins are transcriptional cofactors that, recognizing acetylated lysines of histone and non-histone proteins, can modulate gene expression. The BET family consists of four members, each of which contains two bromodomains (BD1 and BD2) able to recognize the acetylated mark. Pan-BET inhibitors (BETi) have shown a promising anticancer potential in many clinical trials; however, their further development has been in part hampered by the side effects due to their lack of selectivity. Mounting evidence suggests that BD1 is primarily involved in cancer and that its selective inhibition can phenocopy the anticancer effects of pan-BETi with increased tolerability. Therefore, the development of BD1 selective inhibitors is highly pursed in both academia and industry. AREAS COVERED This review aims at giving an overview of the patent literature of BD1-selective BETi between 2014 and 2023. WIPO, USPTO, EPO, and SciFinder® databases were used for the search of patents. EXPERT OPINION The development of BD1-selective BETi, despite challenging, is highly desirable as it could have a great impact on the development of new safer anticancer therapeutics. Several strategies could be applied to discover potent and selective compounds with limited side effects.
Collapse
Affiliation(s)
- Monica Viviano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Alessandra Cipriano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Emanuele Fabbrizi
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy
| | - Alessandra Feoli
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Sabrina Castellano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Gianluca Sbardella
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Antonello Mai
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy
| | - Ciro Milite
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Dante Rotili
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Wang ZQ, Zhang ZC, Wu YY, Pi YN, Lou SH, Liu TB, Lou G, Yang C. Bromodomain and extraterminal (BET) proteins: biological functions, diseases, and targeted therapy. Signal Transduct Target Ther 2023; 8:420. [PMID: 37926722 PMCID: PMC10625992 DOI: 10.1038/s41392-023-01647-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
BET proteins, which influence gene expression and contribute to the development of cancer, are epigenetic interpreters. Thus, BET inhibitors represent a novel form of epigenetic anticancer treatment. Although preliminary clinical trials have shown the anticancer potential of BET inhibitors, it appears that these drugs have limited effectiveness when used alone. Therefore, given the limited monotherapeutic activity of BET inhibitors, their use in combination with other drugs warrants attention, including the meaningful variations in pharmacodynamic activity among chosen drug combinations. In this paper, we review the function of BET proteins, the preclinical justification for BET protein targeting in cancer, recent advances in small-molecule BET inhibitors, and preliminary clinical trial findings. We elucidate BET inhibitor resistance mechanisms, shed light on the associated adverse events, investigate the potential of combining these inhibitors with diverse therapeutic agents, present a comprehensive compilation of synergistic treatments involving BET inhibitors, and provide an outlook on their future prospects as potent antitumor agents. We conclude by suggesting that combining BET inhibitors with other anticancer drugs and innovative next-generation agents holds great potential for advancing the effective targeting of BET proteins as a promising anticancer strategy.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Zhao-Cong Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Yu-Yang Wu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ya-Nan Pi
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Sheng-Han Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tian-Bo Liu
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Ge Lou
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| | - Chang Yang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| |
Collapse
|
4
|
Stojković P, Kostić A, Lupšić E, Jovanović NT, Novaković M, Nedialkov P, Trendafilova A, Pešić M, Opsenica IM. Novel hybrids of sclareol and 1,2,4-triazolo[1,5-a]pyrimidine show collateral sensitivity in multidrug-resistant glioblastoma cells. Bioorg Chem 2023; 138:106605. [PMID: 37201322 DOI: 10.1016/j.bioorg.2023.106605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
The synthesis of 24 hybrid molecules, consisting of naturally occurring sclareol (SCL) and synthetic 1,2,4-triazolo[1,5-a]pyrimidines (TPs), is described. New compounds were designed with the aim of improving the cytotoxic properties, activity, and selectivity of the parent compounds. Six analogs (12a-f) contained 4-benzylpiperazine linkage, while 4-benzyldiamine linkage was present in eighteen derivatives (12g-r and 13a-f). Hybrids 13a-f consist of two TP units. After purification, all hybrids (12a-r and 13a-f), as well as their precursors (9a-e and 11a-c), were tested on human glioblastoma U87 cells. More than half of the tested synthesized molecules, 16 out of 31, caused a significant reduction of U87 cell viability (more than 75% reduction) at 30 µM. The concentration-dependent cytotoxicity of these 16 compounds was also examined on U87 cells, corresponding multidrug-resistant (MDR) U87-TxR cells with increased P-glycoprotein (P-gp) expression and activity, and normal lung fibroblasts MRC-5. Importantly, 12l and 12r were active in the nanomolar range, while seven compounds (11b, 11c, 12i, 12l, 12n, 12q, and 12r) were more selective towards glioblastoma cells than SCL. All compounds except 12r evaded MDR, showing even better cytotoxicity in U87-TxR cells. In particular, 11c, 12a, 12g, 12j, 12k, 12m, 12n, and SCL showed collateral sensitivity. Hybrid compounds 12l, 12q, and 12r decreased P-gp activity to the same extent as a well-known P-gp inhibitor - tariquidar (TQ). Hybrid compound 12l and its precursor 11c affected different cellular processes including the cell cycle, cell death, and mitochondrial membrane potential, and changed the levels of reactive oxygen and nitrogen species (ROS/RNS) in glioblastoma cells. Collateral sensitivity towards MDR glioblastoma cells was caused by the modulation of oxidative stress accompanied by inhibition of mitochondria.
Collapse
Affiliation(s)
- Pavle Stojković
- University of Belgrade - Faculty of Chemistry, PO Box 51, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Ana Kostić
- Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Ema Lupšić
- Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Nataša Terzić Jovanović
- University of Belgrade - Institute of Chemistry, Technology, and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11000 Belgrade, Serbia
| | - Miroslav Novaković
- University of Belgrade - Institute of Chemistry, Technology, and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11000 Belgrade, Serbia.
| | - Paraskev Nedialkov
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2, Dunav St., 1000, Sofia, Bulgaria
| | - Antoaneta Trendafilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 9, 1113, Sofia, Bulgaria
| | - Milica Pešić
- Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Igor M Opsenica
- University of Belgrade - Faculty of Chemistry, PO Box 51, Studentski Trg 16, 11158 Belgrade, Serbia.
| |
Collapse
|
5
|
Divakaran A, Harki DA, Pomerantz WC. Recent progress and structural analyses of domain-selective BET inhibitors. Med Res Rev 2023; 43:972-1018. [PMID: 36971240 PMCID: PMC10520981 DOI: 10.1002/med.21942] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 12/21/2022] [Accepted: 02/26/2023] [Indexed: 03/29/2023]
Abstract
Epigenetic mechanisms for controlling gene expression through heritable modifications to DNA, RNA, and proteins, are essential processes in maintaining cellular homeostasis. As a result of their central role in human diseases, the proteins responsible for adding, removing, or recognizing epigenetic modifications have emerged as viable drug targets. In the case of lysine-ε-N-acetylation (Kac ), bromodomains serve as recognition modules ("readers") of this activating epigenetic mark and competition of the bromodomain-Kac interaction with small-molecule inhibitors is an attractive strategy to control aberrant bromodomain-mediated gene expression. The bromodomain and extra-terminal (BET) family proteins contain eight similar bromodomains. These BET bromodomains are among the more commonly studied bromodomain classes with numerous pan-BET inhibitors showing promising anticancer and anti-inflammatory efficacy. However, these results have yet to translate into Food and Drug Administration-approved drugs, in part due to a high degree of on-target toxicities associated with pan-BET inhibition. Improved selectivity within the BET-family has been proposed to alleviate these concerns. In this review, we analyze the reported BET-domain selective inhibitors from a structural perspective. We highlight three essential characteristics of the reported molecules in generating domain selectivity, binding affinity, and mimicking Kac molecular recognition. In several cases, we provide insight into the design of molecules with improved specificity for individual BET-bromodomains. This review provides a perspective on the current state of the field as this exciting class of inhibitors continue to be evaluated in the clinic.
Collapse
Affiliation(s)
- Anand Divakaran
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th St SE, Minneapolis, MN 55455, United States
| | - Daniel A. Harki
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th St SE, Minneapolis, MN 55455, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN55455, United States
| | - William C.K. Pomerantz
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th St SE, Minneapolis, MN 55455, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN55455, United States
| |
Collapse
|
6
|
Çınaroğlu SS, Biggin PC. The role of loop dynamics in the prediction of ligand-protein binding enthalpy. Chem Sci 2023; 14:6792-6805. [PMID: 37350814 PMCID: PMC10284145 DOI: 10.1039/d2sc06471e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/31/2023] [Indexed: 06/24/2023] Open
Abstract
The enthalpic and entropic components of ligand-protein binding free energy reflect the interactions and dynamics between ligand and protein. Despite decades of study, our understanding and hence our ability to predict these individual components remains poor. In recent years, there has been substantial effort and success in the prediction of relative and absolute binding free energies, but the prediction of the enthalpic (and entropic) contributions in biomolecular systems remains challenging. Indeed, it is not even clear what kind of performance in terms of accuracy could currently be obtained for such systems. It is, however, relatively straight-forward to compute the enthalpy of binding. We thus evaluated the performance of absolute enthalpy of binding calculations using molecular dynamics simulation for ten inhibitors against a member of the bromodomain family, BRD4-1, against isothermal titration calorimetry data. Initial calculations, with the AMBER force-field showed good agreement with experiment (R2 = 0.60) and surprisingly good accuracy with an average of root-mean-square error (RMSE) = 2.49 kcal mol-1. Of the ten predictions, three were obvious outliers that were all over-predicted compared to experiment. Analysis of various simulation factors, including parameterization, buffer concentration and conformational dynamics, revealed that the behaviour of a loop (the ZA loop on the periphery of the binding site) strongly dictates the enthalpic prediction. Consistent with previous observations, the loop exists in two distinct conformational states and by considering one or the other or both states, the prediction for the three outliers can be improved dramatically to the point where the R2 = 0.95 and the accuracy in terms of RMSE improves to 0.90 kcal mol-1. However, performance across force-fields is not consistent: if OPLS and CHARMM are used, different outliers are observed and the correlation with the ZA loop behaviour is not recapitulated, likely reflecting parameterization as a confounding problem. The results provide a benchmark standard for future study and comparison.
