1
|
Venturelli A, Guaitoli G, Vanossi D, Saitta F, Fessas D, Vitiello S, Malpezzi G, Aiello D, Ferrari S, Tondi D, Ponterini G, Paola Costi M. Intersite communication in dimeric enzymes highlighted by structural and thermodynamic analysis of didansyltyrosine binding to thymidylate synthases. Bioorg Chem 2024; 151:107663. [PMID: 39088977 DOI: 10.1016/j.bioorg.2024.107663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024]
Abstract
Intersite communication in dimeric enzymes, triggered by ligand binding, represents both a challenge and an opportunity in enzyme inhibition strategy. Though often understestimated, it can impact on the in vivo biological mechansim of an inhibitor and on its pharmacokinetics. Thymidylate synthase (TS) is a homodimeric enzyme present in almost all living organisms that plays a crucial role in DNA synthesis and cell replication. While its inhibition is a valid strategy in the therapy of several human cancers, designing specific inhibitors of bacterial TSs poses a challenge to the development of new anti-infective agents. N,O-didansyl-l-tyrosine (DDT) inhibits both Escherichia coli TS (EcTS) and Lactobacillus casei TS (LcTS). The available X-ray structure of the DDT:dUMP:EcTS ternary complex indicated an unexpected binding mode for DDT to EcTS, involving a rearrangement of the protein and addressing the matter of communication between the two active sites of an enzyme dimer. Combining molecular-level information on DDT binding to EcTS and LcTS extracted from structural and FRET-based fluorometric evidence with a thermodynamic characterization of these events obtained by fluorometric and calorimetric titrations, this study unveiled a negative cooperativity between the DDT bindings to the two monomers of each enzyme dimer. This result, complemented by the species-specific thermodynamic signatures of the binding events, implied that communication across the protein dimer was triggered by the first DDT binding. These findings could challenge the conventional understanding of TS inhibition and open the way for the development of novel TS inhibitors with a different mechanism of action and enhanced efficacy and specificity.
Collapse
Affiliation(s)
- Alberto Venturelli
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Giambattista Guaitoli
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; Evotec SE, Biophysic - Essener Bogen 7, 22419 Hamburg, Germany
| | - Davide Vanossi
- Dipartimento di Scienze Chimiche e Geologiche, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Francesca Saitta
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, DeFENS, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Dimitrios Fessas
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, DeFENS, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Simone Vitiello
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Giulia Malpezzi
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; Clinical and Experimental Medicine (CEM) PhD Program, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Daniele Aiello
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Stefania Ferrari
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Donatella Tondi
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Glauco Ponterini
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy.
| | - Maria Paola Costi
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy.
| |
Collapse
|
2
|
Malik MS, Alshareef HF, Alfaidi KA, Ather H, Abduljaleel Z, Hussein EM, Moussa Z, Ahmed SA. Exploring the untapped pharmacological potential of imidazopyridazines. RSC Adv 2024; 14:3972-3984. [PMID: 38288152 PMCID: PMC10823362 DOI: 10.1039/d3ra07280k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/10/2024] [Indexed: 01/31/2024] Open
Abstract
Imidazopyridazines are fused heterocycles, like purines, with a pyridazine ring replacing the pyrimidine ring in purines. Imidazopyridazines have been primarily studied for their kinase inhibition activity in the development of new anticancer and antimalarial agents. In addition to this, they have also been investigated for their anticonvulsant, antiallergic, antihistamine, antiviral, and antitubercular properties. Herein, we review the background and development of different imidazopyridazines as potential pharmacological agents. Moreover, the scope of this relatively less charted heterocyclic scaffold is also highlighted.
