1
|
Teodori E, Braconi L, Manetti D, Romanelli MN, Dei S. The Tetrahydroisoquinoline Scaffold in ABC Transporter Inhibitors that Act as Multidrug Resistance (MDR) Reversers. Curr Top Med Chem 2022; 22:2535-2569. [PMID: 36284399 DOI: 10.2174/1568026623666221025111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/08/2022] [Accepted: 09/27/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND The failure of anticancer chemotherapy is often due to the development of resistance to a variety of anticancer drugs. This phenomenon is called multidrug resistance (MDR) and is related to the overexpression of ABC transporters, such as P-glycoprotein, multidrug resistance- associated protein 1 and breast cancer resistance protein. Over the past few decades, several ABC protein modulators have been discovered and studied as a possible approach to evade MDR and increase the success of anticancer chemotherapy. Nevertheless, the co-administration of pump inhibitors with cytotoxic drugs, which are substrates of the transporters, does not appear to be associated with an improvement in the therapeutic efficacy of antitumor agents. However, more recently discovered MDR reversing agents, such as the two tetrahydroisoquinoline derivatives tariquidar and elacridar, are characterized by high affinity towards the ABC proteins and by reduced negative properties. Consequently, many analogs of these two derivatives have been synthesized, with the aim of optimizing their MDR reversal properties. OBJECTIVE This review aims to describe the MDR modulators carrying the tetraidroisoquinoline scaffold reported in the literature in the period 2009-2021, highlighting the structural characteristics that confer potency and/or selectivity towards the three ABC transport proteins. RESULTS AND CONCLUSION Many compounds have been synthesized in the last twelve years showing interesting properties, both in terms of potency and selectivity. Although clear structure-activity relationships can be drawn only by considering strictly related compounds, some of the compounds reviewed could be promising starting points for the design of new ABC protein inhibitors.
Collapse
Affiliation(s)
- Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| | - Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| | - Dina Manetti
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| | - Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| |
Collapse
|
2
|
Lubeluzole Repositioning as Chemosensitizing Agent on Multidrug-Resistant Human Ovarian A2780/DX3 Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227870. [PMID: 36431971 PMCID: PMC9695310 DOI: 10.3390/molecules27227870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
In a previous paper, we demonstrated the synergistic action of the anti-ischemic lubeluzole (Lube S) on the cytotoxic activity of doxorubicin (Dox) and paclitaxel in human ovarian cancer A2780 and lung cancer A549 cells. In the present paper, we extended in vitro the study to the multi-drug-resistant A2780/DX3 cell line to verify the hypothesis that the Dox and Lube S drug association may potentiate the antitumor activity of this anticancer compound also in the context of drug resistance. We also evaluated some possible mechanisms underlying this activity. We analyzed the antiproliferative activity in different cancer cell lines. Furthermore, apoptosis, Dox accumulation, MDR1 downregulation, ROS, and NO production in A2780/DX3 cells were also evaluated. Our results confirm that Lube S improves Dox antiproliferative and apoptotic activities through different mechanisms of action, all of which may contribute to the final antitumor effect. Moderate stereoselectivity was found, with Lube S significantly more effective than its enantiomer (Lube R) and the corresponding racemate (Lube S/R). Docking simulation studies on the ABCB1 Cryo-EM structure supported the hypothesis that Lube S forms a stable MDR1-Dox-Lube S complex, which hampers the protein transmembrane domain flipping and blocks the efflux of Dox from resistant A2780/DX3 cells. In conclusion, our in vitro studies reinforce our previous hypothesis for repositioning the anti-ischemic Lube S as a potentiating agent in anticancer chemotherapy.