Collapse
Affiliation(s)
- Süleyman Selim Çınaroğlu
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK +44 (0)1865 613238 +44 (0)1865 613305
| | - Philip C Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK +44 (0)1865 613238 +44 (0)1865 613305
| |
Collapse
|
7
|
Dai XJ, Xue LP, Ji SK, Zhou Y, Gao Y, Zheng YC, Liu HM, Liu HM. Triazole-fused pyrimidines in target-based anticancer drug discovery. Eur J Med Chem 2023; 249:115101. [PMID: 36724635 DOI: 10.1016/j.ejmech.2023.115101] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
In recent decades, the development of targeted drugs has featured prominently in the treatment of cancer, which is among the major causes of mortality globally. Triazole-fused pyrimidines, a widely-used class of heterocycles in medicinal chemistry, have attracted considerable interest as potential anticancer agents that target various cancer-associated targets in recent years, demonstrating them as valuable templates for discovering novel anticancer candidates. The current review concentrates on the latest advancements of triazole-pyrimidines as target-based anticancer agents, including works published between 2007 and the present (2007-2022). The structure-activity relationships (SARs) and multiple pathways are also reviewed to shed light on the development of more effective and biotargeted anticancer candidates.
Collapse
Affiliation(s)
- Xing-Jie Dai
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Lei-Peng Xue
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Shi-Kun Ji
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Ying Zhou
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Hui-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| |
Collapse
|
8
|
Divakaran A, Scholtz CR, Zahid H, Lin W, Griffith EC, Lee RE, Chen T, Harki DA, Pomerantz WCK. Development of an N-Terminal BRD4 Bromodomain-Targeted Degrader. ACS Med Chem Lett 2022; 13:1621-1627. [PMID: 36262390 PMCID: PMC9575167 DOI: 10.1021/acsmedchemlett.2c00300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
Targeted protein degradation is a powerful induced-proximity tool to control cellular protein concentrations using small molecules. However, the design of selective degraders remains empirical. Among bromodomain and extra-terminal (BET) family proteins, BRD4 is the primary therapeutic target over family members BRD2/3/T. Existing strategies for selective BRD4 degradation use pan-BET inhibitors optimized for BRD4:E3 ubiquitin ligase (E3) ternary complex formation, but these result in residual inhibition of undegraded BET-bromodomains by the pan-BET ligand, obscuring BRD4-degradation phenotypes. Using our selective inhibitor of the first BRD4 bromodomain, iBRD4-BD1 (IC50 = 12 nM, 23- to 6200-fold intra-BET selectivity), we developed dBRD4-BD1 to selectively degrade BRD4 (DC50 = 280 nM). Notably, dBRD4-BD1 upregulates BRD2/3, a result not observed with degraders using pan-BET ligands. Designing BRD4 selectivity up front enables analysis of BRD4 biology without wider BET-inhibition and simplifies designing BRD4-selective heterobifunctional molecules, such as degraders with new E3 recruiting ligands or for additional probes beyond degraders.
Collapse
Affiliation(s)
- Anand Divakaran
- Department
of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Cole R. Scholtz
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Huda Zahid
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Wenwei Lin
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Elizabeth C. Griffith
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Richard E. Lee
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Taosheng Chen
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Daniel A. Harki
- Department
of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - William C. K. Pomerantz
- Department
of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Wernersson S, Bobby R, Flavell L, Milbradt AG, Holdgate GA, Embrey KJ, Akke M. Bromodomain Interactions with Acetylated Histone 4 Peptides in the BRD4 Tandem Domain: Effects on Domain Dynamics and Internal Flexibility. Biochemistry 2022; 61:2303-2318. [PMID: 36215732 PMCID: PMC9631989 DOI: 10.1021/acs.biochem.2c00226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The bromodomain and extra-terminal (BET) protein BRD4
regulates
gene expression via recruitment of transcriptional regulatory complexes
to acetylated chromatin. Like other BET proteins, BRD4 contains two
bromodomains, BD1 and BD2, that can interact cooperatively with target
proteins and designed ligands, with important implications for drug
discovery. Here, we used nuclear magnetic resonance (NMR) spectroscopy
to study the dynamics and interactions of the isolated bromodomains,
as well as the tandem construct including both domains and the intervening
linker, and investigated the effects of binding a tetra-acetylated
peptide corresponding to the tail of histone 4. The peptide affinity
is lower for both domains in the tandem construct than for the isolated
domains. Using 15N spin relaxation, we determined the global
rotational correlation times and residue-specific order parameters
for BD1 and BD2. Isolated BD1 is monomeric in the apo state but apparently
dimerizes upon binding the tetra-acetylated peptide. Isolated BD2
partially dimerizes in both the apo and peptide-bound states. The
backbone order parameters reveal marked differences between BD1 and
BD2, primarily in the acetyl-lysine binding site where the ZA loop
is more flexible in BD2. Peptide binding reduces the order parameters
of the ZA loop in BD1 and the ZA and BC loops in BD2. The AB loop,
located distally from the binding site, shows variable dynamics that
reflect the different dimerization propensities of the domains. These
results provide a basis for understanding target recognition by BRD4.
Collapse
Affiliation(s)
- Sven Wernersson
- Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| | - Romel Bobby
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, CambridgeCB4 0WG, U.K
| | - Liz Flavell
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge Science Park, CambridgeCB4 0WG, U.K
| | - Alexander G Milbradt
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, CambridgeCB4 0WG, U.K
| | - Geoffrey A Holdgate
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, CambridgeCB4 0WG, U.K
| | - Kevin J Embrey
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, CambridgeCB4 0WG, U.K
| | - Mikael Akke
- Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| |
Collapse
|
10
|
Caldero-Rodríguez NE, Arpa EM, Cárdenas DJ, Martínez-Fernández L, Jockusch S, Seth SK, Corral I, Crespo-Hernández CE. 2-Oxopurine Riboside: A Dual Fluorescent Analog and Photosensitizer for RNA/DNA Research. J Phys Chem B 2022; 126:4483-4490. [PMID: 35679327 DOI: 10.1021/acs.jpcb.2c01113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is significant interest in developing suitable nucleoside analogs exhibiting high fluorescence and triplet yields to investigate the structure, dynamics, and binding properties of nucleic acids and promote selective photosensitized damage to DNA/RNA, respectively. In this study, steady-state, laser flash photolysis, time-resolved IR luminescence, and femtosecond broad-band transient absorption spectroscopies are combined with quantum chemical calculations to elucidate the excited-state dynamics of 2-oxopurine riboside in aqueous solution and to investigate its prospective use as a fluorescent or photosensitizer analog. The Franck-Condon population in the S1 (ππ*) state decays through a combination of solvent and conformational relaxation to its minimum in 1.9 ps. The population trapped in the 1ππ* minimum bifurcates to either fluoresce or intersystem cross to the triplet manifold within ca. 5 ns, while another fraction of the population decays nonradiatively to the ground state. It is demonstrated that 2-oxopurine riboside exhibits both high fluorescent (48%) and significant triplet (between 10% and 52%) yields, leading to a yield of singlet oxygen generation of 10%, making this nucleoside analog a dual fluorescent and photosensitizer analog for DNA and RNA research.
Collapse
Affiliation(s)
| | - Enrique M Arpa
- Departamento de Química, Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente 7, Cantoblanco, 28049 Madrid, Spain
| | - Diego J Cárdenas
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente 7, Cantoblanco, 28049 Madrid, Spain.,Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Lara Martínez-Fernández
- Departamento de Química, Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente 7, Cantoblanco, 28049 Madrid, Spain.,Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Steffen Jockusch
- Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Sourav Kanti Seth
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Inés Corral
- Departamento de Química, Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente 7, Cantoblanco, 28049 Madrid, Spain.,Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | |
Collapse
|
11
|
Discovery of potent BET bromodomain 1 stereoselective inhibitors using DNA-encoded chemical library selections. Proc Natl Acad Sci U S A 2022; 119:e2122506119. [PMID: 35622893 PMCID: PMC9295786 DOI: 10.1073/pnas.2122506119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BET bromodomain inhibition is therapeutic in multiple diseases; however, pan-BET inhibitors have induced significant myelosuppression and gastrointestinal toxicity, perhaps due to inhibition of both tandem bromodomains (BD) of all BET family members. However, selective inhibition of just the first BD (BD1) phenocopies pan-BET inhibitor activity in preclinical models of cancer, other diseases, and, for BRDT, in the testes for a contraceptive effect. Here, we leveraged our multibillion-molecule collection of DNA-encoded chemical libraries (DECLs) to identify BET BD1-selective inhibitors of specific chirality with high potency, stability, and good cellular activity. Our findings highlight the robustness and efficiency of the DECL platform to identify specific, potent protein binders that have promise as potential anticancer and anti-inflammatory agents and as male contraceptives. BRDT, BRD2, BRD3, and BRD4 comprise the bromodomain and extraterminal (BET) subfamily which contain two similar tandem bromodomains (BD1 and BD2). Selective BD1 inhibition phenocopies effects of tandem BET BD inhibition both in cancer models and, as we and others have reported of BRDT, in the testes. To find novel BET BD1 binders, we screened >4.5 billion molecules from our DNA-encoded chemical libraries with BRDT-BD1 or BRDT-BD2 proteins in parallel. A compound series enriched only by BRDT-BD1 was resynthesized off-DNA, uncovering a potent chiral compound, CDD-724, with >2,000-fold selectivity for inhibiting BRDT-BD1 over BRDT-BD2. CDD-724 stereoisomers exhibited remarkable differences in inhibiting BRDT-BD1, with the R-enantiomer (CDD-787) being 50-fold more potent than the S-enantiomer (CDD-786). From structure–activity relationship studies, we produced CDD-956, which maintained picomolar BET BD1 binding potency and high selectivity over BET BD2 proteins and had improved stability in human liver microsomes over CDD-787. BROMOscan profiling confirmed the excellent pan-BET BD1 affinity and selectivity of CDD-787 and CDD-956 on BD1 versus BD2 and all other BD-containing proteins. A cocrystal structure of BRDT-BD1 bound with CDD-956 was determined at 1.82 Å and revealed BRDT-BD1–specific contacts with the αZ and αC helices that explain the high affinity and selectivity for BET BD1 versus BD2. CDD-787 and CDD-956 maintain cellular BD1-selectivity in NanoBRET assays and show potent antileukemic activity in acute myeloid leukemia cell lines. These BET BD1-specific and highly potent compounds are structurally unique and provide insight into the importance of chirality to achieve BET specificity.
