1
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
2
|
Fan Z, Hao Y, Huo Y, Cao F, Li L, Xu J, Song Y, Yang K. Modulators for palmitoylation of proteins and small molecules. Eur J Med Chem 2024; 271:116408. [PMID: 38621327 DOI: 10.1016/j.ejmech.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
As an essential form of lipid modification for maintaining vital cellular functions, palmitoylation plays an important role in in the regulation of various physiological processes, serving as a promising therapeutic target for diseases like cancer and neurological disorders. Ongoing research has revealed that palmitoylation can be categorized into three distinct types: N-palmitoylation, O-palmitoylation and S-palmitoylation. Herein this paper provides an overview of the regulatory enzymes involved in palmitoylation, including palmitoyltransferases and depalmitoylases, and discusses the currently available broad-spectrum and selective inhibitors for these enzymes.
Collapse
Affiliation(s)
- Zeshuai Fan
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yuchen Hao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yidan Huo
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Fei Cao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Longfei Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Jianmei Xu
- Department of hematopathology, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071002, China
| | - Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
3
|
Mohassel P, Abdullah M, Eichler FS, Dunn TM. Serine Palmitoyltransferase (SPT)-related Neurodegenerative and Neurodevelopmental Disorders. J Neuromuscul Dis 2024; 11:735-747. [PMID: 38788085 PMCID: PMC11307022 DOI: 10.3233/jnd-240014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Motor neuron diseases and peripheral neuropathies are heterogeneous groups of neurodegenerative disorders that manifest with distinct symptoms due to progressive dysfunction or loss of specific neuronal subpopulations during different stages of development. A few monogenic, neurodegenerative diseases associated with primary metabolic disruptions of sphingolipid biosynthesis have been recently discovered. Sphingolipids are a subclass of lipids that form critical building blocks of all cellular and subcellular organelle membranes including the membrane components of the nervous system cells. They are especially abundant within the lipid portion of myelin. In this review, we will focus on our current understanding of disease phenotypes in three monogenic, neuromuscular diseases associated with pathogenic variants in components of serine palmitoyltransferase, the first step in sphingolipid biosynthesis. These include hereditary sensory and autonomic neuropathy type 1 (HSAN1), a sensory predominant peripheral neuropathy, and two neurodegenerative disorders: juvenile amyotrophic lateral sclerosis affecting the upper and lower motor neurons with sparing of sensory neurons, and a complicated form of hereditary spastic paraplegia with selective involvement of the upper motor neurons and more broad CNS neurodegeneration. We will also review our current understanding of disease pathomechanisms, therapeutic approaches, and the unanswered questions to explore in future studies.
Collapse
Affiliation(s)
- Payam Mohassel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meher Abdullah
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Florian S. Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Teresa M. Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
4
|
Li Y, Chaurasia B, Rahman MM, Kaddai V, Maschek JA, Berg JA, Wilkerson JL, Mahmassani ZS, Cox J, Wei P, Meikle PJ, Atkinson D, Wang L, Poss AM, Playdon MC, Tippetts TS, Mousa EM, Nittayaboon K, Anandh Babu PV, Drummond MJ, Clevers H, Shayman JA, Hirabayashi Y, Holland WL, Rutter J, Edgar BA, Summers SA. Ceramides Increase Fatty Acid Utilization in Intestinal Progenitors to Enhance Stemness and Increase Tumor Risk. Gastroenterology 2023; 165:1136-1150. [PMID: 37541526 PMCID: PMC10592225 DOI: 10.1053/j.gastro.2023.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND & AIMS Cancers of the alimentary tract, including esophageal adenocarcinomas, colorectal cancers, and cancers of the gastric cardia, are common comorbidities of obesity. Prolonged, excessive delivery of macronutrients to the cells lining the gut can increase one's risk for these cancers by inducing imbalances in the rate of intestinal stem cell proliferation vs differentiation, which can produce polyps and other aberrant growths. We investigated whether ceramides, which are sphingolipids that serve as a signal of nutritional excess, alter stem cell behaviors to influence cancer risk. METHODS We profiled sphingolipids and sphingolipid-synthesizing enzymes in human adenomas and tumors. Thereafter, we manipulated expression of sphingolipid-producing enzymes, including serine palmitoyltransferase (SPT), in intestinal progenitors of mice, cultured organoids, and Drosophila to discern whether sphingolipids altered stem cell proliferation and metabolism. RESULTS SPT, which diverts dietary fatty acids and amino acids into the biosynthetic pathway that produces ceramides and other sphingolipids, is a critical modulator of intestinal stem cell homeostasis. SPT and other enzymes in the sphingolipid biosynthesis pathway are up-regulated in human intestinal adenomas. They produce ceramides, which serve as prostemness signals that stimulate peroxisome-proliferator activated receptor-α and induce fatty acid binding protein-1. These actions lead to increased lipid utilization and enhanced proliferation of intestinal progenitors. CONCLUSIONS Ceramides serve as critical links between dietary macronutrients, epithelial regeneration, and cancer risk.