Collapse
Affiliation(s)
- M Shaheer Malik
- Department of Chemistry, Faculty of Science, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Hossa F Alshareef
- Department of Chemistry, Faculty of Science, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Khalid A Alfaidi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Hissana Ather
- Science and Technology Unit, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Zainularifeen Abduljaleel
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University (KKU) Abha 62529 Saudi Arabia
| | - Essam M Hussein
- Department of Chemistry, Faculty of Science, Umm Al-Qura University Makkah 21955 Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University P.O. Box 15551 Al Ain United Arab Emirates
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Science, Umm Al-Qura University Makkah 21955 Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
3
|
Malik MS, Alsantali RA, Alzahrani AY, Jamal QMS, Hussein EM, Alfaidi KA, Al-Rooqi MM, Obaid RJ, Alsharif MA, Adil SF, Jassas RS, Moussa Z, Ahmed SA. Multicomponent synthesis, cytotoxicity, and computational studies of novel imidazopyridazine-based N-phenylbenzamides. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Drug Discovery for Mycobacterium tuberculosis Using Structure-Based Computer-Aided Drug Design Approach. Int J Mol Sci 2021; 22:ijms222413259. [PMID: 34948055 PMCID: PMC8703488 DOI: 10.3390/ijms222413259] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022] Open
Abstract
Developing new, more effective antibiotics against resistant Mycobacterium tuberculosis that inhibit its essential proteins is an appealing strategy for combating the global tuberculosis (TB) epidemic. Finding a compound that can target a particular cavity in a protein and interrupt its enzymatic activity is the crucial objective of drug design and discovery. Such a compound is then subjected to different tests, including clinical trials, to study its effectiveness against the pathogen in the host. In recent times, new techniques, which involve computational and analytical methods, enhanced the chances of drug development, as opposed to traditional drug design methods, which are laborious and time-consuming. The computational techniques in drug design have been improved with a new generation of software used to develop and optimize active compounds that can be used in future chemotherapeutic development to combat global tuberculosis resistance. This review provides an overview of the evolution of tuberculosis resistance, existing drug management, and the design of new anti-tuberculosis drugs developed based on the contributions of computational techniques. Also, we show an appraisal of available software and databases on computational drug design with an insight into the application of this software and databases in the development of anti-tubercular drugs. The review features a perspective involving machine learning, artificial intelligence, quantum computing, and CRISPR combination with available computational techniques as a prospective pathway to design new anti-tubercular drugs to combat resistant tuberculosis.
Collapse
|
5
|
Boucherit H, Chikhi A, Bensegueni A, Merzoug A, Bolla JM. The Research of New Inhibitors of Bacterial Methionine Aminopeptidase by Structure Based Virtual Screening Approach of ZINC DATABASE and In Vitro Validation. Curr Comput Aided Drug Des 2021; 16:389-401. [PMID: 31244429 DOI: 10.2174/1573409915666190617165643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND The great emergence of multi-resistant bacterial strains and the low renewal of antibiotics molecules are leading human and veterinary medicine to certain therapeutic impasses. Therefore, there is an urgent need to find new therapeutic alternatives including new molecules in the current treatments of infectious diseases. Methionine aminopeptidase (MetAP) is a promising target for developing new antibiotics because it is essential for bacterial survival. OBJECTIVE To screen for potential MetAP inhibitors by in silico virtual screening of the ZINC database and evaluate the best potential lead molecules by in vitro studies. METHODS We have considered 200,000 compounds from the ZINC database for virtual screening with FlexX software to identify potential inhibitors against bacterial MetAP. Nine chemical compounds of the top hits predicted were purchased and evaluated in vitro. The antimicrobial activity of each inhibitor of MetAP was tested by the disc-diffusion assay against one Gram-positive (Staphylococcus aureus) and two Gram-negative (Escherichia coli & Pseudomonas aeruginosa) bacteria. Among the studied compounds, compounds ZINC04785369 and ZINC03307916 showed promising antibacterial activity. To further characterize their efficacy, the minimum inhibitory concentration was determined for each compound by the microdilution method which showed significant results. RESULTS These results suggest compounds ZINC04785369 and ZINC03307916 as promising molecules for developing MetAP inhibitors. CONCLUSION Furthermore, they could therefore serve as lead molecules for further chemical modifications to obtain clinically useful antibacterial agents.