Collapse
|
12
|
Li J, Zhang C, Xu H, Wang C, Dong R, Shen H, Zhuang X, Chen X, Li Q, Lu J, Zhang M, Wu X, Loomes KM, Zhou Y, Zhang Y, Liu J, Xu Y. Structure-Based Discovery and Optimization of Furo[3,2- c]pyridin-4(5 H)-one Derivatives as Potent and Second Bromodomain (BD2)-Selective Bromo and Extra Terminal Domain (BET) Inhibitors. J Med Chem 2022; 65:5760-5799. [PMID: 35333526 DOI: 10.1021/acs.jmedchem.2c00100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pan-bromodomain and extra terminal (Pan-BET) inhibitors show profound efficacy but exhibit pharmacology-driven toxicities in clinical trials. The development of domain-selective BET inhibitors to separate efficacy and toxicity is urgently needed. Herein, we report a series of furo[3,2-c]pyridin-4(5H)-one derivatives as novel BD2-selective BET inhibitors. The representative compound 8l (XY153) potently bound to BRD4 BD2 with an half-maximum inhibitory concentration (IC50) value of 0.79 nM and displayed 354-fold selectivity over BRD4 BD1. Besides, 8l exhibited 6-fold BRD4 BD2 domain selectivity over other BET BD2 domains. Compound 8l displayed potent antiproliferative activity against multiple tumor cell lines, especially MV4-11 (IC50 = 0.55 nM), while showing weak cytotoxicity against the normal lung fibroblast cell line. It highlights the safety profile of this series of BD2 inhibitors. 8l also demonstrated good metabolic stability in vitro. These data indicate that 8l may serve as a new and valuable lead compound for the development of potential therapeutics against acute myeloid leukemia (AML).
Collapse
Affiliation(s)
- Junhua Li
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Cheng Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Hongrui Xu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Chao Wang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Ruibo Dong
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Hui Shen
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Xiaoxi Zhuang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Xiaoshan Chen
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Qiu Li
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Jibu Lu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Maofeng Zhang
- College of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China
| | - Xishan Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Kerry M Loomes
- School of Biological Sciences & Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand
| | - Yulai Zhou
- School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Yan Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Jinsong Liu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yong Xu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou 510530, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China.,State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
13
|
Chen J, Tang P, Wang Y, Wang J, Yang C, Li Y, Yang G, Wu F, Zhang J, Ouyang L. Targeting Bromodomain-Selective Inhibitors of BET Proteins in Drug Discovery and Development. J Med Chem 2022; 65:5184-5211. [PMID: 35324195 DOI: 10.1021/acs.jmedchem.1c01835] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Blocking the interactions between bromodomain and extraterminal (BET) proteins and acetylated lysines of histones by small molecules has important implications for the treatment of cancers and other diseases. Many pan-BET inhibitors have shown satisfactory results in clinical trials, but their potential for poor tolerability and toxicity persist. However, recently reported studies illustrate that some BET bromodomain (BET-BD1 or BET-BD2)-selective inhibitors have advantage over pan-inhibitors, including reduced toxicity concerns. Furthermore, some selective BET inhibitors have similar or even better therapeutic efficacy in inflammatory diseases or cancers. Therefore, the development of selective BET inhibitors has become a hot spot for medicinal chemists. Here, we summarize the known selective BET-BD1 and BET-BD2 inhibitors and review the methods for enhancing the selectivity and potency of these inhibitors based on their different modes of interactions with BET-BD1 or BET-BD2. Finally, we discuss prospective strategies that selectively target the bromodomains of BET proteins.
Collapse
Affiliation(s)
- Juncheng Chen
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Pan Tang
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Chengcan Yang
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yang Li
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Gaoxia Yang
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fengbo Wu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
14
|
Liu Z, Li Y, Chen H, Lai HT, Wang P, Wu SY, Wold EA, Leonard PG, Joseph S, Hu H, Chiang CM, Brasier AR, Tian B, Zhou J. Discovery, X-ray Crystallography, and Anti-inflammatory Activity of Bromodomain-containing Protein 4 (BRD4) BD1 Inhibitors Targeting a Distinct New Binding Site. J Med Chem 2022; 65:2388-2408. [PMID: 34982556 PMCID: PMC8989062 DOI: 10.1021/acs.jmedchem.1c01851] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bromodomain-containing protein 4 (BRD4) is an emerging epigenetic drug target for intractable inflammatory disorders. The lack of highly selective inhibitors among BRD4 family members has stalled the collective understanding of this critical system and the progress toward clinical development of effective therapeutics. Here we report the discovery of a potent BRD4 bromodomain 1 (BD1)-selective inhibitor ZL0590 (52) targeting a unique, previously unreported binding site, while exhibiting significant anti-inflammatory activities in vitro and in vivo. The X-ray crystal structural analysis of ZL0590 in complex with human BRD4 BD1 and the associated mutagenesis study illustrate a first-in-class nonacetylated lysine (KAc) binding site located at the helix αB and αC interface that contains important BRD4 residues (e.g., Glu151) not commonly shared among other family members and is spatially distinct from the classic KAc recognition pocket. This new finding facilitates further elucidation of the complex biology underpinning bromodomain specificity among BRD4 and its protein-protein interaction partners.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Paul G Leonard
- Core for Biomolecular Structure and Function, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Sarah Joseph
- Core for Biomolecular Structure and Function, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | | | | | - Allan R Brasier
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison School of Medicine and Public Health, 4248 Health Sciences Learning Center, Madison, Wisconsin 53705, United States
| | | | | |
Collapse
|
15
|
Cui H, Divakaran A, Hoell ZJ, Ellingson MO, Scholtz CR, Zahid H, Johnson JA, Griffith EC, Gee CT, Lee AL, Khanal S, Shi K, Aihara H, Shah VH, Lee RE, Harki DA, Pomerantz WCK. A Structure-based Design Approach for Generating High Affinity BRD4 D1-Selective Chemical Probes. J Med Chem 2022; 65:2342-2360. [PMID: 35007061 DOI: 10.1021/acs.jmedchem.1c01779] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chemical probes for epigenetic proteins are essential tools for dissecting the molecular mechanisms for gene regulation and therapeutic development. The bromodomain and extra-terminal (BET) proteins are master transcriptional regulators. Despite promising therapeutic targets, selective small molecule inhibitors for a single bromodomain remain an unmet goal due to their high sequence similarity. Here, we address this challenge via a structure-activity relationship study using 1,4,5-trisubstituted imidazoles against the BRD4 N-terminal bromodomain (D1). Leading compounds 26 and 30 have 15 and 18 nM affinity against BRD4 D1 and over 500-fold selectivity against BRD2 D1 and BRD4 D2 via ITC. Broader BET selectivity was confirmed by fluorescence anisotropy, thermal shift, and CETSA. Despite BRD4 engagement, BRD4 D1 inhibition was unable to reduce c-Myc expression at low concentration in multiple myeloma cells. Conversely, for inflammation, IL-8 and chemokine downregulation were observed. These results provide new design rules for selective inhibitors of an individual BET bromodomain.
Collapse
Affiliation(s)
- Huarui Cui
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Anand Divakaran
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Zachariah J Hoell
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Mikael O Ellingson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Cole R Scholtz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Huda Zahid
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Jorden A Johnson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Elizabeth C Griffith
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS1000, Memphis, Tennessee 38105, United States
| | - Clifford T Gee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS1000, Memphis, Tennessee 38105, United States
| | - Amani L Lee
- GI Research Unit, Guggenheim 1034 Mayo Clinic, 200 First Street SW Rochester, Minnesota 55902, United States
| | - Shalil Khanal
- GI Research Unit, Guggenheim 1034 Mayo Clinic, 200 First Street SW Rochester, Minnesota 55902, United States
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - Vijay H Shah
- GI Research Unit, Guggenheim 1034 Mayo Clinic, 200 First Street SW Rochester, Minnesota 55902, United States
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS1000, Memphis, Tennessee 38105, United States
| | - Daniel A Harki
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.,Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.,Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
Progress in the development of domain selective inhibitors of the bromo and extra terminal domain family (BET) proteins. Eur J Med Chem 2021; 226:113853. [PMID: 34547507 DOI: 10.1016/j.ejmech.2021.113853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/04/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Dysfunction of the bromo and extra terminal domain (BET) family proteins is associated with many human diseases, therefore the BET family proteins have been considered as promising targets for drug development. Numerous small molecular compounds targeting the N-terminal two tandem bromodomains BD1 and BD2 of the BET family proteins have been reported, and a number of them have been advanced into clinical trials. Most of the BET inhibitors entered clinical trials are pan-BET inhibitors which show poor selectivity among BET members and bind to the BD1 and BD2 of the BET family proteins with comparable binding affinities. In order to elucidate the distinct functions of BD1s and BD2s, many BD1 and BD2 selective BET inhibitors have also been developed. In this review, we summarized the recent progress in the development of BD1 and BD2 selective BET inhibitors, and provided the perspectives for future studies of BET inhibitors.
