1
|
Zhang L, Ke D, Li Y, Zhang H, Zhang X, Wang S, Ni S, Peng B, Zeng H, Hou T, Du Y, Pan P, Yu Y, Chen W. Design and synthesis of 7-membered lactam fused hydroxypyridinones as potent metal binding pharmacophores (MBPs) for inhibiting influenza virus PA N endonuclease. Eur J Med Chem 2024; 276:116639. [PMID: 38964259 DOI: 10.1016/j.ejmech.2024.116639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Since influenza virus RNA polymerase subunit PAN is a dinuclear Mn2+ dependent endonuclease, metal-binding pharmacophores (MBPs) with Mn2+ coordination has been elucidated as a promising strategy to develop PAN inhibitors for influenza treatment. However, few attentions have been paid to the relationship between the optimal arrangement of the donor atoms in MBPs and anti-influenza A virus (IAV) efficacy. Given that, the privileged hydroxypyridinones fusing a seven-membered lactam ring with diverse side chains, chiral centers or cyclic systems were designed and synthesized. A structure-activity relationship study resulted in a hit compound 16l (IC50 = 2.868 ± 0.063 μM against IAV polymerase), the seven-membered lactam ring of which was fused a pyrrolidine ring. Further optimization of the hydrophobic binding groups on 16l afforded a lead compound (R, S)-16s, which exhibited a 64-fold more potent inhibitory activity (IC50 = 0.045 ± 0.002 μM) toward IAV polymerase. Moreover, (R, S)-16s demonstrated a potent anti-IAV efficacy (EC50 = 0.134 ± 0.093 μM) and weak cytotoxicity (CC50 = 15.35 μM), indicating the high selectivity of (R, S)-16s. Although the lead compound (R, S)-16s exhibited a little weaker activity than baloxavir, these findings illustrated the utility of a metal coordination-based strategy in generating novel MBPs with potent anti-influenza activity.
Collapse
Affiliation(s)
- Lei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Di Ke
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China
| | - Yuting Li
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Hui Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xi Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, China
| | - Sihan Wang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Shaokai Ni
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Bo Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Huixuan Zeng
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yushen Du
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Peichen Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yongping Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, China; School of Pharmacy, Xinjiang Medical University, Urumqi, 830054, China
| | - Wenteng Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, China.
| |
Collapse
|
2
|
Zhang W, Ma Z, Han X, Li G. Design, synthesis and biological activity of α-nitrile substituted guaiazulene-based chalcone derivatives. Fitoterapia 2024; 178:106151. [PMID: 39098736 DOI: 10.1016/j.fitote.2024.106151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
In present study, seventeen α-nitrile substituted guaiazulene-based chalcone derivatives including twelve new were designed, synthesized, and assayed for antiviral, cytotoxicity and signal pathway activities. All derivatives showed potential antiviral activity towards influenza virus or herpes simplex virus (HSV), 7 g with the substitution of nitro group showed strong effects towards H1N1 virus at 30 μM with inhibitory rate of 66.0%, 7o with thiophene exhibited potent anti HSV-1 activities with inhibitory rate of 65.8%. Moreover, several compounds exhibited inhibitory effects on tumor cells and hypoxia-inducible factor-1 (HIF1) signaling pathways. These results showed that α-nitrile substituted guaiazulene-based chalcones offered a promising framework for the further development of new highly efficient drugs.