Collapse
Affiliation(s)
- Hanane Boucherit
- Laboratory of Applied Biochemistry, Department of Biochemistry and Cellular and Molecular Biology, Faculty of Natural and Life Sciences, Mentouri Brothers University, Constantine 1, Algeria
| | - Abdelouahab Chikhi
- Laboratory of Applied Biochemistry, Department of Biochemistry and Cellular and Molecular Biology, Faculty of Natural and Life Sciences, Mentouri Brothers University, Constantine 1, Algeria
| | - Abderrahmane Bensegueni
- Laboratory of Applied Biochemistry, Department of Biochemistry and Cellular and Molecular Biology, Faculty of Natural and Life Sciences, Mentouri Brothers University, Constantine 1, Algeria
| | - Amina Merzoug
- Laboratory of Applied Biochemistry, Department of Biochemistry and Cellular and Molecular Biology, Faculty of Natural and Life Sciences, Mentouri Brothers University, Constantine 1, Algeria
| | | |
Collapse
|
6
|
Varela‐Rial A, Majewski M, De Fabritiis G. Structure based virtual screening: Fast and slow. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alejandro Varela‐Rial
- Acellera Labs Barcelona Spain
- Computational Science Laboratory Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB) Barcelona Spain
| | - Maciej Majewski
- Computational Science Laboratory Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB) Barcelona Spain
| | - Gianni De Fabritiis
- Computational Science Laboratory Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB) Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Barcelona Spain
| |
Collapse
|
7
|
Myllykallio H, Becker HF, Aleksandrov A. Mechanism of Naphthoquinone Selectivity of Thymidylate Synthase ThyX. Biophys J 2020; 119:2508-2516. [PMID: 33217379 DOI: 10.1016/j.bpj.2020.10.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022] Open
Abstract
Naphthoquinones (NQs) are natural and synthetic compounds with a wide range of biological activities commonly attributed to their redox activity and/or chemical reactivity. However, genetic and biochemical experiments have recently demonstrated that 2-hydroxy-NQs (2-OH-NQs) act as highly specific noncovalent inhibitors of the essential bacterial thymidylate synthase ThyX in a cellular context. We used biochemical experiments and molecular dynamics simulations to elucidate the selective inhibition mechanism of NQ inhibitors of ThyX from Mycobacterium tuberculosis (Mtb). Free energy simulations rationalized how ThyX recognizes the natural substrate dUMP in the N3-ionized form using an arginine, Arg199, in Mtb. The results further demonstrated that 2-OH-NQ, similar to dUMP, binds to ThyX in the ionized form, and the strong and selective binding of 2-OH-NQ to ThyX is also explained by electrostatic interactions with Arg199. The stronger binding of the close analog 5F-dUMP to ThyX and its inhibitory properties compared with dUMP were explained by the stronger acidity of the uracil N3 atom. Our results, therefore, revealed that the ionization of 2-OH-NQs drives their biological activities by mimicking the interactions with the natural substrate. Our observations encourage the rational design of optimized ThyX inhibitors that ultimately may serve as antibiotics.
Collapse
Affiliation(s)
- Hannu Myllykallio
- Laboratoire d'Optique et Biosciences (CNRS UMR7645, INSERM U1182), Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
| | - Hubert F Becker
- Laboratoire d'Optique et Biosciences (CNRS UMR7645, INSERM U1182), Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France; Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Alexey Aleksandrov
- Laboratoire d'Optique et Biosciences (CNRS UMR7645, INSERM U1182), Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
8
|
Miggiano R, Morrone C, Rossi F, Rizzi M. Targeting Genome Integrity in Mycobacterium Tuberculosis: From Nucleotide Synthesis to DNA Replication and Repair. Molecules 2020; 25:E1205. [PMID: 32156001 PMCID: PMC7179400 DOI: 10.3390/molecules25051205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) is the causative agent of tuberculosis (TB), an ancient disease which still today causes 1.4 million deaths worldwide per year. Long-term, multi-agent anti-tubercular regimens can lead to the anticipated non-compliance of the patient and increased drug toxicity, which in turn can contribute to the emergence of drug-resistant MTB strains that are not susceptible to first- and second-line available drugs. Hence, there is an urgent need for innovative antitubercular drugs and vaccines. A number of biochemical processes are required to maintain the correct homeostasis of DNA metabolism in all organisms. Here we focused on reviewing our current knowledge and understanding of biochemical and structural aspects of relevance for drug discovery, for some such processes in MTB, and particularly DNA synthesis, synthesis of its nucleotide precursors, and processes that guarantee DNA integrity and genome stability. Overall, the area of drug discovery in DNA metabolism appears very much alive, rich of investigations and promising with respect to new antitubercular drug candidates. However, the complexity of molecular events that occur in DNA metabolic processes requires an accurate characterization of mechanistic details in order to avoid major flaws, and therefore the failure, of drug discovery approaches targeting genome integrity.