Collapse
Affiliation(s)
- Ying Li
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Bhagirath Chaurasia
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah; Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa.
| | - M Mahidur Rahman
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
| | - Vincent Kaddai
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - J Alan Maschek
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Jordan A Berg
- Department of Biochemistry, University of Utah, Salt Lake City, Utah
| | - Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Ziad S Mahmassani
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah
| | - James Cox
- Department of Biochemistry, University of Utah, Salt Lake City, Utah
| | - Peng Wei
- Department of Biochemistry, University of Utah, Salt Lake City, Utah
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Donald Atkinson
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Liping Wang
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Annelise M Poss
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Mary C Playdon
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Trevor S Tippetts
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Esraa M Mousa
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah; Faculty of Science, Tanta University, Tanta, Egypt
| | - Kesara Nittayaboon
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah; Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Pon Velayutham Anandh Babu
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Micah J Drummond
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands; Oncode Institute, Utrecht, The Netherlands; Princess Maxima Center (PMC) for Pediatric Oncology, Utrecht, The Netherlands
| | - James A Shayman
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Yoshio Hirabayashi
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako-shi, Saitama Japan
| | - William L Holland
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Jared Rutter
- Department of Biochemistry, University of Utah, Salt Lake City, Utah; Howard Hughes Medical Institute, Salt Lake City, Utah
| | - Bruce A Edgar
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
5
|
Lima TI, Laurila PP, Wohlwend M, Morel JD, Goeminne LJE, Li H, Romani M, Li X, Oh CM, Park D, Rodríguez-López S, Ivanisevic J, Gallart-Ayala H, Crisol B, Delort F, Batonnet-Pichon S, Silveira LR, Sankabattula Pavani Veera Venkata L, Padala AK, Jain S, Auwerx J. Inhibiting de novo ceramide synthesis restores mitochondrial and protein homeostasis in muscle aging. Sci Transl Med 2023; 15:eade6509. [PMID: 37196064 DOI: 10.1126/scitranslmed.ade6509] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
Disruption of mitochondrial function and protein homeostasis plays a central role in aging. However, how these processes interact and what governs their failure in aging remain poorly understood. Here, we showed that ceramide biosynthesis controls the decline in mitochondrial and protein homeostasis during muscle aging. Analysis of transcriptome datasets derived from muscle biopsies obtained from both aged individuals and patients with a diverse range of muscle disorders revealed that changes in ceramide biosynthesis, as well as disturbances in mitochondrial and protein homeostasis pathways, are prevalent features in these conditions. By performing targeted lipidomics analyses, we found that ceramides accumulated in skeletal muscle with increasing age across Caenorhabditis elegans, mice, and humans. Inhibition of serine palmitoyltransferase (SPT), the rate-limiting enzyme of the ceramide de novo synthesis, by gene silencing or by treatment with myriocin restored proteostasis and mitochondrial function in human myoblasts, in C. elegans, and in the skeletal muscles of mice during aging. Restoration of these age-related processes improved health and life span in the nematode and muscle health and fitness in mice. Collectively, our data implicate pharmacological and genetic suppression of ceramide biosynthesis as potential therapeutic approaches to delay muscle aging and to manage related proteinopathies via mitochondrial and proteostasis remodeling.