Collapse
Affiliation(s)
- Wenjie Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zongchen Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiao Han
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
3
|
Ma X, Wang X, Chen F, Zou W, Ren J, Xin L, He P, Liang J, Xu Z, Dong C, Lan K, Wu S, Zhou HB. Novel Acyl Thiourea-Based Hydrophobic Tagging Degraders Exert Potent Anti-Influenza Activity through Two Distinct Endonuclease Polymerase Acidic-Targeted Degradation Pathways. J Med Chem 2024; 67:8791-8816. [PMID: 38775356 DOI: 10.1021/acs.jmedchem.4c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The spread of the influenza virus has caused devastating pandemics and huge economic losses worldwide. Antiviral drugs with diverse action modes are urgently required to overcome the challenges of viral mutation and drug resistance, and targeted protein degradation strategies constitute excellent candidates for this purpose. Herein, the first degradation of the influenza virus polymerase acidic (PA) protein using small-molecule degraders developed by hydrophobic tagging (HyT) technology to effectively combat the influenza virus was reported. The SAR results revealed that compound 19b with Boc2-(L)-Lys demonstrated excellent inhibitory activity against A/WSN/33/H1N1 (EC50 = 0.015 μM) and amantadine-resistant strain (A/PR/8/H1N1), low cytotoxicity, high selectivity, substantial degradation ability, and good drug-like properties. Mechanistic studies demonstrated that the proteasome system and autophagic lysosome pathway were the potential drivers of these HyT degraders. Thus, this study provides a powerful tool for investigating the targeted degradation of influenza virus proteins and for antiviral drug development.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xueyun Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Feifei Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenting Zou
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Junrui Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lilan Xin
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Pei He
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jinsen Liang
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhichao Xu
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Chune Dong
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shuwen Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hai-Bing Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, Provincial Key Laboratory of Developmentally Originated Disease, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University, Wuhan 430071, China
| |
Collapse
|
4
|
Malik S, Asghar M, Waheed Y. Outlining recent updates on influenza therapeutics and vaccines: A comprehensive review. Vaccine X 2024; 17:100452. [PMID: 38328274 PMCID: PMC10848012 DOI: 10.1016/j.jvacx.2024.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/27/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Influenza virus has presented a considerable healthcare challenge during the past years, particularly in vulnerable groups with compromised immune systems. Therapeutics and vaccination have always been in research annals since the spread of influenza. Efforts have been going on to develop an antiviral therapeutic approach that could assist in better disease management and reduce the overall disease complexity, resistance development, and fatality rates. On the other hand, vaccination presents a chance for effective, long-term, cost-benefit, and preventive response against the morbidity and mortality associated with the influenza. However, the issues of resistance development, strain mutation, antigenic variability, and inability to cure wide-spectrum and large-scale strains of the virus by available vaccines remain there. The article gathers the updated data for the therapeutics and available influenza vaccines, their mechanism of action, shortcomings, and trials under clinical experimentation. A methodological approach has been adopted to identify the prospective therapeutics and available vaccines approved and within the clinical trials against the influenza virus. Review contains influenza therapeutics, including traditional and novel antiviral drugs and inhibitor therapies against influenza virus as well as research trials based on newer drug combinations and latest technologies such as nanotechnology and organic and plant-based natural products. Most recent development of influenza vaccine has been discussed including some updates on traditional vaccination protocols and discussion on next-generation and upgraded novel technologies. This review will help the readers to understand the righteous approach for dealing with influenza virus infection and for deducing futuristic approaches for novel therapeutic and vaccine trials against Influenza.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi, Punjab 46000, Pakistan
| | - Muhammad Asghar
- Department of Biology, Lund University, Sweden
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
5
|
Ruan J, Lu K, He J, Chen Y, Li B, Wan X, Chen X, Li S, Liu S, Song G. Optimization and biological evaluation of l-DOPA derivatives as potent influenza PA N endonuclease inhibitors with multi-site binding characteristics. Bioorg Chem 2024; 144:107139. [PMID: 38262086 DOI: 10.1016/j.bioorg.2024.107139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Emerging and potential influenza pandemics still are an enormous worldwide public health challenge. The PAN endonuclease has been proved to be a promising target for anti-influenza drug design. Here, we report the discovery and optimization of potent Y-shaped PAN inhibitors featuring multi-site binding characteristics with l-DOPA as a starting point. We systematically modified the hit 1 bearing two-binding characteristics based on structure-based rational design combined with multisite binding and conformational constraint strategies, generating four families of l-DOPA derivatives for SARs analysis. Among these substances, N, 3-di-substituted 1, 2, 3, 4-tetrahydroisoquinoline derivative T-31 displayed superior properties as a lead PAN endonuclease inhibitor and antiviral agent. The lead T-31 inhibited PAN endonuclease activity with an IC50 value of 0.15 μM and showed broad and submicromolar anti-influenza potency in cell-based assays. More importantly, T-31 could simultaneously target both influenza HA and the RdRp complex, thus interfering with virus entry into host cells and viral replication. This study offers a set of novel PAN endonuclease inhibitors with multi-site binding characteristics starting from the l-DOPA skeleton.