Collapse
|
3
|
Wang S, Wang SQ, Teng QX, Lei ZN, Chen ZS, Chen XB, Liu HM, Yu B. Discovery of the Triazolo[1,5- a]Pyrimidine-Based Derivative WS-898 as a Highly Efficacious and Orally Bioavailable ABCB1 Inhibitor Capable of Overcoming Multidrug Resistance. J Med Chem 2021; 64:16187-16204. [PMID: 34723530 DOI: 10.1021/acs.jmedchem.1c01498] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Targeting P-glycoprotein (ABCB1 or P-gp) has been recognized as a promising strategy to overcome multidrug resistance. Here, we reported our medicinal chemistry efforts that led to the discovery of the triazolo[1,5-a]pyrimidine derivative WS-898 as a highly effective ABCB1 inhibitor capable of reversing paclitaxel (PTX) resistance in drug-resistant SW620/Ad300, KB-C2, and HEK293/ABCB1 cells (IC50 = 5.0, 3.67, and 3.68 nM, respectively), more potent than verapamil and zosuquidar. WS-898 inhibited the efflux function of ABCB1, thus leading to decreased efflux and increased intracellular PTX concentration in SW620/Ad300 cells. The cellular thermal shift assay indicated direct engagement of WS-898 to ABCB1. Furthermore, WS-898 stimulated the ATPase activity of ABCB1 but had minimal effects on cytochrome P450 3A4 (CYP3A4). Importantly, WS-898 increased PTX sensitization in vivo without obvious toxicity. The results suggest that WS-898 is a highly effective triazolo[1,5-a]pyrimidine-based ABCB1 inhibitor and shows promise in reversing ABCB1-mediated PTX resistance.
Collapse
Affiliation(s)
- Shuai Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Sai-Qi Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Cancer Institute, Zhengzhou 450008, China
| | - Qiu-Xu Teng
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Zi-Ning Lei
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Xiao-Bing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Cancer Institute, Zhengzhou 450008, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Namasivayam V, Silbermann K, Wiese M, Pahnke J, Stefan SM. C@PA: Computer-Aided Pattern Analysis to Predict Multitarget ABC Transporter Inhibitors. J Med Chem 2021; 64:3350-3366. [PMID: 33724808 PMCID: PMC8041314 DOI: 10.1021/acs.jmedchem.0c02199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Based on literature reports of the last two decades, a computer-aided pattern analysis (C@PA) was implemented for the discovery of novel multitarget ABCB1 (P-gp), ABCC1 (MRP1), and ABCG2 (BCRP) inhibitors. C@PA included basic scaffold identification, substructure search and statistical distribution, as well as novel scaffold extraction to screen a large virtual compound library. Over 45,000 putative and novel broad-spectrum ABC transporter inhibitors were identified, from which 23 were purchased for biological evaluation. Our investigations revealed five novel lead molecules as triple ABCB1, ABCC1, and ABCG2 inhibitors. C@PA is the very first successful computational approach for the discovery of promiscuous ABC transporter inhibitors.
Collapse
Affiliation(s)
- Vigneshwaran Namasivayam
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katja Silbermann
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Michael Wiese
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway.,LIED, University of Lübeck, Ratzenburger Allee 160, 23538 Lübeck, Germany.,Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 1, 1004 Riga, Latvia.,Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Sven Marcel Stefan
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.,Department of Neuro-/Pathology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway.,Cancer Drug Resistance and Stem Cell Program, University of Sydney, Kolling Building, 10 Westbourne Street, Sydney, New South Wales 2065, Australia
| |
Collapse
|
5
|
Abstract
Incorporation of heterocycles into drug molecules can enhance physical properties and biological activity. A variety of heterocyclic groups is available to medicinal chemists, many of which have been reviewed in detail elsewhere. Oxadiazoles are a class of heterocycle containing one oxygen and two nitrogen atoms, available in three isomeric forms. While the 1,2,4- and 1,3,4-oxadiazoles have seen widespread application in medicinal chemistry, 1,2,5-oxadiazoles (furazans) are less common. This Review provides a summary of the application of furazan-containing molecules in medicinal chemistry and drug development programs from analysis of both patent and academic literature. Emphasis is placed on programs that reached clinical or preclinical stages of development. The examples provided herein describe the pharmacology and biological activity of furazan derivatives with comparative data provided where possible for other heterocyclic groups and pharmacophores commonly used in medicinal chemistry.