Collapse
Affiliation(s)
- Tanes I Lima
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Pirkka-Pekka Laurila
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Martin Wohlwend
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Jean David Morel
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Ludger J E Goeminne
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Hao Li
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Mario Romani
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Dohyun Park
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Sandra Rodríguez-López
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne 1005, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne 1005, Switzerland
| | - Barbara Crisol
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Florence Delort
- Laboratoire Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS and Université Paris Cité, Paris 8251, France
| | - Sabrina Batonnet-Pichon
- Laboratoire Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS and Université Paris Cité, Paris 8251, France
| | - Leonardo R Silveira
- Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | | | - Anil K Padala
- Intonation Research Laboratories, Hyderabad 500076, India
| | - Suresh Jain
- Intonation Research Laboratories, Hyderabad 500076, India
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
6
|
Hoefgen S, Bissell AU, Huang Y, Gherlone F, Raguž L, Beemelmanns C, Valiante V. Desaturation of the Sphingofungin Polyketide Tail Results in Increased Serine Palmitoyltransferase Inhibition. Microbiol Spectr 2022; 10:e0133122. [PMID: 36121228 PMCID: PMC9603476 DOI: 10.1128/spectrum.01331-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/02/2022] [Indexed: 12/30/2022] Open
Abstract
Serine palmitoyltransferase catalyzes the first step of the sphingolipid biosynthesis. Recently, sphingolipid homeostasis has been connected to several human diseases, making serine palmitoyltransferases an interesting therapeutic target. Known and efficient serine palmitoyltransferase-inhibitors are sphingofungins, a group of natural products isolated from fungi. To further characterize newly isolated sphingofungins, we designed an easy to use colorimetric serine palmitoyltransferase activity assay using FadD, which can be performed in 96-well plates. Because sphingofungins exert antifungal activitiy as well, we compared the in vitro assay results with an in vivo growth assay using Saccharomyces cerevisiae. The reported experiments showed differences among the assayed sphingofungins, highlighting an increase of activity based on the saturation levels of the polyketide tail. IMPORTANCE Targeting the cellular sphingolipid metabolism is often discussed as a potential approach to treat associated human diseases such as cancer and Alzheimer's disease. Alternatively, it is also a possible target for the development of antifungal compounds, which are direly needed. A central role is played by the serine palmitoyltransferase, which catalyzes the initial and rate limiting step of sphingolipid de novo synthesis and, as such, the development of inhibitory compounds for this enzyme is of interest. Our work here established an alternative approach for determining the activity of serine palmitoyltransferase adding another tool for the validation of its inhibition. We also determined the effect of different modifications to sphingofungins on their inhibitory activity against serine palmitoyltransferase, revealing important differences on said activity against enzymes of bacterial and fungal origin.
Collapse
Affiliation(s)
- Sandra Hoefgen
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Alexander U. Bissell
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Ying Huang
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Fabio Gherlone
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Luka Raguž
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
- Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Christine Beemelmanns
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Vito Valiante
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| |
Collapse
|
7
|
Zietzer A, Düsing P, Reese L, Nickenig G, Jansen F. Ceramide Metabolism in Cardiovascular Disease: A Network With High Therapeutic Potential. Arterioscler Thromb Vasc Biol 2022; 42:1220-1228. [PMID: 36004640 DOI: 10.1161/atvbaha.122.318048] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Growing evidence suggests that ceramides play an important role in the development of atherosclerotic and valvular heart disease. Ceramides are biologically active sphingolipids that are produced by a complex network of enzymes. Lowering cellular and tissue levels of ceramide by inhibiting the ceramide-producing enzymes counteracts atherosclerotic and valvular heart disease development in animal models. In vascular tissues, ceramides are produced in response to hyperglycemia and TNF (tumor necrosis factor)-α signaling and are involved in NO-signaling and inflammation. In humans, elevated blood ceramide levels are associated with cardiovascular events. Furthermore, important cardiovascular risk factors, such as obesity and diabetes, have been linked to ceramide accumulation. This review summarizes the basic mechanisms of how ceramides drive cardiovascular disease locally and links these findings to the intriguing results of human studies on ceramides as biomarkers for cardiovascular events. Moreover, we discuss the current state of interventions to therapeutically influence vascular ceramide metabolism, both locally and systemically.