Collapse
|
17
|
Gokani S, Bhatt LK. Bromodomains: A novel target for the anticancer therapy. Eur J Pharmacol 2021; 911:174523. [PMID: 34563497 DOI: 10.1016/j.ejphar.2021.174523] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 02/02/2023]
Abstract
Bromodomains are a group of structurally diverse proteins characterized as readers of post-translational modifications. They bear unique structural topology and are known to have diverse cellular functions. As epigenetic readers of histone acetylation, bromodomains appear to have both physiological and pathological implications. Among the various types of bromodomain-containing proteins, BRD2 and BRD4 proteins are expressed ubiquitously and act as critical regulators of the cell cycle in normal mammalian cells. Therefore, they are increasingly involved in the process of oncogenesis. Bromodomains are the emerging novel epigenetic targets for the treatment of cancer. Various small molecules are proposed to target the bromodomain proteins as the readers of acetyl-lysine residues. In recent years, inhibiting the interaction of acetyl-lysine residues and bromodomain proteins on chromatin has served as an interesting target to regulate the expression of various pathological genes, including BCL-2, MYC, and NF-κB. The review summarizes bromodomains as potential targets in cancer and various bromodomain inhibitors in the early stages of the clinical trial.
Collapse
Affiliation(s)
- Shivani Gokani
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, India.
| |
Collapse
|
18
|
Baranov VV, Vol'khina TN, Nelyubina YV, Kravchenko AN. New aspects of reactions of methyl (thio)ureas with benzil. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Blasl AT, Schulze S, Qin C, Graf LG, Vogt R, Lammers M. Post-translational lysine ac(et)ylation in health, ageing and disease. Biol Chem 2021; 403:151-194. [PMID: 34433238 DOI: 10.1515/hsz-2021-0139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
The acetylation/acylation (ac(et)ylation) of lysine side chains is a dynamic post-translational modification (PTM) regulating fundamental cellular processes with implications on the organisms' ageing process: metabolism, transcription, translation, cell proliferation, regulation of the cytoskeleton and DNA damage repair. First identified to occur on histones, later studies revealed the presence of lysine ac(et)ylation in organisms of all kingdoms of life, in proteins covering all essential cellular processes. A remarkable finding showed that the NAD+-dependent sirtuin deacetylase Sir2 has an impact on replicative lifespan in Saccharomyces cerevisiae suggesting that lysine acetylation has a direct role in the ageing process. Later studies identified sirtuins as mediators for beneficial effects of caloric/dietary restriction on the organisms' health- or lifespan. However, the molecular mechanisms underlying these effects are only incompletely understood. Progress in mass-spectrometry, structural biology, synthetic and semi-synthetic biology deepened our understanding of this PTM. This review summarizes recent developments in the research field. It shows how lysine ac(et)ylation regulates protein function, how it is regulated enzymatically and non-enzymatically, how a dysfunction in this post-translational machinery contributes to disease development. A focus is set on sirtuins and lysine acyltransferases as these are direct sensors and mediators of the cellular metabolic state. Finally, this review highlights technological advances to study lysine ac(et)ylation.
Collapse
Affiliation(s)
- Anna-Theresa Blasl
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Sabrina Schulze
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Chuan Qin
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Leonie G Graf
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Robert Vogt
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Michael Lammers
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| |
Collapse
|
20
|
An optimized BRD4 inhibitor effectively eliminates NF-κB-driven triple-negative breast cancer cells. Bioorg Chem 2021; 114:105158. [PMID: 34378541 DOI: 10.1016/j.bioorg.2021.105158] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/31/2022]
Abstract
Acetylation of NF-κB's RelA subunit at lysine-310 (AcLys310) helps to maintain constitutive NF-κB activity in cancers such as triple-negative breast cancer (TNBC). Bromodomain-containing factor BRD4 binds to acetylated RelA to promote the activity of NF-κB. Hence, interfering with the acetylated RelA-BRD4 interaction is a potential strategy for treating NF-κB-driven TNBC. Here, a new compound 13a was obtained by structural optimization and modification of our previously reported compound. In comparison with the well-known BRD4 inhibitor (+)-JQ1, 13a showed more potent anticancer activity in NF-κB-active MDA-MB-231 cells. Mechanistically, 13a antagonized the protein-protein interaction (PPI) between BRD4 and acetylated RelA, decreased levels of IL-6, IL-8, Snail, Vimentin, and ZEB1, induced cell senescence and DNA damage, and weakened the adhesion, metastasis, and invasion ability of TNBC cells. Our results provide insights into avenues for the further development of potent BRD4-acetylated RelA PPI inhibitors. Moreover, our findings highlight the effectiveness and feasibility of blocking the interaction between BRD4 and acetylated RelA against NF-κB-active cancers, and of screening antagonists of this PPI.
Collapse
|
21
|
Design, synthesis, biological evaluation, and molecular docking of 1,7-dibenzyl-substituted theophylline derivatives as novel BRD4-BD1-selective inhibitors. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02737-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Li KC, Girardi E, Kartnig F, Grosche S, Pemovska T, Bigenzahn JW, Goldmann U, Sedlyarov V, Bensimon A, Schick S, Lin JMG, Gürtl B, Reil D, Klavins K, Kubicek S, Sdelci S, Superti-Furga G. Cell-surface SLC nucleoside transporters and purine levels modulate BRD4-dependent chromatin states. Nat Metab 2021; 3:651-664. [PMID: 33972798 PMCID: PMC7612075 DOI: 10.1038/s42255-021-00386-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/24/2021] [Indexed: 02/03/2023]
Abstract
Metabolism negotiates cell-endogenous requirements of energy, nutrients and building blocks with the immediate environment to enable various processes, including growth and differentiation. While there is an increasing number of examples of crosstalk between metabolism and chromatin, few involve uptake of exogenous metabolites. Solute carriers (SLCs) represent the largest group of transporters in the human genome and are responsible for the transport of a wide variety of substrates, including nutrients and metabolites. We aimed to investigate the possible involvement of SLC-mediated solutes uptake and cellular metabolism in regulating cellular epigenetic states. Here, we perform a CRISPR-Cas9 transporter-focused genetic screen and a metabolic compound library screen for the regulation of BRD4-dependent chromatin states in human myeloid leukaemia cells. Intersection of the two orthogonal approaches reveal that loss of transporters involved with purine transport or inhibition of de novo purine synthesis lead to dysfunction of BRD4-dependent transcriptional regulation. Through mechanistic characterization of the metabolic circuitry, we elucidate the convergence of SLC-mediated purine uptake and de novo purine synthesis on BRD4-chromatin occupancy. Moreover, adenine-related metabolite supplementation effectively restores BRD4 functionality on purine impairment. Our study highlights the specific role of purine/adenine metabolism in modulating BRD4-dependent epigenetic states.
Collapse
Affiliation(s)
- Kai-Chun Li
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Enrico Girardi
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Felix Kartnig
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sarah Grosche
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tea Pemovska
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes W Bigenzahn
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ulrich Goldmann
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vitaly Sedlyarov
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sandra Schick
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jung-Ming G Lin
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bettina Gürtl
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniela Reil
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kristaps Klavins
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stefan Kubicek
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Christian Doppler Laboratory for Chemical Epigenetics and Antiinfectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sara Sdelci
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Giulio Superti-Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
23
|
Kim YH, Kim M, Kim JE, Yoo M, Lee HK, Lee CO, Yoo M, Jung KY, Kim Y, Choi SU, Park CH. Novel brd4 inhibitors with a unique scaffold exhibit antitumor effects. Oncol Lett 2021; 21:473. [PMID: 33907583 PMCID: PMC8063330 DOI: 10.3892/ol.2021.12734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/18/2021] [Indexed: 01/01/2023] Open
Abstract
Since bromodomain containing 4 (brd4) has been considered as a prominent cancer target, numerous attempts have been made to develop potent brd4 bromodomain inhibitors. The present study provided a novel chemical scaffold which inhibited brd4 activity. Mid-throughput screening against brd4 bromodomain was performed using alpha-screen and homogeneous time-resolved fluorescence assays. Furthermore, cell cytotoxicity and xenograft assays were performed to examine if the compound was effective both in vitro and in vivo. As a result, it was revealed that compounds having naphthalene-1,4-dione scaffold inhibited the binding of bromodomain to acetylated histone. The compounds with naphthalene-1,4-dione had cytotoxic effects against the Ty82 cell line, a NUT midline carcinoma cell line, whose proliferation is dependent on brd4 activity. A10, one of the compounds with naphthalene-1,4-dione scaffold, also exhibited tumor growth inhibition effects in the xenograft assay. In addition, the compounds exhibited cytotoxic effects against gastric cancer cell lines which were resistant to I-BET-762, a BET bromodomain inhibitor. In conclusion, the novel scaffold to suppress brd4 activity was effective against cancer cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Young Hun Kim
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Minsung Kim
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.,School of Pharmacy, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Ji Eun Kim
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Miyoun Yoo
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Heung Kyoung Lee
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Chong Ock Lee
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Minjin Yoo
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.,Department of Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Kwan-Young Jung
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.,Department of Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Yeongrin Kim
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.,Department of Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sang Un Choi
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Chi Hoon Park
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.,Department of Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
24
|
Aylott HE, Atkinson SJ, Bamborough P, Bassil A, Chung CW, Gordon L, Grandi P, Gray JRJ, Harrison LA, Hayhow TG, Messenger C, Mitchell D, Phillipou A, Preston A, Prinjha RK, Rianjongdee F, Rioja I, Seal JT, Wall ID, Watson RJ, Woolven JM, Demont EH. Template-Hopping Approach Leads to Potent, Selective, and Highly Soluble Bromo and Extraterminal Domain (BET) Second Bromodomain (BD2) Inhibitors. J Med Chem 2021; 64:3249-3281. [PMID: 33662213 DOI: 10.1021/acs.jmedchem.0c02156] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A number of reports have recently been published describing the discovery and optimization of bromo and extraterminal inhibitors which are selective for the second bromodomain (BD2); these include our own work toward GSK046 (3) and GSK620 (5). This paper describes our approach to mitigating the genotoxicity risk of GSK046 by replacement of the acetamide functionality with a heterocyclic ring. This was followed by a template-hopping and hybridization approach, guided by structure-based drug design, to incorporate learnings from other BD2-selective series, optimize the vector for the amide region, and explore the ZA cleft, leading to the identification of potent, selective, and bioavailable compounds 28 (GSK452), 39 (GSK737), and 36 (GSK217).