Collapse
Affiliation(s)
| | | | - Donald F Weaver
- Department of Fundamental Neurobiology, Krembil Research Institute, Toronto, Ontario M5T 0S8, Canada.,Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | - Mark A Reed
- Treventis Corporation, Toronto, Ontario M5T 0S8, Canada.,Department of Fundamental Neurobiology, Krembil Research Institute, Toronto, Ontario M5T 0S8, Canada
| |
Collapse
|
6
|
Lashin WH, Nassar IF, El Farargy AF, Abdelhamid AO. Synthesis of New Furanone Derivatives with Potent Anticancer Activity. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020060163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Contino M, Guglielmo S, Riganti C, Antonello G, Perrone MG, Giampietro R, Rolando B, Fruttero R, Colabufo NA. One molecule two goals: A selective P-glycoprotein modulator increases drug transport across gastro-intestinal barrier and recovers doxorubicin toxicity in multidrug resistant cancer cells. Eur J Med Chem 2020; 208:112843. [DOI: 10.1016/j.ejmech.2020.112843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022]
|
8
|
Zhang H, Xu H, Ashby CR, Assaraf YG, Chen ZS, Liu HM. Chemical molecular-based approach to overcome multidrug resistance in cancer by targeting P-glycoprotein (P-gp). Med Res Rev 2020; 41:525-555. [PMID: 33047304 DOI: 10.1002/med.21739] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) remains one of the major impediments for efficacious cancer chemotherapy. Increased efflux of multiple chemotherapeutic drugs by transmembrane ATP-binding cassette (ABC) transporter superfamily is considered one of the primary causes for cancer MDR, in which the role of P-glycoprotein (P-gp/ABCB1) has been most well-established. The clinical co-administration of P-gp drug efflux inhibitors, in combination with anticancer drugs which are P-gp transport substrates, was considered to be a treatment modality to surmount MDR in anticancer therapy by blocking P-gp-mediated multidrug efflux. Extensive attempts have been carried out to screen for sets of nontoxic, selective, and efficacious P-gp efflux inhibitors. In this review, we highlight the recent achievements in drug design, characterization, structure-activity relationship (SAR) studies, and mechanisms of action of the newly synthetic, potent small molecules P-gp inhibitors in the past 5 years. The development of P-gp inhibitors will increase our knowledge of the mechanisms and functions of P-gp-mediated drug efflux which will benefit drug discovery and clinical cancer therapeutics where P-gp transporter overexpression has been implicated in MDR.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York, USA
| | - Yehuda G Assaraf
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York, USA
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Matsubara R, Kim H, Sakaguchi T, Xie W, Zhao X, Nagoshi Y, Wang C, Tateiwa M, Ando A, Hayashi M, Yamanaka M, Tsuneda T. Modular Synthesis of Carbon-Substituted Furoxans via Radical Addition Pathway. Useful Tool for Transformation of Aliphatic Carboxylic Acids Based on “Build-and-Scrap” Strategy. Org Lett 2020; 22:1182-1187. [DOI: 10.1021/acs.orglett.0c00062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ryosuke Matsubara
- Department of Chemistry, Graduate School of Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hojin Kim
- Department of Chemistry, Graduate School of Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Takaya Sakaguchi
- Department of Chemistry, Graduate School of Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Weibin Xie
- Department of Chemistry, Graduate School of Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Xufeng Zhao
- Department of Chemistry, Graduate School of Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Yuto Nagoshi
- Department of Chemistry, Graduate School of Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Chaoyu Wang
- Department of Chemistry, Graduate School of Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Masahiro Tateiwa
- Department of Chemistry, Graduate School of Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Akihiro Ando
- Department of Chemistry, Graduate School of Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Masahiko Hayashi
- Department of Chemistry, Graduate School of Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Masahiro Yamanaka
- Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Takao Tsuneda
- Graduate School of Science, Technology and Innovation, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
10
|
Dong J, Qin Z, Zhang WD, Cheng G, Yehuda AG, Ashby CR, Chen ZS, Cheng XD, Qin JJ. Medicinal chemistry strategies to discover P-glycoprotein inhibitors: An update. Drug Resist Updat 2020; 49:100681. [PMID: 32014648 DOI: 10.1016/j.drup.2020.100681] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022]
Abstract
The presence of multidrug resistance (MDR) in malignant tumors is one of the primary causes of treatment failure in cancer chemotherapy. The overexpression of the ATP binding cassette (ABC) transporter, P-glycoprotein (P-gp), which significantly increases the efflux of certain anticancer drugs from tumor cells, produces MDR. Therefore, inhibition of P-gp may represent a viable therapeutic strategy to overcome cancer MDR. Over the past 4 decades, many compounds with P-gp inhibitory efficacy (referred to as first- and second-generation P-gp inhibitors) have been identified or synthesized. However, these compounds were not successful in clinical trials due to a lack of efficacy and/or untoward toxicity. Subsequently, third- and fourth-generation P-gp inhibitors were developed but dedicated clinical trials did not indicate a significant therapeutic effect. In recent years, an extraordinary array of highly potent, selective, and low-toxicity P-gp inhibitors have been reported. Herein, we provide a comprehensive review of the synthetic and natural products that have specific inhibitory activity on P-gp drug efflux as well as promising chemosensitizing efficacy in MDR cancer cells. The present review focuses primarily on the structural features, design strategies, and structure-activity relationships (SAR) of these compounds.