Collapse
Affiliation(s)
- Andreas Zietzer
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Germany
| | - Philip Düsing
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Germany
| | - Laurine Reese
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Germany
| | - Felix Jansen
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Germany
| |
Collapse
|
8
|
Li Y, Talbot CL, Chandravanshi B, Ksiazek A, Sood A, Chowdhury KH, Maschek JA, Cox J, Babu AKS, Paz HA, Babu PVA, Meyerholz DK, Wankhade UD, Holland W, Shyong Tai E, Summers SA, Chaurasia B. Cordyceps inhibits ceramide biosynthesis and improves insulin resistance and hepatic steatosis. Sci Rep 2022; 12:7273. [PMID: 35508667 PMCID: PMC9068713 DOI: 10.1038/s41598-022-11219-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/20/2022] [Indexed: 11/12/2022] Open
Abstract
Ectopic ceramide accumulation in insulin-responsive tissues contributes to the development of obesity and impairs insulin sensitivity. Moreover, pharmacological inhibition of serine palmitoyl transferase (SPT), the first enzyme essential for ceramide biosynthesis using myriocin in rodents reduces body weight and improves insulin sensitivity and associated metabolic indices. Myriocin was originally extracted from fruiting bodies of the fungus Isaria sinclairii and has been found abundant in a number of closely related fungal species such as the Cordyceps. Myriocin is not approved for human use but extracts from Cordyceps are routinely consumed as part of traditional Chinese medication for the treatment of numerous diseases including diabetes. Herein, we screened commercially available extracts of Cordyceps currently being consumed by humans, to identify Cordyceps containing myriocin and test the efficacy of Cordyceps extract containing myriocin in obese mice to improve energy and glucose homeostasis. We demonstrate that commercially available Cordyceps contain variable amounts of myriocin and treatment of mice with a human equivalent dose of Cordyceps extract containing myriocin, reduces ceramide accrual, increases energy expenditure, prevents diet-induced obesity, improves glucose homeostasis and resolves hepatic steatosis. Mechanistically, these beneficial effects were due to increased adipose tissue browning/beiging, improved brown adipose tissue function and hepatic insulin sensitivity as well as alterations in the abundance of gut microbes such as Clostridium and Bilophila. Collectively, our data provide proof-of-principle that myriocin containing Cordyceps extract inhibit ceramide biosynthesis and attenuate metabolic impairments associated with obesity. Moreover, these studies identify commercially available Cordyceps as a readily available supplement to treat obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Ying Li
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - Chad Lamar Talbot
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - Bhawna Chandravanshi
- Division of Endocrinology, Department of Internal Medicine, Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa City, IA, 52242, USA
| | - Alec Ksiazek
- Division of Endocrinology, Department of Internal Medicine, Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa City, IA, 52242, USA
| | - Ayushi Sood
- Division of Endocrinology, Department of Internal Medicine, Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa City, IA, 52242, USA
| | - Kamrul Hasan Chowdhury
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - J Alan Maschek
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - James Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Adhini Kuppuswamy Satheesh Babu
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - Henry A Paz
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Pon Velayutham Anandh Babu
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - David K Meyerholz
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Umesh D Wankhade
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - William Holland
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - E Shyong Tai
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - Bhagirath Chaurasia
- Division of Endocrinology, Department of Internal Medicine, Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa City, IA, 52242, USA.
| |
Collapse
|
9
|
Li Y, Nicholson RJ, Summers SA. Ceramide signaling in the gut. Mol Cell Endocrinol 2022; 544:111554. [PMID: 34998898 PMCID: PMC8828712 DOI: 10.1016/j.mce.2022.111554] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 11/16/2022]
Abstract
Sphingolipids are essential lipid components in the intestinal epithelial cells (IEC) along the intestinal tract. They play crucial roles in maintaining barrier integrity, regulating nutrient absorption, and acting as signaling molecules to regulate regeneration and differentiation of intestinal mucosa (Kurek et al., 2012). Ceramide is the central sphingolipid species and the precursor of all complex sphingolipids and other downstream simple intermediates like sphingosine (SPH), ceramide-1-phosphate (C-1-P), and sphingosine-1-phosphate (S-1-P). It is also a critical signaling molecule regulating numerous physiologic and pathologic processes. This review will summarize the metabolism of ceramides in the gut and their regulation in inflammatory bowel diseases and colorectal cancer.
Collapse
Affiliation(s)
- Ying Li
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, 15 North 2030 East, UT, 84112, Salt Lake City, USA.
| | - Rebekah J Nicholson
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, 15 North 2030 East, UT, 84112, Salt Lake City, USA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, 15 North 2030 East, UT, 84112, Salt Lake City, USA
| |
Collapse
|
10
|
Qu Z, Zhou L. Drug Development in the Field of Sphinogolipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:169-188. [DOI: 10.1007/978-981-19-0394-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
De Novo Sphingolipid Biosynthesis in Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:31-46. [DOI: 10.1007/978-981-19-0394-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Tali JA, Kumar G, Singh D, Shankar R. Palladium(II) catalyzed site-selective C-H olefination of imidazo[1,2- a]pyridines. Org Biomol Chem 2021; 19:9401-9406. [PMID: 34705920 DOI: 10.1039/d1ob01683k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herein, we disclose an efficient Pd(II)-catalyzed site selective C8 alkenylation of imidazo[1,2-a]pyridines with electronically biased olefinic substrates. Notably, besides the presence of four C-H sites available, selective mono-alkenylation was achieved by N-chelation overriding O-chelation. The versatility and scalability of the catalysis enabled the selective late-stage functionalization of a marketed drug, zolimidine. Various substituted heteroaryl alkenes can be afforded with moderate to good yields with high C8 regioselectivity.