Collapse
Affiliation(s)
- Helen E Aylott
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Stephen J Atkinson
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paul Bamborough
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Anna Bassil
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Chun-Wa Chung
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Laurie Gordon
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paola Grandi
- IVIVT Cellzome, Platform Technology and Science, GlaxoSmithKline, Meyerhofstr. 1, Heidelberg 69117, Germany
| | - James R J Gray
- Quantitative Pharmacology, Immunoinflammation Therapy Area Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Lee A Harrison
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Thomas G Hayhow
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Cassie Messenger
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Darren Mitchell
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Alexander Phillipou
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Alex Preston
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rab K Prinjha
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Francesco Rianjongdee
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Inmaculada Rioja
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Jonathan T Seal
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Ian D Wall
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Robert J Watson
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - James M Woolven
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Emmanuel H Demont
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
25
|
Cui H, Divakaran A, Pandey AK, Johnson JA, Zahid H, Hoell ZJ, Ellingson MO, Shi K, Aihara H, Harki DA, Pomerantz WCK. Selective N-Terminal BET Bromodomain Inhibitors by Targeting Non-Conserved Residues and Structured Water Displacement*. Angew Chem Int Ed Engl 2021; 60:1220-1226. [PMID: 32975004 PMCID: PMC7855888 DOI: 10.1002/anie.202008625] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/19/2020] [Indexed: 01/03/2023]
Abstract
Bromodomain and extra-terminal (BET) family proteins, BRD2-4 and T, are important drug targets; however, the biological functions of each bromodomain remain ill-defined. Chemical probes that selectively inhibit a single BET bromodomain are lacking, although pan inhibitors of the first (D1), and second (D2), bromodomain are known. Here, we develop selective BET D1 inhibitors with preferred binding to BRD4 D1. In competitive inhibition assays, we show that our lead compound is 9-33 fold selective for BRD4 D1 over the other BET bromodomains. X-ray crystallography supports a role for the selectivity based on reorganization of a non-conserved lysine and displacement of an additional structured water in the BRD4 D1 binding site relative to our prior lead. Whereas pan-D1 inhibitors displace BRD4 from MYC enhancers, BRD4 D1 inhibition in MM.1S cells is insufficient for stopping Myc expression and may lead to its upregulation. Future analysis of BRD4 D1 gene regulation may shed light on differential BET bromodomain functions.
Collapse
Affiliation(s)
- Huarui Cui
- Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Anand Divakaran
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, 2231 6th St. SE, Minneapolis, MN, 55455, USA
| | - Anil K Pandey
- Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Jorden A Johnson
- Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Huda Zahid
- Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Zachariah J Hoell
- Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Mikael O Ellingson
- Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, 2231 6th St. SE, Minneapolis, MN, 55455, USA
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, 2231 6th St. SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
26
|
Cui H, Divakaran A, Pandey AK, Johnson JA, Zahid H, Hoell ZJ, Ellingson MO, Shi K, Aihara H, Harki DA, Pomerantz WCK. Selective N‐Terminal BET Bromodomain Inhibitors by Targeting Non‐Conserved Residues and Structured Water Displacement**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202008625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huarui Cui
- Department of Chemistry University of Minnesota-Twin Cities 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Anand Divakaran
- Department of Medicinal Chemistry University of Minnesota-Twin Cities 2231 6th St. SE Minneapolis MN 55455 USA
| | - Anil K. Pandey
- Department of Chemistry University of Minnesota-Twin Cities 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Jorden A. Johnson
- Department of Chemistry University of Minnesota-Twin Cities 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Huda Zahid
- Department of Chemistry University of Minnesota-Twin Cities 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Zachariah J. Hoell
- Department of Chemistry University of Minnesota-Twin Cities 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Mikael O. Ellingson
- Department of Chemistry University of Minnesota-Twin Cities 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics University of Minnesota-Twin Cities 321 Church St. SE Minneapolis MN 55455 USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics University of Minnesota-Twin Cities 321 Church St. SE Minneapolis MN 55455 USA
| | - Daniel A. Harki
- Department of Medicinal Chemistry University of Minnesota-Twin Cities 2231 6th St. SE Minneapolis MN 55455 USA
| | - William C. K. Pomerantz
- Department of Chemistry University of Minnesota-Twin Cities 207 Pleasant St. SE Minneapolis MN 55455 USA
- Department of Medicinal Chemistry University of Minnesota-Twin Cities 2231 6th St. SE Minneapolis MN 55455 USA
| |
Collapse
|
27
|
Muddassir M, Soni K, Sangani CB, Alarifi A, Afzal M, Abduh NAY, Duan Y, Bhadja P. Bromodomain and BET family proteins as epigenetic targets in cancer therapy: their degradation, present drugs, and possible PROTACs. RSC Adv 2021; 11:612-636. [PMID: 35746919 PMCID: PMC9133982 DOI: 10.1039/d0ra07971e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/28/2020] [Indexed: 12/27/2022] Open
Abstract
Alteration in the pattern of epigenetic marking leads to cancer, neurological disorders, inflammatory problems etc. These changes are due to aberration in histone modification enzymes that function as readers, writers and erasers. Bromodomains (BDs) and BET proteins that recognize acetylation of chromatin regulate gene expression. To block the function of any of these BrDs and/or BET protein can be a controlling agent in disorders such as cancer. BrDs and BET proteins are now emerging as targets for new therapeutic development. Traditional drugs like enzyme inhibitors and protein–protein inhibitors have many limitations. Recently Proteolysis-Targeting Chimeras (PROTACs) have become an advanced tool in therapeutic intervention as they remove disease causing proteins. This review provides an overview of the development and mechanisms of PROTACs for BRD and BET protein regulation in cancer and advanced possibilities of genetic technologies in therapeutics. Alteration in the pattern of epigenetic marking leads to cancer, neurological disorders, inflammatory problems etc.![]()
Collapse
Affiliation(s)
- Mohd. Muddassir
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Kunjal Soni
- Shri Maneklal M. Patel Institute of Sciences and Research
- Kadi Sarva Vishwavidyalaya University
- Gandhinagar
- India
| | - Chetan B. Sangani
- Shri Maneklal M. Patel Institute of Sciences and Research
- Kadi Sarva Vishwavidyalaya University
- Gandhinagar
- India
| | - Abdullah Alarifi
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Mohd. Afzal
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Naaser A. Y. Abduh
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases
- Zhengzhou Children's Hospital
- Zhengzhou University
- Zhengzhou 450018
- China
| | - Poonam Bhadja
- Arthropod Ecology and Biological Control Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Environment and Labour Safety
| |
Collapse
|
28
|
Kalra P, McGraw L, Kimbrough JR, Pandey AK, Solberg J, Cui H, Divakaran A, John K, Hawkinson JE, Pomerantz WCK. Quantifying the Selectivity of Protein-Protein and Small Molecule Interactions with Fluorinated Tandem Bromodomain Reader Proteins. ACS Chem Biol 2020; 15:3038-3049. [PMID: 33138352 PMCID: PMC8185897 DOI: 10.1021/acschembio.0c00720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multidomain bromodomain-containing proteins regulate gene expression via chromatin binding, interactions with the transcriptional machinery, and by recruiting enzymatic activity. Selective inhibition of members of the bromodomain and extra-terminal (BET) family is important to understand their role in disease and gene regulation, although due to the similar binding sites of BET bromodomains, selective inhibitor discovery has been challenging. To support the bromodomain inhibitor discovery process, here we report the first application of protein-observed fluorine (PrOF) NMR to the tandem bromodomains of BRD4 and BRDT to quantify the selectivity of their interactions with acetylated histones as well as small molecules. We further determine the selectivity profile of a new class of ligands, 1,4-acylthiazepanes, and find them to have ≥3-10-fold selectivity for the C-terminal bromodomain of both BRD4 and BRDT. Given the speed and lower protein concentration required over traditional protein-observed NMR methods, we envision that these fluorinated tandem proteins may find use in fragment screening and evaluating nucleosome and transcription factor interactions.
Collapse
Affiliation(s)
- Prakriti Kalra
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Logan McGraw
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Jennifer R Kimbrough
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Anil K Pandey
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Jonathan Solberg
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Huarui Cui
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Anand Divakaran
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth St. SE, Minneapolis, Minnesota 55455, United States
| | - Kristen John
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Jon E Hawkinson
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth St. SE, Minneapolis, Minnesota 55455, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
29
|
Prieto-Martínez FD, Medina-Franco JL. Current advances on the development of BET inhibitors: insights from computational methods. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:127-180. [PMID: 32951810 DOI: 10.1016/bs.apcsb.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Epigenetics was coined almost 70 years ago for the description of heritable phenotype without altering DNA sequences. Research on the field has uncovered significant roles of such mechanisms, that account for the biogenesis of several diseases. Further studies have led the way for drug development which targets epi-enzymes, mainly for cancer treatment. Of the numerous epi-targets involved with histone acetylation, bromodomains have captured the spotlight of drug discovery focused on novel therapies. However, due to high sequence identity, the development of potent and selective inhibitors poses a significant challenge. Herein, we discuss recent computational developments on BET inhibitors and other methods that may be applied for drug discovery in general. As a proof-of-concept, we discuss a virtual screening to identify novel BET inhibitors based on coumarin derivatives. From public data, we identified putative structure-activity relationships of coumarin scaffold and propose R-group modifications for BET selectivity. Results showed that the optimization and design of novel coumarins could be further explored.