Collapse
Affiliation(s)
- Jinyun Dong
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zuodong Qin
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Wei-Dong Zhang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Gang Cheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Assaraf G Yehuda
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Charles R Ashby
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| | - Jiang-Jiang Qin
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
11
|
Zhang X, Ouyang X, Li Y, Chen B, Li J. Rhodium‐Catalysed [4+2] Annulation of Aromatic Oximes with Terminal Alkenes by C−H/N−O Functionalization towards 3,4‐Dihydroisoquinolines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education)Hunan Normal University Changsha 410081 People's Republic of China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Xuan‐Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Bo Chen
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education)Hunan Normal University Changsha 410081 People's Republic of China
| | - Jin‐Heng Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education)Hunan Normal University Changsha 410081 People's Republic of China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
12
|
Sun Y, Bao X, Ren Y, Jia L, Zou S, Han J, Zhao M, Han M, Li H, Hua Q, Fang Y, Yang J, Wu C, Chen G, Wang L. Targeting HDAC/OAZ1 axis with a novel inhibitor effectively reverses cisplatin resistance in non-small cell lung cancer. Cell Death Dis 2019; 10:400. [PMID: 31127087 PMCID: PMC6534535 DOI: 10.1038/s41419-019-1597-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 03/03/2019] [Accepted: 04/16/2019] [Indexed: 01/04/2023]
Abstract
Cisplatin yields significant efficacy and is generally used as a frontline therapy for non-small cell lung cancer (NSCLC). However, acquired resistance strongly limits its application. Here, we identified that a novel histone deacetylase (HDAC) inhibitor S11, with P-glycoprotein inhibitory activity, could obviously suppress cell growth in cisplatin-resistant NSCLC cell lines. In addition, S11 could increase the expression of Ac-H4 and p21, which confirmed its HDAC inhibitory action, suppress colony formation, and block cell migration of cisplatin-resistant NSCLC cells. Notably, co-treatment with S11 and cisplatin exhibited synergistically inhibitory efficacy in cisplatin-resistant NSCLC cells. Gene microarray data showed that OAZ1 was downregulated in resistant cells but upregulated after S11 treatment. Further study indicated that knockdown of OAZ1 by siRNA resulted in the decrease of sensitivity of resistant cells to cisplatin treatment and contributed to the increase of resistant cell migration. Additionally, ChIP assay data demonstrated that HDAC inhibitor S11 could increase the accumulation of Ac-H4 in OAZ1 promoter region, suggesting the direct regulation of OAZ1 by HDAC. Importantly, the combination of S11 and cisplatin overcome resistance through inhibiting HDAC activity and subsequently increasing the OAZ1 expression in preclinical model. Moreover, we observed that positive expression of HDAC1 was associated with the downregulation of OAZ1 in NSCLC patients with platinum-based treatment, and predicted drug resistance and poor prognosis. In summary, we demonstrated a role of HDAC/OAZ1 axis in cisplatin-resistant NSCLC and identified a promising compound to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Yuhong Sun
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Xuefei Bao
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yong Ren
- Department of Pathology, Wuhan General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Shenglan Zou
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jian Han
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Mengyue Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Mei Han
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Hong Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Qixiang Hua
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Yi Fang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China.