Collapse
Affiliation(s)
- Javeed Ahmad Tali
- Natural Product and Medicinal Chemistry (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Gulshan Kumar
- Natural Product and Medicinal Chemistry (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Davinder Singh
- Natural Product and Medicinal Chemistry (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ravi Shankar
- Natural Product and Medicinal Chemistry (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
13
|
Choi RH, Tatum SM, Symons JD, Summers SA, Holland WL. Ceramides and other sphingolipids as drivers of cardiovascular disease. Nat Rev Cardiol 2021; 18:701-711. [PMID: 33772258 PMCID: PMC8978615 DOI: 10.1038/s41569-021-00536-1] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 02/03/2023]
Abstract
Increases in calorie consumption and sedentary lifestyles are fuelling a global pandemic of cardiometabolic diseases, including coronary artery disease, diabetes mellitus, cardiomyopathy and heart failure. These lifestyle factors, when combined with genetic predispositions, increase the levels of circulating lipids, which can accumulate in non-adipose tissues, including blood vessel walls and the heart. The metabolism of these lipids produces bioactive intermediates that disrupt cellular function and survival. A compelling body of evidence suggests that sphingolipids, such as ceramides, account for much of the tissue damage in these cardiometabolic diseases. In humans, serum ceramide levels are proving to be accurate biomarkers of adverse cardiovascular disease outcomes. In mice and rats, pharmacological inhibition or depletion of enzymes driving de novo ceramide synthesis prevents the development of diabetes, atherosclerosis, hypertension and heart failure. In cultured cells and isolated tissues, ceramides perturb mitochondrial function, block fuel usage, disrupt vasodilatation and promote apoptosis. In this Review, we discuss the body of literature suggesting that ceramides are drivers - and not merely passengers - on the road to cardiovascular disease. Moreover, we explore the feasibility of therapeutic strategies to lower ceramide levels to improve cardiovascular health.
Collapse
Affiliation(s)
- Ran Hee Choi
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - J David Symons
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
14
|
Ceramide Metabolism Enzymes-Therapeutic Targets against Cancer. ACTA ACUST UNITED AC 2021; 57:medicina57070729. [PMID: 34357010 PMCID: PMC8303233 DOI: 10.3390/medicina57070729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
Sphingolipids are both structural molecules that are essential for cell architecture and second messengers that are involved in numerous cell functions. Ceramide is the central hub of sphingolipid metabolism. In addition to being the precursor of complex sphingolipids, ceramides induce cell cycle arrest and promote cell death and inflammation. At least some of the enzymes involved in the regulation of sphingolipid metabolism are altered in carcinogenesis, and some are targets for anticancer drugs. A number of scientific reports have shown how alterations in sphingolipid pools can affect cell proliferation, survival and migration. Determination of sphingolipid levels and the regulation of the enzymes that are implicated in their metabolism is a key factor for developing novel therapeutic strategies or improving conventional therapies. The present review highlights the importance of bioactive sphingolipids and their regulatory enzymes as targets for therapeutic interventions with especial emphasis in carcinogenesis and cancer dissemination.
Collapse
|
15
|
Wang X, Yang X, Sun X, Qian Y, Fan M, Zhang Z, Deng K, Lou Z, Pei Z, Zhu J. Identification of a novel SPT inhibitor WXP-003 by docking-based virtual screening and investigation of its anti-fungi effect. J Enzyme Inhib Med Chem 2021; 36:1007-1015. [PMID: 34148472 PMCID: PMC8218698 DOI: 10.1080/14756366.2021.1915301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Serine palmitoyltransferase (SPT) plays the key role on catalysing the formation of 3-ketodihydrosphingosine, which is the first step of the de novo biosynthesis of sphingolipids. SPT is linked to many diseases including fungal infection, making it a potential therapeutic target. Thus, a logical docking-based virtual screening method was used to screen selective SPT inhibitor against fungi, not human. We used myriocin-similarity database to identify compounds with good binding with fungal SPT and poor binding with homology human SPT model. Preliminary bio-assay led to the discovery of a promising inhibitor WXP-003, which displayed good inhibitory activity against diversity fungi strains with MIC ranging from 0.78 to 12.5 μg/mL. WXP-003 could significantly reduce sphingolipids content in fungi and no effect on mouse fibroblast cell line L929. Molecular dynamics simulation depicted that SPT/WXP-003 complex formed the favoured interactions. Taken together, discovery of WXP-003 provided valuable guide for the development of novel anti-fungal agents.