Collapse
Affiliation(s)
- Riccardo Miggiano
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (C.M.); (F.R.)
| | | | | | - Menico Rizzi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (C.M.); (F.R.)
| |
Collapse
|
9
|
Pozzi C, Lopresti L, Tassone G, Mangani S. Targeting Methyltransferases in Human Pathogenic Bacteria: Insights into Thymidylate Synthase (TS) and Flavin-Dependent TS (FDTS). Molecules 2019; 24:molecules24081638. [PMID: 31027295 PMCID: PMC6514825 DOI: 10.3390/molecules24081638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 01/10/2023] Open
Abstract
In cells, thymidylate synthases provide the only de novo source of 2′-deoxythymidine-5′-monophosphate (dTMP), required for DNA synthesis. The activity of these enzymes is pivotal for cell survival and proliferation. Two main families of thymidylate synthases have been identified in bacteria, folate-dependent thymidylate synthase (TS) and flavin-dependent TS (FDTS). TS and FDTS are highly divergent enzymes, characterized by exclusive catalytic mechanisms, involving different sets of cofactors. TS and FDTS mechanisms of action have been recently revised, providing new perspectives for the development of antibacterial drugs targeting these enzymes. Nonetheless, some catalytic details still remain elusive. For bacterial TSs, half-site reactivity is still an open debate and the recent evidences are somehow controversial. Furthermore, different behaviors have been identified among bacterial TSs, compromising the definition of common mechanisms. Moreover, the redox reaction responsible for the regeneration of reduced flavin in FDTSs is not completely clarified. This review describes the recent advances in the structural and functional characterization of bacterial TSs and FDTSs and the current understanding of their mechanisms of action. Furthermore, the recent progresses in the development of inhibitors targeting TS and FDTS in human pathogenic bacteria are summarized.
Collapse
Affiliation(s)
- Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy⁻Department of Excellence 2018-2020, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.
| | - Ludovica Lopresti
- Department of Biotechnology, Chemistry and Pharmacy⁻Department of Excellence 2018-2020, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.
| | - Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy⁻Department of Excellence 2018-2020, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy⁻Department of Excellence 2018-2020, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|
10
|
Modranka J, Li J, Parchina A, Vanmeert M, Dumbre S, Salman M, Myllykallio H, Becker HF, Vanhoutte R, Margamuljana L, Nguyen H, Abu El-Asrar R, Rozenski J, Herdewijn P, De Jonghe S, Lescrinier E. Synthesis and Structure-Activity Relationship Studies of Benzo[b][1,4]oxazin-3(4H)-one Analogues as Inhibitors of Mycobacterial Thymidylate Synthase X. ChemMedChem 2019; 14:645-662. [PMID: 30702807 DOI: 10.1002/cmdc.201800739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/21/2019] [Indexed: 12/19/2022]
Abstract
Since the discovery of a flavin-dependent thymidylate synthase (ThyX or FDTS) that is absent in humans but crucial for DNA biosynthesis in a diverse group of pathogens, the enzyme has been pursued for the development of new antibacterial agents against Mycobacterium tuberculosis, the causative agent of the widespread infectious disease tuberculosis (TB). In response to a growing need for more effective anti-TB drugs, we have built upon our previous screening efforts and report herein an optimization campaign of a novel series of inhibitors with a unique inhibition profile. The inhibitors display competitive inhibition toward the methylene tetrahydrofolate cofactor of ThyX, enabling us to generate a model of the compounds bound to their target, thus offering insight into their structure-activity relationships.