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China. .,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
13
|
Riganti C, Contino M, Guglielmo S, Perrone MG, Salaroglio IC, Milosevic V, Giampietro R, Leonetti F, Rolando B, Lazzarato L, Colabufo NA, Fruttero R. Design, Biological Evaluation, and Molecular Modeling of Tetrahydroisoquinoline Derivatives: Discovery of A Potent P-Glycoprotein Ligand Overcoming Multidrug Resistance in Cancer Stem Cells. J Med Chem 2018; 62:974-986. [DOI: 10.1021/acs.jmedchem.8b01655] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chiara Riganti
- Dipartimento di Oncologia, Università degli Studi di Torino, Via Santena 5/bis, 10126 Torino, Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, 70125 Bari, Italy
| | - Stefano Guglielmo
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via P. Giuria 9, 10125 Torino, Italy
| | - Maria G. Perrone
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, 70125 Bari, Italy
| | - Iris C. Salaroglio
- Dipartimento di Oncologia, Università degli Studi di Torino, Via Santena 5/bis, 10126 Torino, Italy
| | - Vladan Milosevic
- Dipartimento di Oncologia, Università degli Studi di Torino, Via Santena 5/bis, 10126 Torino, Italy
| | - Roberta Giampietro
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, 70125 Bari, Italy
| | - Francesco Leonetti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, 70125 Bari, Italy
| | - Barbara Rolando
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via P. Giuria 9, 10125 Torino, Italy
| | - Loretta Lazzarato
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via P. Giuria 9, 10125 Torino, Italy
| | - Nicola A. Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, 70125 Bari, Italy
- Biofordrug s.r.l., Spin-off dell’Università degli Studi di Bari ALDO MORO, Via Orabona 4, 70125 Bari, Italy
| | - Roberta Fruttero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via P. Giuria 9, 10125 Torino, Italy
| |
Collapse
|
14
|
Rullo M, Niso M, Pisani L, Carrieri A, Colabufo NA, Cellamare S, Altomare CD. 1,2,3,4-Tetrahydroisoquinoline/2H-chromen-2-one conjugates as nanomolar P-glycoprotein inhibitors: Molecular determinants for affinity and selectivity over multidrug resistance associated protein 1. Eur J Med Chem 2018; 161:433-444. [PMID: 30384046 DOI: 10.1016/j.ejmech.2018.10.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 11/30/2022]
Abstract
A series of coniugates bearing a 1,2,3,4-tetrahydroisoquinoline motif linked to substituted 7-hydroxy-2H-chromen-2-ones was synthesized and assayed through calcein-AM test in Madin-Darby Canine Kidney (MDCK) cells overexpressing P-glycoprotein (P-gp) and closely related multidrug resistance associated protein 1 (MRP1) to probe the interference with efflux mechanisms mediated by P-gp and MRP1, respectively. A number of substituents at C3 and C4 of coumarin nucleus along with differently sized and shaped spacers was enrolled to investigate the effects of focused structural modifications over affinity and selectivity. Linker length and flexibility played a key role in enhancing P-gp affinity as proved by the most potent P-gp modulator (3h, IC50 = 70 nM). A phenyl ring within the spacer (3k, 3l, 3o) and bulkier groups (Br in 3r, Ph in 3u) at coumarin C3 led to derivatives showing nanomolar activity (160 nM < IC50 < 280 nM) along with outstanding selectivity over MRP1 (SI > 350). Molecular docking calculations carried out on a human MDR1 homology model structure contributed to gain insights into the ligands' binding modes. Some compounds (3d, 3h, 3l, 3r, 3t, 3u) reversed MDR thereby restoring doxorubicin cytotoxicity when co-administered with the drug into MDCK-MDR1 cells.