Collapse
Affiliation(s)
- Xin Wang
- The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Xin Yang
- The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Xin Sun
- The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yi Qian
- The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Mengyao Fan
- The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Zhehao Zhang
- The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Kaiyuan Deng
- The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Zaixiang Lou
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zejun Pei
- The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jingyu Zhu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| |
Collapse
|
16
|
Tali JA, Singh D, Kumar G, Shankar R. Regioselective Base‐controlled Pd‐catalyzed Arylation of Imidazo[1,2‐a]pyridines: leading selectivity at C8 position by N‐chelation over O‐chelation. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Javeed Ahmad Tali
- Natural Products and Medicinal Chemistry (NPMC) CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Jammu 180001 India
| | - Davinder Singh
- Natural Products and Medicinal Chemistry (NPMC) CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Jammu 180001 India
| | - Gulshan Kumar
- Natural Products and Medicinal Chemistry (NPMC) CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Jammu 180001 India
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry (NPMC) CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Jammu 180001 India
| |
Collapse
|
17
|
Structural insights into the regulation of human serine palmitoyltransferase complexes. Nat Struct Mol Biol 2021; 28:240-248. [PMID: 33558761 PMCID: PMC9812531 DOI: 10.1038/s41594-020-00551-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/16/2020] [Indexed: 01/31/2023]
Abstract
Sphingolipids are essential lipids in eukaryotic membranes. In humans, the first and rate-limiting step of sphingolipid synthesis is catalyzed by the serine palmitoyltransferase holocomplex, which consists of catalytic components (SPTLC1 and SPTLC2) and regulatory components (ssSPTa and ORMDL3). However, the assembly, substrate processing and regulation of the complex are unclear. Here, we present 8 cryo-electron microscopy structures of the human serine palmitoyltransferase holocomplex in various functional states at resolutions of 2.6-3.4 Å. The structures reveal not only how catalytic components recognize the substrate, but also how regulatory components modulate the substrate-binding tunnel to control enzyme activity: ssSPTa engages SPTLC2 and shapes the tunnel to determine substrate specificity. ORMDL3 blocks the tunnel and competes with substrate binding through its amino terminus. These findings provide mechanistic insights into sphingolipid biogenesis governed by the serine palmitoyltransferase complex.
Collapse
|
18
|
Crivelli SM, Giovagnoni C, Visseren L, Scheithauer AL, de Wit N, den Hoedt S, Losen M, Mulder MT, Walter J, de Vries HE, Bieberich E, Martinez-Martinez P. Sphingolipids in Alzheimer's disease, how can we target them? Adv Drug Deliv Rev 2020; 159:214-231. [PMID: 31911096 DOI: 10.1016/j.addr.2019.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/09/2019] [Accepted: 12/31/2019] [Indexed: 01/06/2023]
Abstract
Altered levels of sphingolipids and their metabolites in the brain, and the related downstream effects on neuronal homeostasis and the immune system, provide a framework for understanding mechanisms in neurodegenerative disorders and for developing new intervention strategies. In this review we will discuss: the metabolites of sphingolipids that function as second messengers; and functional aberrations of the pathway resulting in Alzheimer's disease (AD) pathophysiology. Focusing on the central product of the sphingolipid pathway ceramide, we describ approaches to pharmacologically decrease ceramide levels in the brain and we argue on how the sphingolipid pathway may represent a new framework for developing novel intervention strategies in AD. We also highlight the possible use of clinical and non-clinical drugs to modulate the sphingolipid pathway and sphingolipid-related biological cascades.
Collapse
|
19
|
McFadden JW, Rico JE. Invited review: Sphingolipid biology in the dairy cow: The emerging role of ceramide. J Dairy Sci 2019; 102:7619-7639. [PMID: 31301829 DOI: 10.3168/jds.2018-16095] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/30/2019] [Indexed: 01/12/2023]
Abstract
The physiological control of lactation through coordinated adaptations is of fundamental importance for mammalian neonatal life. The putative actions of reduced insulin sensitivity and responsiveness and enhanced adipose tissue lipolysis spare glucose for the mammary synthesis of milk. However, severe insulin antagonism and body fat mobilization may jeopardize hepatic health and lactation in dairy cattle. Interestingly, lipolysis- and dietary-derived fatty acids may impair insulin sensitivity in cows. The mechanisms are undefined yet have major implications for the development of postpartum fatty liver disease. In nonruminants, the sphingolipid ceramide is a potent mediator of saturated fat-induced insulin resistance that defines in part the mechanisms of type 2 diabetes mellitus and nonalcoholic fatty liver disease. In ruminants including the lactating dairy cow, the functions of ceramide had remained virtually undescribed. Through a series of hypothesis-centered studies, ceramide has emerged as a potential antagonist of insulin-stimulated glucose utilization by adipose and skeletal muscle tissues in dairy cattle. Importantly, bovine data suggest that the ability of ceramide to inhibit insulin action likely depends on the lipolysis-dependent hepatic synthesis and secretion of ceramide during early lactation. Although these mechanisms appear to fade as lactation advances beyond peak milk production, early evidence suggests that palmitic acid feeding is a means to augment ceramide supply. Herein, we review a body of work that focuses on sphingolipid biology and the role of ceramide in the dairy cow within the framework of hepatic and fatty acid metabolism, insulin function, and lactation. The potential involvement of ceramide within the endocrine control of lactation is also considered.