Collapse
Affiliation(s)
- Fernando D Prieto-Martínez
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - José L Medina-Franco
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
30
|
Pinheiro S, Pinheiro EMC, Muri EMF, Pessôa JC, Cadorini MA, Greco SJ. Biological activities of [1,2,4]triazolo[1,5-a]pyrimidines and analogs. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02609-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Design, synthesis and biological evaluation of novel 6-phenyl-1,3a,4,10b-tetrahydro-2H-benzo[c]thiazolo[4,5-e]azepin-2-one derivatives as potential BRD4 inhibitors. Bioorg Med Chem 2020; 28:115601. [DOI: 10.1016/j.bmc.2020.115601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022]
|
32
|
Petretich M, Demont EH, Grandi P. Domain-selective targeting of BET proteins in cancer and immunological diseases. Curr Opin Chem Biol 2020; 57:184-193. [PMID: 32741705 DOI: 10.1016/j.cbpa.2020.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Cancer and inflammation are strongly interconnected processes. Chronic inflammatory pathologies can be at the heart of tumor development; similarly, tumor-elicited inflammation is a consequence of many cancers. The mechanistic interdependence between cancer and inflammatory pathologies points toward common protein effectors which represent potential shared targets for pharmacological intervention. Epigenetic mechanisms often drive resistance to cancer therapy and immunomodulatory strategies. The bromodomain and extraterminal domain (BET) proteins are epigenetic adapters which play a major role in controlling cell proliferation and the production of inflammatory mediators. A plethora of small molecules aimed at inhibiting BET protein function to treat cancer and inflammatory diseases have populated academic and industry efforts in the last 10 years. In this review, we will discuss recent pharmacological approaches aimed at targeting a single or a subset of the eight bromodomains within the BET family which have the potential to tease apart clinical efficacy and safety signals of BET inhibitors.
Collapse
Affiliation(s)
- Massimo Petretich
- Cellzome GmbH, Functional Genomics R&D, GlaxoSmithKline, 69117 Heidelberg, Germany
| | - Emmanuel H Demont
- Medicinal Chemistry, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | - Paola Grandi
- Cellzome GmbH, Functional Genomics R&D, GlaxoSmithKline, 69117 Heidelberg, Germany.
| |
Collapse
|
33
|
Seal JT, Atkinson SJ, Aylott H, Bamborough P, Chung CW, Copley RCB, Gordon L, Grandi P, Gray JRJ, Harrison LA, Hayhow TG, Lindon M, Messenger C, Michon AM, Mitchell D, Preston A, Prinjha RK, Rioja I, Taylor S, Wall ID, Watson RJ, Woolven JM, Demont EH. The Optimization of a Novel, Weak Bromo and Extra Terminal Domain (BET) Bromodomain Fragment Ligand to a Potent and Selective Second Bromodomain (BD2) Inhibitor. J Med Chem 2020; 63:9093-9126. [DOI: 10.1021/acs.jmedchem.0c00796] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Paola Grandi
- IVIVT Cellzome, Platform Technology and Science, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | - Anne-Marie Michon
- IVIVT Cellzome, Platform Technology and Science, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | - Simon Taylor
- IVIVT Cellzome, Platform Technology and Science, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
34
|
Watson RJ, Bamborough P, Barnett H, Chung CW, Davis R, Gordon L, Grandi P, Petretich M, Phillipou A, Prinjha RK, Rioja I, Soden P, Werner T, Demont EH. GSK789: A Selective Inhibitor of the First Bromodomains (BD1) of the Bromo and Extra Terminal Domain (BET) Proteins. J Med Chem 2020; 63:9045-9069. [DOI: 10.1021/acs.jmedchem.0c00614] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | | | | | - Paola Grandi
- Molecular Discovery Research, GlaxoSmithKline, Cellzome GmbH, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Massimo Petretich
- Molecular Discovery Research, GlaxoSmithKline, Cellzome GmbH, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | - Thilo Werner
- Molecular Discovery Research, GlaxoSmithKline, Cellzome GmbH, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
35
|
Bosc N, Muller C, Hoffer L, Lagorce D, Bourg S, Derviaux C, Gourdel ME, Rain JC, Miller TW, Villoutreix BO, Miteva MA, Bonnet P, Morelli X, Sperandio O, Roche P. Fr-PPIChem: An Academic Compound Library Dedicated to Protein-Protein Interactions. ACS Chem Biol 2020; 15:1566-1574. [PMID: 32320205 PMCID: PMC7399473 DOI: 10.1021/acschembio.0c00179] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Protein-protein interactions (PPIs) mediate nearly every cellular process and represent attractive targets for modulating disease states but are challenging to target with small molecules. Despite this, several PPI inhibitors (iPPIs) have entered clinical trials, and a growing number of PPIs have become validated drug targets. However, high-throughput screening efforts still endure low hit rates mainly because of the use of unsuitable screening libraries. Here, we describe the collective effort of a French consortium to build, select, and store in plates a unique chemical library dedicated to the inhibition of PPIs. Using two independent predictive models and two updated databases of experimentally confirmed PPI inhibitors developed by members of the consortium, we built models based on different training sets, molecular descriptors, and machine learning methods. Independent statistical models were used to select putative PPI inhibitors from large commercial compound collections showing great complementarity. Medicinal chemistry filters were applied to remove undesirable structures from this set (such as PAINS, frequent hitters, and toxic compounds) and to improve drug likeness. The remaining compounds were subjected to a clustering procedure to reduce the final size of the library while maintaining its chemical diversity. In practice, the library showed a 46-fold activity rate enhancement when compared to a non-iPPI-enriched diversity library in high-throughput screening against the CD47-SIRPα PPI. The Fr-PPIChem library is plated in 384-well plates and will be distributed on demand to the scientific community as a powerful tool for discovering new chemical probes and early hits for the development of potential therapeutic drugs.
Collapse
Affiliation(s)
- Nicolas Bosc
- Inserm U973 MTi, 25 rue Hélène Brion 75013 Paris
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR3528, 28 rue du Dr Roux 75015 Paris
| | - Christophe Muller
- IPC Drug Discovery Platform, Institut Paoli-Calmettes, 232 Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Laurent Hoffer
- CRCM, CNRS, INSERM, Institut Paoli-Calmettes, Aix-Marseille Univ, 13009 Marseille, France
| | - David Lagorce
- Université de Paris, INSERM US14, Plateforme Maladies Rares - Orphanet, 75014 Paris, France
| | - Stéphane Bourg
- Institut de Chimie Organique et Analytique (ICOA), Université d’Orléans, UMR CNRS 7311, BP 6759, 45067 Orléans. France
| | - Carine Derviaux
- IPC Drug Discovery Platform, Institut Paoli-Calmettes, 232 Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Marie-Edith Gourdel
- Hybrigenics Services SAS, 1 rue Pierre Fontaine, 91000 Evry Courcouronnes, France
| | - Jean-Christophe Rain
- Hybrigenics Services SAS, 1 rue Pierre Fontaine, 91000 Evry Courcouronnes, France
| | - Thomas W. Miller
- IPC Drug Discovery Platform, Institut Paoli-Calmettes, 232 Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Bruno O. Villoutreix
- Université de Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, 59000 Lille, France
| | - Maria A. Miteva
- Inserm U1268 MCTR, CNRS UMR 8038 CiTCoM – Univ. De Paris, Faculté de Pharmacie de Paris, 75006 Paris, France
| | - Pascal Bonnet
- Institut de Chimie Organique et Analytique (ICOA), Université d’Orléans, UMR CNRS 7311, BP 6759, 45067 Orléans. France
| | - Xavier Morelli
- IPC Drug Discovery Platform, Institut Paoli-Calmettes, 232 Boulevard de Sainte-Marguerite, 13009, Marseille, France
- CRCM, CNRS, INSERM, Institut Paoli-Calmettes, Aix-Marseille Univ, 13009 Marseille, France
| | - Olivier Sperandio
- Inserm U973 MTi, 25 rue Hélène Brion 75013 Paris
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR3528, 28 rue du Dr Roux 75015 Paris
| | - Philippe Roche
- CRCM, CNRS, INSERM, Institut Paoli-Calmettes, Aix-Marseille Univ, 13009 Marseille, France
| |
Collapse
|
36
|
Sheppard GS, Wang L, Fidanze SD, Hasvold LA, Liu D, Pratt JK, Park CH, Longenecker K, Qiu W, Torrent M, Kovar PJ, Bui M, Faivre E, Huang X, Lin X, Wilcox D, Zhang L, Shen Y, Albert DH, Magoc TJ, Rajaraman G, Kati WM, McDaniel KF. Discovery of N-Ethyl-4-[2-(4-fluoro-2,6-dimethyl-phenoxy)-5-(1-hydroxy-1-methyl-ethyl)phenyl]-6-methyl-7-oxo-1 H-pyrrolo[2,3- c]pyridine-2-carboxamide (ABBV-744), a BET Bromodomain Inhibitor with Selectivity for the Second Bromodomain. J Med Chem 2020; 63:5585-5623. [PMID: 32324999 DOI: 10.1021/acs.jmedchem.0c00628] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The BET family of proteins consists of BRD2, BRD3, BRD4, and BRDt. Each protein contains two distinct bromodomains (BD1 and BD2). BET family bromodomain inhibitors under clinical development for oncology bind to each of the eight bromodomains with similar affinities. We hypothesized that it may be possible to achieve an improved therapeutic index by selectively targeting subsets of the BET bromodomains. Both BD1 and BD2 are highly conserved across family members (>70% identity), whereas BD1 and BD2 from the same protein exhibit a larger degree of divergence (∼40% identity), suggesting selectivity between BD1 and BD2 of all family members would be more straightforward to achieve. Exploiting the Asp144/His437 and Ile146/Val439 sequence differences (BRD4 BD1/BD2 numbering) allowed the identification of compound 27 demonstrating greater than 100-fold selectivity for BRD4 BD2 over BRD4 BD1. Further optimization to improve BD2 selectivity and oral bioavailability resulted in the clinical development compound 46 (ABBV-744).