Collapse
Affiliation(s)
- Mariagrazia Rullo
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Leonardo Pisani
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy.
| | - Antonio Carrieri
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Nicola Antonio Colabufo
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Saverio Cellamare
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Cosimo Damiano Altomare
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
15
|
Salaroglio IC, Gazzano E, Kopecka J, Chegaev K, Costamagna C, Fruttero R, Guglielmo S, Riganti C. New Tetrahydroisoquinoline Derivatives Overcome Pgp Activity in Brain-Blood Barrier and Glioblastoma Multiforme in Vitro. Molecules 2018; 23:molecules23061401. [PMID: 29890725 PMCID: PMC6099747 DOI: 10.3390/molecules23061401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022] Open
Abstract
P-glycoprotein (Pgp) determines resistance to a broad spectrum of drugs used against glioblastoma multiforme (GB). Indeed, Pgp is highly expressed in GB stem cells and in the brain-blood barrier (BBB), the peculiar endothelium surrounding the brain. Inhibiting Pgp activity in the BBB and GB is still an open challenge. Here, we tested the efficacy of a small library of tetrahydroisoquinoline derivatives with an EC50 for Pgp ≤ 50 nM, in primary human BBB cells and in patient-derived GB samples, from which we isolated differentiated/adherent cells (AC, i.e., Pgp-negative/doxorubicin-sensitive cells) and stem cells (neurospheres, NS, i.e., Pgp-positive/doxorubicin-resistant cells). Three compounds used at 1 nM increased the delivery of doxorubicin, a typical substrate of Pgp, across BBB monolayer, without altering the expression and activity of other transporters. The compounds increased the drug accumulation within NS, restoring doxorubicin-induced necrosis and apoptosis, and reducing cell viability. In co-culture systems, the compounds added to the luminal face of BBB increased the delivery of doxorubicin to NS growing under BBB and rescued the drug’s cytotoxicity. Our work identified new ligands of Pgp active at low nanomolar concentrations. These compounds reduce Pgp activity in BBB and GB and improve in vitro chemotherapy efficacy in this tumor.
Collapse
Affiliation(s)
| | - Elena Gazzano
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino Italy.
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino Italy.
| | - Konstantin Chegaev
- Department of Drug Science and Technology, University of Torino, via Pietro Giuria 9, 10125, Torino, Italy.
| | - Costanzo Costamagna
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino Italy.
| | - Roberta Fruttero
- Department of Drug Science and Technology, University of Torino, via Pietro Giuria 9, 10125, Torino, Italy.
| | - Stefano Guglielmo
- Department of Drug Science and Technology, University of Torino, via Pietro Giuria 9, 10125, Torino, Italy.
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino Italy.
| |
Collapse
|
16
|
Contino M, Guglielmo S, Perrone MG, Giampietro R, Rolando B, Carrieri A, Zaccaria D, Chegaev K, Borio V, Riganti C, Zabielska-Koczywąs K, Colabufo NA, Fruttero R. New tetrahydroisoquinoline-based P-glycoprotein modulators: decoration of the biphenyl core gives selective ligands. MEDCHEMCOMM 2018; 9:862-869. [PMID: 30108975 DOI: 10.1039/c8md00075a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/30/2018] [Indexed: 01/25/2023]
Abstract
P-glycoprotein (P-gp, MDR1) is a membrane transporter expressed in several regions of our body. It plays a crucial defense role as it mediates the efflux of hundreds of potentially toxic substances. However, P-gp is one of the main causes of failure in cancer chemotherapy, as a number of chemotherapeutic agents are P-gp substrates. Another interesting implication concerns the correlation between P-gp expression impairment and the onset of several central nervous system pathologies such as Alzheimer's and Parkinson's diseases. In view of these considerations, in the present study, a new series of P-gp modulators have been designed, synthesized and evaluated for their activity towards P-gp and two other sister proteins (BCRP and MRP1). The compounds, structurally correlated to the potent but non-selective P-gp inhibitor MC70 [4'-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-ylmethyl)biphenyl-4-ol], proved fairly selective towards P-gp, with a potency in the micromolar range. Compounds 5a, 5d and 12d proved capable of restoring doxorubicin toxicity in resistant cancer cells.