Collapse
Affiliation(s)
- J W McFadden
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| | - J E Rico
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| |
Collapse
|
20
|
Singh D, Kumar G, Dheer D, Jyoti, Kushwaha M, Ahmed QN, Shankar R. BCl 3-Mediated C-N, C-S, and C-O Bond Formation of Imidazo[1,2- a]pyridine Benzylic Ethers. ACS OMEGA 2019; 4:4530-4539. [PMID: 31459646 PMCID: PMC6648736 DOI: 10.1021/acsomega.9b00035] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 02/20/2019] [Indexed: 09/02/2023]
Abstract
An efficient BCl3-mediated reaction of imidazo[1,2-a]pyridines has been developed for the C-N, C-S, and C-O bond formation. The salient features of this method correspond to the substitution of different nucleophiles via in situ unconventional debenzylation. The developed process is applicable for the synthesis of a wide variety of ((3-amino/thio/alkoxy)-methyl)-imidazo[1,2-a]pyridines.
Collapse
Affiliation(s)
- Davinder Singh
- Bio-Organic
Chemistry Division, Medicinal Chemistry Division, and Quality Control and Quality Assurance
(QC & QA), CSIR-Indian Institute of
Integrative Medicine, Jammu 180001, India
| | - Gulshan Kumar
- Bio-Organic
Chemistry Division, Medicinal Chemistry Division, and Quality Control and Quality Assurance
(QC & QA), CSIR-Indian Institute of
Integrative Medicine, Jammu 180001, India
| | - Divya Dheer
- Bio-Organic
Chemistry Division, Medicinal Chemistry Division, and Quality Control and Quality Assurance
(QC & QA), CSIR-Indian Institute of
Integrative Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Jammu 180001, India
| | - Jyoti
- Bio-Organic
Chemistry Division, Medicinal Chemistry Division, and Quality Control and Quality Assurance
(QC & QA), CSIR-Indian Institute of
Integrative Medicine, Jammu 180001, India
| | - Manoj Kushwaha
- Bio-Organic
Chemistry Division, Medicinal Chemistry Division, and Quality Control and Quality Assurance
(QC & QA), CSIR-Indian Institute of
Integrative Medicine, Jammu 180001, India
| | - Qazi Naveed Ahmed
- Bio-Organic
Chemistry Division, Medicinal Chemistry Division, and Quality Control and Quality Assurance
(QC & QA), CSIR-Indian Institute of
Integrative Medicine, Jammu 180001, India
| | - Ravi Shankar
- Bio-Organic
Chemistry Division, Medicinal Chemistry Division, and Quality Control and Quality Assurance
(QC & QA), CSIR-Indian Institute of
Integrative Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Jammu 180001, India
| |
Collapse
|
21
|
Harrison PJ, Dunn T, Campopiano DJ. Sphingolipid biosynthesis in man and microbes. Nat Prod Rep 2018; 35:921-954. [PMID: 29863195 PMCID: PMC6148460 DOI: 10.1039/c8np00019k] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Indexed: 12/20/2022]
Abstract
A new review covering up to 2018 Sphingolipids are essential molecules that, despite their long history, are still stimulating interest today. The reasons for this are that, as well as playing structural roles within cell membranes, they have also been shown to perform a myriad of cell signalling functions vital to the correct function of eukaryotic and prokaryotic organisms. Indeed, sphingolipid disregulation that alters the tightly-controlled balance of these key lipids has been closely linked to a number of diseases such as diabetes, asthma and various neuropathologies. Sphingolipid biogenesis, metabolism and regulation is mediated by a large number of enzymes, proteins and second messengers. There appears to be a core pathway common to all sphingolipid-producing organisms but recent studies have begun to dissect out important, species-specific differences. Many of these have only recently been discovered and in most cases the molecular and biochemical details are only beginning to emerge. Where there is a direct link from classic biochemistry to clinical symptoms, a number a drug companies have undertaken a medicinal chemistry campaign to try to deliver a therapeutic intervention to alleviate a number of diseases. Where appropriate, we highlight targets where natural products have been exploited as useful tools. Taking all these aspects into account this review covers the structural, mechanistic and regulatory features of sphingolipid biosynthetic and metabolic enzymes.