Collapse
Affiliation(s)
- George S Sheppard
- Oncology Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Le Wang
- Oncology Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Steven D Fidanze
- Oncology Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Lisa A Hasvold
- Oncology Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Dachun Liu
- Oncology Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - John K Pratt
- Oncology Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Chang H Park
- Oncology Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Kenton Longenecker
- Oncology Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Wei Qiu
- Oncology Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Maricel Torrent
- Oncology Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Peter J Kovar
- Oncology Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Mai Bui
- Oncology Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Emily Faivre
- Oncology Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Xiaoli Huang
- Oncology Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Xiaoyu Lin
- Oncology Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Denise Wilcox
- Oncology Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Lu Zhang
- Oncology Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Yu Shen
- Oncology Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Daniel H Albert
- Oncology Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Terrance J Magoc
- Oncology Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Ganesh Rajaraman
- Oncology Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Warren M Kati
- Oncology Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Keith F McDaniel
- Oncology Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
37
|
Liu Z, Chen H, Wang P, Li Y, Wold EA, Leonard PG, Joseph S, Brasier AR, Tian B, Zhou J. Discovery of Orally Bioavailable Chromone Derivatives as Potent and Selective BRD4 Inhibitors: Scaffold Hopping, Optimization, and Pharmacological Evaluation. J Med Chem 2020; 63:5242-5256. [PMID: 32255647 DOI: 10.1021/acs.jmedchem.0c00035] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bromodomain-containing protein 4 (BRD4) represents a promising drug target for anti-inflammatory therapeutics. Herein, we report the design, synthesis, and pharmacological evaluation of novel chromone derivatives via scaffold hopping to discover a new class of orally bioavailable BRD4-selective inhibitors. Two potent BRD4 bromodomain 1 (BD1)-selective inhibitors 44 (ZL0513) and 45 (ZL0516) have been discovered with high binding affinity (IC50 values of 67-84 nM) and good selectivity over other BRD family proteins and distant BD-containing proteins. Both compounds significantly inhibited the expression of Toll-like receptor-induced inflammatory genes in vitro and airway inflammation in murine models. The cocrystal structure of 45 in complex with human BRD4 BD1 at a high resolution of 2.0 Å has been solved, offering a solid structural basis for its binding validation and further structure-based optimization. These BRD4 BD1 inhibitors demonstrated impressive in vivo efficacy and overall promising pharmacokinetic properties, indicating their therapeutic potential for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Yi Li
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Eric A Wold
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Paul G Leonard
- Core for Biomolecular Structure and Function, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Sarah Joseph
- Core for Biomolecular Structure and Function, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Allan R Brasier
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison School of Medicine and Public Health, 4248 Health Sciences Learning Center, Madison, Wisconsin 53705, United States
| | - Bing Tian
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555, United States.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
38
|
Olp MD, Sprague DJ, Goetz CJ, Kathman SG, Wynia-Smith SL, Shishodia S, Summers SB, Xu Z, Statsyuk AV, Smith BC. Covalent-Fragment Screening of BRD4 Identifies a Ligandable Site Orthogonal to the Acetyl-Lysine Binding Sites. ACS Chem Biol 2020; 15:1036-1049. [PMID: 32149490 DOI: 10.1021/acschembio.0c00058] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BRD4, a member of the bromodomain and extraterminal domain (BET) family, has emerged as a promising epigenetic target in cancer and inflammatory disorders. All reported BET family ligands bind within the bromodomain acetyl-lysine binding sites and competitively inhibit BET protein interaction with acetylated chromatin. Alternative chemical probes that act orthogonally to the highly conserved acetyl-lysine binding sites may exhibit selectivity within the BET family and avoid recently reported toxicity in clinical trials of BET bromodomain inhibitors. Here, we report the first identification of a ligandable site on a bromodomain outside the acetyl-lysine binding site. Inspired by our computational prediction of hotspots adjacent to nonhomologous cysteine residues within the C-terminal BRD4 bromodomain (BRD4-BD2), we performed a midthroughput mass spectrometry screen to identify cysteine-reactive fragments that covalently and selectively modify BRD4. Subsequent mass spectrometry, NMR, and computational docking analyses of electrophilic fragment hits revealed a novel ligandable site near Cys356 that is unique to BRD4 among human bromodomains. This site is orthogonal to the BRD4-BD2 acetyl-lysine binding site as Cys356 modification did not impact binding of the pan-BET bromodomain inhibitor JQ1 in fluorescence polarization assays nor an acetylated histone peptide in AlphaScreen assays. Finally, we tethered our top-performing covalent fragment to JQ1 and performed NanoBRET assays to provide proof of principle that this orthogonal site can be covalently targeted in intact human cells. Overall, we demonstrate the potential of targeting sites orthogonal to bromodomain acetyl-lysine binding sites to develop bivalent and covalent inhibitors that displace BRD4 from chromatin.
Collapse
Affiliation(s)
- Michael D. Olp
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Daniel J. Sprague
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Christopher J. Goetz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Stefan G. Kathman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sarah L. Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Shifali Shishodia
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Steven B. Summers
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Ziyang Xu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Alexander V. Statsyuk
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- College of Pharmacy, University of Houston, Houston, Texas 77004, United States
| | - Brian C. Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
39
|
Zhong J, Riordon J, Wu TC, Edwards H, Wheeler AR, Pardee K, Aspuru-Guzik A, Sinton D. When robotics met fluidics. LAB ON A CHIP 2020; 20:709-716. [PMID: 31895394 DOI: 10.1039/c9lc01042d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High-throughput fluidic technologies have increased the speed and accuracy of fluid processing to the extent that unlocking further gains will require replacing the human operator with a robotic counterpart. Recent advances in chemistry and biology, such as gene editing, have further exacerbated the need for smart, high-throughput experimentation. A growing number of innovations at the intersection of robotics and fluidics illustrate the tremendous opportunity in achieving fully self-driving fluid systems. We envision that the fields of synthetic chemistry and synthetic biology will be the first beneficiaries of AI-directed robotic and fluidic systems, and largely fall within two modalities: complex integrated centralized facilities that produce data, and distributed systems that synthesize products and conduct disease surveillance.
Collapse
Affiliation(s)
- Junjie Zhong
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S3G8, Canada.
| | - Jason Riordon
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S3G8, Canada.
| | - Tony C Wu
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada and Department of Computer Science, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Harrison Edwards
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Keith Pardee
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S3G8, Canada. and Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Alán Aspuru-Guzik
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada and Department of Computer Science, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S3G8, Canada.
| |
Collapse
|
40
|
Wang Y, Wang LF, Zhang LL, Sun HB, Zhao J. Molecular mechanism of inhibitor bindings to bromodomain-containing protein 9 explored based on molecular dynamics simulations and calculations of binding free energies. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:149-170. [PMID: 31851834 DOI: 10.1080/1062936x.2019.1701075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Recently, bromodomain-containing protein 9 (BRD9) has been a prospective therapeutic target for anticancer drug design. Molecular dynamics (MD) simulations combined with molecular mechanics generalized Born surface area (MM-GBSA) method were adopted to explore binding modes of three inhibitors (5SW, 5U2, and 5U6) to BRD9 and identify the hot spot of the inhibitor-BRD9 binding. The results indicate that the inhibitor 5SW has the strongest binding ability to BRD9 among the current three inhibitors. Furthermore, the rank of the binding free energies predicted by MM-GBSA approach agrees with that determined by the experimental values. In addition, inhibitor-residue interactions were computed by using residue-based free-energy decomposition method and the results suggest that residue His42 produces the CH-H interactions, residues Asn100, Ile53 and Val49 produce the CH-[Formula: see text] interactions with three inhibitors and Tyr106, Phe45 and Phe44 generate the π-π interactions with inhibitors. Notably, the residue Asn140 forms hydrogen bonding interactions with three inhibitors. This research is expected to provide useful molecular basis and dynamics information at atomic levels for the design of potent inhibitors inhibiting the activity of BRD9.
Collapse
Affiliation(s)
- Y Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - L F Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - L L Zhang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - H B Sun
- School of Science, Shandong Jiaotong University, Jinan, China
| | - J Zhao
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
41
|
Wellaway CR, Amans D, Bamborough P, Barnett H, Bit RA, Brown JA, Carlson NR, Chung CW, Cooper AWJ, Craggs PD, Davis RP, Dean TW, Evans JP, Gordon L, Harada IL, Hirst DJ, Humphreys PG, Jones KL, Lewis AJ, Lindon MJ, Lugo D, Mahmood M, McCleary S, Medeiros P, Mitchell DJ, O’Sullivan M, Le Gall A, Patel VK, Patten C, Poole DL, Shah RR, Smith JE, Stafford KAJ, Thomas PJ, Vimal M, Wall ID, Watson RJ, Wellaway N, Yao G, Prinjha RK. Discovery of a Bromodomain and Extraterminal Inhibitor with a Low Predicted Human Dose through Synergistic Use of Encoded Library Technology and Fragment Screening. J Med Chem 2020; 63:714-746. [DOI: 10.1021/acs.jmedchem.9b01670] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Dominique Amans
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paul Bamborough
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Heather Barnett
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rino A. Bit
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Jack A. Brown
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Neil R. Carlson
- GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Chun-wa Chung
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Peter D. Craggs
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Robert P. Davis
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Tony W. Dean
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - John P. Evans
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Laurie Gordon
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - David J. Hirst
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | | | | | | | - Dave Lugo
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Mahnoor Mahmood
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Scott McCleary
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Patricia Medeiros
- GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | | | | | - Armelle Le Gall
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Chris Patten
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Darren L. Poole
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rishi R. Shah
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Jane E. Smith
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | | | - Mythily Vimal
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Ian D. Wall
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | | | - Gang Yao
- GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Rab K. Prinjha
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
42
|
Schiedel M, Moroglu M, Ascough DMH, Chamberlain AER, Kamps JJAG, Sekirnik AR, Conway SJ. Chemical Epigenetics: The Impact of Chemical and Chemical Biology Techniques on Bromodomain Target Validation. Angew Chem Int Ed Engl 2019; 58:17930-17952. [DOI: 10.1002/anie.201812164] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/08/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Matthias Schiedel
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Mustafa Moroglu
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - David M. H. Ascough
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Anna E. R. Chamberlain
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Jos J. A. G. Kamps
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Angelina R. Sekirnik
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Stuart J. Conway
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
43
|
Schiedel M, Moroglu M, Ascough DMH, Chamberlain AER, Kamps JJAG, Sekirnik AR, Conway SJ. Chemische Epigenetik: der Einfluss chemischer und chemo‐biologischer Techniken auf die Zielstruktur‐Validierung von Bromodomänen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Matthias Schiedel
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Mustafa Moroglu
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - David M. H. Ascough
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Anna E. R. Chamberlain
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Jos J. A. G. Kamps
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Angelina R. Sekirnik
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Stuart J. Conway
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| |
Collapse
|
44
|
A facile and regioselective synthesis of some new pyrimido[4,5-d][1,2,4]triazolo[1,5-a]pyrimidinediones catalyzed by Zn(BDC)-MOF under ultrasound irradiation. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Abstract
Less than a decade ago, it was shown that bromodomains, acetyl lysine 'reader' modules found in proteins with varied functions, were highly tractable small-molecule targets. This is an unusual property for protein-protein or protein-peptide interaction domains, and it prompted a wave of chemical probe discovery to understand the biological potential of new agents that targeted bromodomains. The original examples, inhibitors of the bromodomain and extra-terminal (BET) class of bromodomains, showed enticing anti-inflammatory and anticancer activities, and several compounds have since advanced to human clinical trials. Here, we review the current state of BET inhibitor biology in relation to clinical development, and we discuss the next wave of bromodomain inhibitors with clinical potential in oncology and non-oncology indications. The lessons learned from BET inhibitor programmes should affect efforts to develop drugs that target non-BET bromodomains and other epigenetic readers.