Collapse
Affiliation(s)
- Jakub Modranka
- Medicinal Chemistry, Rega Institute for Medical Science, KU Leuven, Herestraat 49, PO Box 1030, 3000, Leuven, Belgium
| | - Jiahong Li
- Medicinal Chemistry, Rega Institute for Medical Science, KU Leuven, Herestraat 49, PO Box 1030, 3000, Leuven, Belgium
| | - Anastasia Parchina
- Medicinal Chemistry, Rega Institute for Medical Science, KU Leuven, Herestraat 49, PO Box 1030, 3000, Leuven, Belgium
| | - Michiel Vanmeert
- Medicinal Chemistry, Rega Institute for Medical Science, KU Leuven, Herestraat 49, PO Box 1030, 3000, Leuven, Belgium
| | - Shrinivas Dumbre
- Medicinal Chemistry, Rega Institute for Medical Science, KU Leuven, Herestraat 49, PO Box 1030, 3000, Leuven, Belgium
| | - Mayla Salman
- Laboratory of Optics and Biosciences, INSERM U 696-CNRS UMR 7645, Ecole Polytechnique, Route de Saclay, 91128, Palaiseau Cedex, France
| | - Hannu Myllykallio
- Laboratory of Optics and Biosciences, INSERM U 696-CNRS UMR 7645, Ecole Polytechnique, Route de Saclay, 91128, Palaiseau Cedex, France
| | - Hubert F Becker
- Laboratory of Optics and Biosciences, INSERM U 696-CNRS UMR 7645, Ecole Polytechnique, Route de Saclay, 91128, Palaiseau Cedex, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, 4 place Jussieu, 75005, Paris, France
| | - Roeland Vanhoutte
- Present affiliation: Laboratory of Chemical Biology, KU Leuven, O&N I, Herestraat 49, PO Box 802, 3000, Leuven, Belgium
| | - Lia Margamuljana
- Medicinal Chemistry, Rega Institute for Medical Science, KU Leuven, Herestraat 49, PO Box 1030, 3000, Leuven, Belgium
| | - Hoai Nguyen
- Medicinal Chemistry, Rega Institute for Medical Science, KU Leuven, Herestraat 49, PO Box 1030, 3000, Leuven, Belgium
| | - Rania Abu El-Asrar
- Medicinal Chemistry, Rega Institute for Medical Science, KU Leuven, Herestraat 49, PO Box 1030, 3000, Leuven, Belgium
| | - Jef Rozenski
- Medicinal Chemistry, Rega Institute for Medical Science, KU Leuven, Herestraat 49, PO Box 1030, 3000, Leuven, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Science, KU Leuven, Herestraat 49, PO Box 1030, 3000, Leuven, Belgium
| | - Steven De Jonghe
- Medicinal Chemistry, Rega Institute for Medical Science, KU Leuven, Herestraat 49, PO Box 1030, 3000, Leuven, Belgium.,Present affiliation: Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, PO Box 1043, 3000, Leuven, Belgium
| | - Eveline Lescrinier
- Medicinal Chemistry, Rega Institute for Medical Science, KU Leuven, Herestraat 49, PO Box 1030, 3000, Leuven, Belgium
| |
Collapse
|
11
|
Waman VP, Vedithi SC, Thomas SE, Bannerman BP, Munir A, Skwark MJ, Malhotra S, Blundell TL. Mycobacterial genomics and structural bioinformatics: opportunities and challenges in drug discovery. Emerg Microbes Infect 2019; 8:109-118. [PMID: 30866765 PMCID: PMC6334779 DOI: 10.1080/22221751.2018.1561158] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/03/2018] [Accepted: 12/09/2018] [Indexed: 01/08/2023]
Abstract
Of the more than 190 distinct species of Mycobacterium genus, many are economically and clinically important pathogens of humans or animals. Among those mycobacteria that infect humans, three species namely Mycobacterium tuberculosis (causative agent of tuberculosis), Mycobacterium leprae (causative agent of leprosy) and Mycobacterium abscessus (causative agent of chronic pulmonary infections) pose concern to global public health. Although antibiotics have been successfully developed to combat each of these, the emergence of drug-resistant strains is an increasing challenge for treatment and drug discovery. Here we describe the impact of the rapid expansion of genome sequencing and genome/pathway annotations that have greatly improved the progress of structure-guided drug discovery. We focus on the applications of comparative genomics, metabolomics, evolutionary bioinformatics and structural proteomics to identify potential drug targets. The opportunities and challenges for the design of drugs for M. tuberculosis, M. leprae and M. abscessus to combat resistance are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Asma Munir
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Marcin J. Skwark
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Sony Malhotra
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, UK
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Aleksandrov A, Myllykallio H. Advances and challenges in drug design against tuberculosis: application of in silico approaches. Expert Opin Drug Discov 2018; 14:35-46. [PMID: 30477360 DOI: 10.1080/17460441.2019.1550482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) remains the deadliest infectious disease in the world with one-third of the world's population thought to be infected. Over the years, TB mortality rate has been largely reduced; however, this progress has been threatened by the increasing appearance of multidrug-resistant Mtb. Considerable recent efforts have been undertaken to develop new generation antituberculosis drugs. Many of these attempts have relied on in silico approaches, which have emerged recently as powerful tools complementary to biochemical attempts. Areas covered: The authors review the status of pharmaceutical drug development against TB with a special emphasis on computational work. They focus on those studies that have been validated by in vitro and/or in vivo experiments, and thus, that can be considered as successful. The major goals of this review are to present target protein systems, to highlight how in silico efforts compliment experiments, and to aid future drug design endeavors. Expert opinion: Despite having access to all of the gene and protein sequences of Mtb, the search for new optimal treatments against this deadly pathogen are still ongoing. Together with the geometric growth of protein structural and sequence databases, computational methods have become a powerful technique accelerating the successful identification of new ligands.