Collapse
Affiliation(s)
- Peter J. Harrison
- School of Chemistry
, University of Edinburgh
,
David Brewster Road
, Edinburgh
, EH9 3FJ
, UK
.
| | - Teresa M. Dunn
- Department of Biochemistry and Molecular Biology
, Uniformed Services University
,
Bethesda
, Maryland
20814
, USA
| | - Dominic J. Campopiano
- School of Chemistry
, University of Edinburgh
,
David Brewster Road
, Edinburgh
, EH9 3FJ
, UK
.
| |
Collapse
|
22
|
Kojima T, Asano Y, Kurasawa O, Hirata Y, Iwamura N, Wong TT, Saito B, Tanaka Y, Arai R, Yonemori K, Miyamoto Y, Sagiya Y, Yaguchi M, Shibata S, Mizutani A, Sano O, Adachi R, Satomi Y, Hirayama M, Aoyama K, Hiura Y, Kiba A, Kitamura S, Imamura S. Discovery of novel serine palmitoyltransferase inhibitors as cancer therapeutic agents. Bioorg Med Chem 2018; 26:2452-2465. [PMID: 29669694 DOI: 10.1016/j.bmc.2018.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022]
Abstract
We pursued serine palmitoyltransferase (SPT) inhibitors as novel cancer therapeutic agents based on a correlation between SPT inhibition and growth suppression of cancer cells. High-throughput screening and medicinal chemistry efforts led to the identification of structurally diverse SPT inhibitors 4 and 5. Both compounds potently inhibited SPT enzyme and decreased intracellular ceramide content. In addition, they suppressed cell growth of human lung adenocarcinoma HCC4006 and acute promyelocytic leukemia PL-21, and displayed good pharmacokinetic profiles. Reduction of 3-ketodihydrosphingosine, the direct downstream product of SPT, was confirmed under in vivo settings after oral administration of compounds 4 and 5. Their anti-tumor efficacy was observed in a PL-21 xenograft mouse model. These results suggested that SPT inhibitors might have potential to be effective cancer therapeutics.
Collapse
Affiliation(s)
- Takuto Kojima
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan.
| | - Yasutomi Asano
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Osamu Kurasawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Yasuhiro Hirata
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Naoki Iwamura
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Tzu-Tshin Wong
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Bunnai Saito
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Yuta Tanaka
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Ryosuke Arai
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Kazuko Yonemori
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Yasufumi Miyamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Yoji Sagiya
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Masahiro Yaguchi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Sachio Shibata
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Akio Mizutani
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Osamu Sano
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Ryutaro Adachi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Yoshinori Satomi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Megumi Hirayama
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Kazunobu Aoyama
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Yuto Hiura
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Atsushi Kiba
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Shuji Kitamura
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Shinichi Imamura
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-0012, Japan.
| |
Collapse
|
23
|
Pharmacological characterization of synthetic serine palmitoyltransferase inhibitors by biochemical and cellular analyses. Biochem Biophys Res Commun 2016; 497:1171-1176. [PMID: 28042036 DOI: 10.1016/j.bbrc.2016.12.182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/28/2016] [Indexed: 12/11/2022]
Abstract
Human serine palmitoyltransferase (SPT) is a PLP-dependent enzyme residing in the endoplasmic reticulum. It catalyzes the synthesis of 3-ketodihydrosphingosine (3-KDS) from the substrates palmitoyl-CoA and l-serine. It is a rate-limiting enzyme for sphingolipid synthesis in cells. In the present study, we characterized and pharmacologically profiled a series of tetrahydropyrazolopyridine derivatives that potently inhibit human SPT enzymatic activity, including two cell-active derivatives and one fluorescent-labelled derivative. These SPT inhibitors exhibited dual inhibitory activities against SPT2 and SPT3. We used a fluorescent-labelled probe to molecularly assess the inhibitory mechanism and revealed its binding to the SPT2 or SPT3 subunit in the small subunit (ss) SPTa/SPT1/SPT2/or ssSPTa/SPT1/SPT3 functional complexes. One of the SPT inhibitors exhibited a significantly slow dissociation from the SPT complex. We confirmed that our SPT inhibitors suppressed ceramide content in non-small-cell lung cancer cell line, HCC4006, by performing a target engagement analysis. The potency of ceramide reduction correlated to that observed in a recombinant SPT2 enzyme assay. We thus elucidated and provided a fundamental understanding of the molecular mode of action of SPT inhibitors and developed potent, cell-active SPT inhibitors that can be used to clarify the biological function of SPT.
Collapse
|