Collapse
|
46
|
Scheepstra M, Hekking KF, van Hijfte L, Folmer RH. Bivalent Ligands for Protein Degradation in Drug Discovery. Comput Struct Biotechnol J 2019; 17:160-176. [PMID: 30788082 PMCID: PMC6369262 DOI: 10.1016/j.csbj.2019.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 01/19/2023] Open
Abstract
Targeting the "undruggable" proteome remains one of the big challenges in drug discovery. Recent innovations in the field of targeted protein degradation and manipulation of the ubiquitin-proteasome system open up new therapeutic approaches for disorders that cannot be targeted with conventional inhibitor paradigms. Proteolysis targeting chimeras (PROTACs) are bivalent ligands in which a compound that binds to the protein target of interest is connected to a second molecule that binds an E3 ligase via a linker. The E3 protein is usually either Cereblon or Von Hippel-Lindau. Several examples of selective PROTAC molecules with potent effect in cells and in vivo models have been reported. The degradation of specific proteins via these bivalent molecules is already allowing for the study of biochemical pathways and cell biology with more specificity than was possible with inhibitor compounds. In this review, we provide a comprehensive overview of recent developments in the field of small molecule mediated protein degradation, including transcription factors, kinases and nuclear receptors. We discuss the potential benefits of protein degradation over inhibition as well as the challenges that need to be overcome.
Collapse
Key Words
- ABCB1, ATP-binding cassette sub-family B member 1
- AD, Alzheimer's disease
- AHR, aryl hydrogen receptor
- ALK, anaplastic lymphoma kinase
- Aβ, amyloid-β
- BET, bromodomain and extra-terminal
- BTK, Bruton's tyrosine kinase
- Bcl6, B-cell lymphoma 6
- Bivalent ligand
- Brd4, bromodomain 4
- CDK9, cyclin dependent kinase 9
- CK2, Casein kinase 2
- CLIPTAC, click-formed proteolysis targeting chimera
- CRBN, Cereblon
- Chimera
- DC50, the compound concentration that results in 50% target protein degradation
- DHODH, Dihydroorotate dehydrogenase
- Degrader
- ERK1, extracellular signal-regulated kinase 1
- ERRα, estrogen-related receptor alpha
- ERα, estrogen receptor alpha
- EZH2, enhancer of zeste homolog 2
- FLT3, FMS-like tyrosine kinase-3
- FRS2, fibroblast growth factor receptor substrate 2
- GCN5, general control nonderepressible 5
- GPCR, G-protein coupled receptor
- GST, glutathione S-transferase
- HDAC, histone deacetylase
- HTS, high-throughput screening
- MDM2, mouse double-minute 2 homolog
- MetAP-2, methionine aminopeptidase-2
- PCAF, P300/CBP-associated factor
- PEG, polyethylene glycol
- PI3K, phosphatidylinositol-3-kinase
- PLK-1, polo-like kinase 1
- POI, protein of interest
- PROTAC
- PROTAC, proteolysis targeting chimeras
- Proteasome
- Protein degradation
- RAR, retinoic acid receptor
- RIPK2, receptor-interacting serine/threonine-protein kinase 2
- RTK, receptor tyrosine kinase
- SARM, selective androgen receptor modulator
- SNIPER, specific and non-genetic IAP-dependent protein eraser
- TBK1, TANK-Binding kinase 1
- TRIM24, tripartite motif-containing 24 (also known as TIF1α)
- VHL, Von Hippel-Lindau
- cIAP1, cellular inhibitor of apoptosis protein
Collapse
|
47
|
Oukoloff K, Lucero B, Francisco KR, Brunden KR, Ballatore C. 1,2,4-Triazolo[1,5-a]pyrimidines in drug design. Eur J Med Chem 2019; 165:332-346. [PMID: 30703745 DOI: 10.1016/j.ejmech.2019.01.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/01/2022]
Abstract
The 1,2,4-triazolo[1,5-a]pyrimidine (TP) heterocycle, in spite of its relatively simple structure, has proved to be remarkably versatile as evidenced by its use in many different applications reported over the years in different areas of drug design. For example, as the ring system of TPs is isoelectronic with that of purines, this heterocycle has been proposed as a possible surrogate of the purine ring. However, depending on the choice of substituents, the TP ring has also been described as a potentially viable bio-isostere of the carboxylic acid functional group and of the N-acetyl fragment of ε-N-acetylated lysine. In addition, the metal-chelating properties of the TP ring have also been exploited to generate candidate treatments for cancer and parasitic diseases. In the present review article, we discuss recent applications of the TP scaffold in medicinal chemistry, and provide an overview of its properties and methods of synthesis.
Collapse
Affiliation(s)
- Killian Oukoloff
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Bobby Lucero
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Karol R Francisco
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Kurt R Brunden
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104-6323, USA
| | - Carlo Ballatore
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
48
|
Fischer G. Recent advances in 1,2,4-triazolo[1,5-a]pyrimidine chemistry. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019. [DOI: 10.1016/bs.aihch.2018.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
49
|
Tumdam R, Kumar A, Subbarao N, Balaji BS. In silico study directed towards identification of novel high-affinity inhibitors targeting an oncogenic protein: BRD4-BD1. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2018; 29:975-996. [PMID: 30411639 DOI: 10.1080/1062936x.2018.1537301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Bromodomain-containing protein 4 (BRD4) is a member of the bromodomain and extra-terminal domain (BET) family of proteins. It epigentically regulates the transcription of growth-promoting genes and has become an attractive target for the development of anticancer and anti-inflammatory agents. In the current study, we performed an in silico screening of a small-molecule chemical library against the acetyl-lysine binding site of the first bromodomain (BD1) in BRD4 protein. Potential inhibitors identified through virtual screening were further studied through molecular dynamics simulations, water entrapment analysis and Molecular Mechanics (MM)/Poisson-Boltzmann surface area (PBSA) binding free energy calculations. Many of the identified compounds exhibit better G-score (-11.64 kcal∙mol-1 to -10.31 kcal∙mol-1) and predicted binding affinity (-9.66 kcal∙mol-1 to -6.63 kcal∙mol-1) values towards BRD4-BD1 than that of the reference compound (+)-JQ1. Molecular dynamics simulation studies show that in free-form BRD4 the reported conserved water molecules are not retained at their specific positoins due to flexibiliy in the ZA-loop. In BRD4-ligand complexes the number and positions of conserved water molecules depends on the bound ligand. Identified potential inhibitors bind stably at the acetyl-lysine binding pocket of BRD4 and form direct and water-mediated hydrogen bonds with higher occupancy which may contribute to ligand specificity towards BRD4-BD1. Further, through MM/PBSA we calculated the binding free energies of selected compounds, which shows that they have comparable energies to that of (+)-JQ1, while NSC744713 shows better binding free energy.
Collapse
Affiliation(s)
- R Tumdam
- a School of Biotechnology , Jawaharlal Nehru University , New Delhi , India
| | - A Kumar
- b School of Computational and Integrative Sciences , Jawaharlal Nehru University , New Delhi , India
| | - N Subbarao
- b School of Computational and Integrative Sciences , Jawaharlal Nehru University , New Delhi , India
| | - B S Balaji
- a School of Biotechnology , Jawaharlal Nehru University , New Delhi , India
| |
Collapse
|
50
|
Wang Q, Li Y, Xu J, Wang Y, Shi D, Liu L, Leung ELH, Yao X. Computational study on the selective inhibition mechanism of MS402 to the first and second bromodomains of BRD4. Proteins 2018; 87:3-11. [PMID: 30260047 DOI: 10.1002/prot.25611] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/15/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022]
Abstract
As a member of the bromodomain and extraterminal domain (BET) family, BRD4 is considered as a potential target for cancer treatment. However, because of the highly conservation of its two homologous bromodomains (BD1/BD2), selective inhibition of each bromodomain remains a challenge. MS402 is a domain-selective inhibitor of BRD4-BD1 over BRD4-BD2 reported recently. Understanding the selectivity mechanism would be very useful for the further design of more potent BD1-selectivity inhibitors. Molecular dynamics simulation, adaptive biasing force and multiple-walker adaptive biasing force were performed to study the inhibition and domain-selective mechanism of MS402 toward BRD4-BD1 over BRD4-BD2 here. Results demonstrate BRD4-BD1 binds to MS402 with lower binding free energy than BRD4-BD2. Residues Gln85, Pro86, Asn140, and Ile146 are crucial for MS402's selectively binding to BRD4-BD1. MS402 needs to overcome more energy barrier to dissociate from BD1 than from BD2 pocket. These findings will be helpful for rational structural modification of existing inhibitors to increase their BD1-selectivity.
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Ying Li
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Jiahui Xu
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Yuwei Wang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Danfeng Shi
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| |
Collapse
|