Collapse
Affiliation(s)
- Alexey Aleksandrov
- a Laboratoire d'Optique et Biosciences (CNRS UMR7645, INSERM U1182) , Ecole Polytechnique , Palaiseau , France
| | - Hannu Myllykallio
- a Laboratoire d'Optique et Biosciences (CNRS UMR7645, INSERM U1182) , Ecole Polytechnique , Palaiseau , France
| |
Collapse
|
13
|
Gawad J, Bonde C. Decaprenyl-phosphoryl-ribose 2'-epimerase (DprE1): challenging target for antitubercular drug discovery. Chem Cent J 2018; 12:72. [PMID: 29936616 PMCID: PMC6015584 DOI: 10.1186/s13065-018-0441-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/19/2018] [Indexed: 11/10/2022] Open
Abstract
Tuberculosis has proved harmful to the entire history of mankind from past several decades. Decaprenyl-phosphoryl-ribose 2′-epimerase (DprE1) is a recent target which was identified in 2009 but unfortunately it is neither explored nor crossed phase II. In past several decades few targets were identified for effective antitubercular drug discovery. Resistance is the major problem for effective antitubercular drug discovery. Arabinose is constituent of mycobacterium cell wall. Biosynthesis of arabinose is FAD dependant two step epimerisation reaction which is catalysed by DprE1 and DprE2 flavoprotein enzymes. The current review is mainly emphases on DprE1 as a perspective challenge for further research.
Collapse
Affiliation(s)
- Jineetkumar Gawad
- Department of Pharmaceutical Chemistry, SVKM's NMIMS School of Pharmacy & Technology Management, Shirpur Dist, Dhule, Maharashtra, 425 405, India.
| | - Chandrakant Bonde
- Department of Pharmaceutical Chemistry, SVKM's NMIMS School of Pharmacy & Technology Management, Shirpur Dist, Dhule, Maharashtra, 425 405, India
| |
Collapse
|
14
|
Myllykallio H, Sournia P, Heliou A, Liebl U. Unique Features and Anti-microbial Targeting of Folate- and Flavin-Dependent Methyltransferases Required for Accurate Maintenance of Genetic Information. Front Microbiol 2018; 9:918. [PMID: 29867829 PMCID: PMC5954106 DOI: 10.3389/fmicb.2018.00918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022] Open
Abstract
Comparative genome analyses have led to the discovery and characterization of novel flavin- and folate-dependent methyltransferases that mainly function in DNA precursor synthesis and post-transcriptional RNA modification by forming (ribo) thymidylate and its derivatives. Here we discuss the recent literature on the novel mechanistic features of these enzymes sometimes referred to as “uracil methyltransferases,” albeit we prefer to refer to them as (ribo) thymidylate synthases. These enzyme families attest to the convergent evolution of nucleic acid methylation. Special focus is given to describing the unique characteristics of these flavin- and folate-dependent enzymes that have emerged as new models for studying the non-canonical roles of reduced flavin co-factors (FADH2) in relaying carbon atoms between enzyme substrates. This ancient enzymatic methylation mechanism with a very wide phylogenetic distribution may be more commonly used for biological methylation reactions than previously anticipated. This notion is exemplified by the recent discovery of additional substrates for these enzymes. Moreover, similar reaction mechanisms can be reversed by demethylases, which remove methyl groups e.g., from human histones. Future work is now required to address whether the use of different methyl donors facilitates the regulation of distinct methylation reactions in the cell. It will also be of great interest to address whether the low activity flavin-dependent thymidylate synthases ThyX represent ancestral enzymes that were eventually replaced by the more active thymidylate synthases of the ThyA family to facilitate the maintenance of larger genomes in fast-growing microbes. Moreover, we discuss the recent efforts from several laboratories to identify selective anti-microbial compounds that target flavin-dependent thymidylate synthase ThyX. Altogether we underline how the discovery of the alternative flavoproteins required for methylation of DNA and/or RNA nucleotides, in addition to providing novel targets for antibiotics, has provided new insight into microbial physiology and virulence.