Collapse
Affiliation(s)
- Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco , Universita' degli Studi di Bari "Aldo Moro" , Via Orabona 4 , 70125 Bari , Italy .
| | - Stefano Guglielmo
- Dipartimento di Scienza e Tecnologia del Farmaco , Universita' degli Studi di Torino , Via P. Giuria 9 , 10125 Torino , Italy .
| | - Maria Grazia Perrone
- Dipartimento di Farmacia-Scienze del Farmaco , Universita' degli Studi di Bari "Aldo Moro" , Via Orabona 4 , 70125 Bari , Italy .
| | - Roberta Giampietro
- Dipartimento di Farmacia-Scienze del Farmaco , Universita' degli Studi di Bari "Aldo Moro" , Via Orabona 4 , 70125 Bari , Italy .
| | - Barbara Rolando
- Dipartimento di Scienza e Tecnologia del Farmaco , Universita' degli Studi di Torino , Via P. Giuria 9 , 10125 Torino , Italy .
| | - Antonio Carrieri
- Dipartimento di Farmacia-Scienze del Farmaco , Universita' degli Studi di Bari "Aldo Moro" , Via Orabona 4 , 70125 Bari , Italy .
| | - Daniele Zaccaria
- Dipartimento di Farmacia-Scienze del Farmaco , Universita' degli Studi di Bari "Aldo Moro" , Via Orabona 4 , 70125 Bari , Italy .
| | - Konstantin Chegaev
- Dipartimento di Scienza e Tecnologia del Farmaco , Universita' degli Studi di Torino , Via P. Giuria 9 , 10125 Torino , Italy .
| | - Vanessa Borio
- Dipartimento di Scienza e Tecnologia del Farmaco , Universita' degli Studi di Torino , Via P. Giuria 9 , 10125 Torino , Italy .
| | - Chiara Riganti
- Dipartimento di Oncologia , Università degli Studi di Torino , via Santena 5/bis , 10126 Torino , Italy
| | - Katarzyna Zabielska-Koczywąs
- Department of Small Animal Diseases with Clinic , Faculty of Veterinary Medicine , Warsaw University of Life Sciences , Nowoursynowska 159c , 02-776 , Warsaw , Poland
| | - Nicola A Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco , Universita' degli Studi di Bari "Aldo Moro" , Via Orabona 4 , 70125 Bari , Italy . .,Biofordrug s.r.l. , Spin-off dell'Università degli Studi di Bari "A. Moro" , Via Orabona 4 , 70125 Bari , Italy
| | - Roberta Fruttero
- Dipartimento di Scienza e Tecnologia del Farmaco , Universita' degli Studi di Torino , Via P. Giuria 9 , 10125 Torino , Italy .
| |
Collapse
|
17
|
Wu YC, Luo SH, Mei WJ, Cao L, Wu HQ, Wang ZY. Synthesis and biological evaluation of 4-biphenylamino-5-halo-2( 5H )-furanones as potential anticancer agents. Eur J Med Chem 2017; 139:84-94. [DOI: 10.1016/j.ejmech.2017.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/15/2017] [Accepted: 08/02/2017] [Indexed: 10/19/2022]
|
18
|
Teodori E, Dei S, Bartolucci G, Perrone MG, Manetti D, Romanelli MN, Contino M, Colabufo NA. Structure-Activity Relationship Studies on 6,7-Dimethoxy-2-phenethyl-1,2,3,4-tetrahydroisoquinoline Derivatives as Multidrug Resistance Reversers. ChemMedChem 2017; 12:1369-1379. [DOI: 10.1002/cmdc.201700239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/01/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Elisabetta Teodori
- Dipartimento NEUROFARBA-Sezione di Farmaceutica e Nutraceutica; Università di Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Silvia Dei
- Dipartimento NEUROFARBA-Sezione di Farmaceutica e Nutraceutica; Università di Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Gianluca Bartolucci
- Dipartimento NEUROFARBA-Sezione di Farmaceutica e Nutraceutica; Università di Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Maria Grazia Perrone
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “A. Moro”; via Orabona 4 70125 Bari Italy
| | - Dina Manetti
- Dipartimento NEUROFARBA-Sezione di Farmaceutica e Nutraceutica; Università di Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Maria Novella Romanelli
- Dipartimento NEUROFARBA-Sezione di Farmaceutica e Nutraceutica; Università di Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “A. Moro”; via Orabona 4 70125 Bari Italy
| | - Nicola Antonio Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “A. Moro”; via Orabona 4 70125 Bari Italy
| |
Collapse
|