Collapse
Affiliation(s)
- Hannu Myllykallio
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Palaiseau, France
| | - Pierre Sournia
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Palaiseau, France
| | - Alice Heliou
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Palaiseau, France.,Laboratoire d'Informatique de l'École Polytechnique, Ecole Polytechnique, Centre National de la Recherche Scientifique, Université Paris-Saclay, Palaiseau, France
| | - Ursula Liebl
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Palaiseau, France
| |
Collapse
|
15
|
Yu J, Cai C. Photocatalytic oxidative cyclization of α-halo hydrazones with tetrahydroisoquinoline for construction of isoquino[3,4-a][1,2,4]-triazines. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Karunaratne K, Luedtke N, Quinn DM, Kohen A. Flavin-dependent thymidylate synthase: N5 of flavin as a Methylene carrier. Arch Biochem Biophys 2017; 632:11-19. [PMID: 28821425 DOI: 10.1016/j.abb.2017.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/09/2017] [Accepted: 08/12/2017] [Indexed: 10/19/2022]
Abstract
Thymidylate is synthesized de novo in all living organisms for replication of genomes. The chemical transformation is reductive methylation of deoxyuridylate at C5 to form deoxythymidylate. All eukaryotes including humans complete this well-understood transformation with thymidylate synthase utilizing 6R-N5-N10-methylene-5,6,7,8-tetrahydrofolate as both a source of methylene and a reducing hydride. In 2002, flavin-dependent thymidylate synthase was discovered as a new pathway for de novo thymidylate synthesis. The flavin-dependent catalytic mechanism is different than thymidylate synthase because it requires flavin as a reducing agent and methylene transporter. This catalytic mechanism is not well-understood, but since it is known to be very different from thymidylate synthase, there is potential for mechanism-based inhibitors that can selectively inhibit the flavin-dependent enzyme to target many human pathogens with low host toxicity.
Collapse
Affiliation(s)
| | - Nicholas Luedtke
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Daniel M Quinn
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
17
|
Borsari C, Ferrari S, Venturelli A, Costi MP. Target-based approaches for the discovery of new antimycobacterial drugs. Drug Discov Today 2017; 22:576-584. [DOI: 10.1016/j.drudis.2016.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/07/2016] [Accepted: 11/15/2016] [Indexed: 12/24/2022]
|
18
|
Zhao HW, Pang HL, Zhao YD, Liu YY, Zhao LJ, Chen XQ, Song XQ, Feng NN, Du J. Construction of 2,3,4,5-tetrahydro-1,2,4-triazines via [4 + 2] cycloaddition of α-halogeno hydrazones to imines. RSC Adv 2017. [DOI: 10.1039/c6ra27767e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In the presence of sodium carbonate, the [4 + 2] cycloaddition of α-halogeno hydrazones to imines proceeded readily, and furnished 2,3,4,5-tetrahydro-1,2,4-triazines in moderate to high chemical yields.
Collapse
Affiliation(s)
- Hong-Wu Zhao
- College of Life Science and Bio-engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Hai-Liang Pang
- College of Life Science and Bio-engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Yu-Di Zhao
- College of Life Science and Bio-engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Yue-Yang Liu
- College of Life Science and Bio-engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Li-Jiao Zhao
- College of Life Science and Bio-engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Xiao-Qin Chen
- College of Life Science and Bio-engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Xiu-Qing Song
- College of Life Science and Bio-engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Ning-Ning Feng
- College of Life Science and Bio-engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Juan Du
- College of Life Science and Bio-engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| |
Collapse
|