Collapse
Affiliation(s)
- Jiaai Ruan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Kunyu Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianfu He
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yihao Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Baixi Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xin Wan
- Huizhou Health Sciences Polytechnic, Huizhou 516025, China
| | - Xiao Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Sumei Li
- Department of Human Anatomy, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou 510632, China.
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, 510515, China.
| | - Gaopeng Song
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Jia H, Hu L, Zhang J, Huang X, Jiang Y, Dong G, Liu C, Liu X, Kim M, Zhan P. Recent advances of phenotypic screening strategies in the application of anti-influenza virus drug discovery. RSC Med Chem 2024; 15:70-80. [PMID: 38283223 PMCID: PMC10809416 DOI: 10.1039/d3md00513e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/07/2023] [Indexed: 01/30/2024] Open
Abstract
Seasonal and pandemic influenza virus infections not only pose a serious threat to human health but also cause tremendous economic losses and social burdens. However, due to the inherent high variability of influenza virus RNA genomes, the existing anti-influenza virus drugs have been frequently faced with the clinical issue of emerging drug-resistant mutants. Therefore, there is an urgent need to develop efficient and broad-spectrum antiviral agents against wild-type and drug-resistant mutant strains. Phenotypic screening has been widely employed as a reliable strategy to evaluate antiviral efficacy of novel agents independent of their modes of action, either directly targeting viral proteins or regulating cellular factors involved in the virus life cycle. Here, from the point of view of medicinal chemistry, we review the research progress of phenotypic screening strategies by focusing direct acting antivirals against influenza virus. It could provide scientific insights into discovery of a distinctive class of therapeutic candidates that ensure high efficiency but low cytotoxicity, and address issues from circulation of drug-resistant influenza viruses in the future.
Collapse
Affiliation(s)
- Huinan Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
| | - Lide Hu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
| | - Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
| | - Xing Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
| | - Yuanmin Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
| | - Guanyu Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
| | - Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
- Suzhou Research Institute of Shandong University Room 607, Building B of NUSP, No. 388 Ruoshui Road, SIP Suzhou Jiangsu 215123 P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT) Daejeon 34114 Korea
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
| |
Collapse
|
7
|
Liu X, Xu Z, Liang J, Xu T, Zou W, Zhu L, Wu Y, Dong C, Lan K, Wu S, Zhou HB. Rational design and optimization of acylthioureas as novel potent influenza virus non-nucleoside polymerase inhibitors. Eur J Med Chem 2023; 259:115678. [PMID: 37531746 DOI: 10.1016/j.ejmech.2023.115678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/12/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
Evidence suggests that rapidly evolving virus subvariants risk rendering current vaccines and anti-influenza drugs ineffective. Hence, exploring novel scaffolds or new targets of anti-influenza drugs is of great urgency. Herein, we report the discovery of a series of acylthiourea derivatives produced via a scaffold-hopping strategy as potent antiviral agents against influenza A and B subtypes. The most effective compound 10m displayed subnanomolar activity against H1N1 proliferation (EC50 = 0.8 nM) and exhibited inhibitory activity toward other influenza strains, including influenza B virus and H1N1 variant (H1N1, H274Y). Additionally, druggability evaluation revealed that 10m exhibited favorable pharmacokinetic properties and was metabolically stable in liver microsome preparations from three different species as well as in human plasma. In vitro and in vivo toxicity studies confirmed that 10m demonstrated a high safety profile. Furthermore, 10m exhibited satisfactory antiviral activity in a lethal influenza virus mouse model. Moreover, mechanistic studies indicated that these acylthiourea derivatives inhibited influenza virus proliferation by targeting influenza virus RNA-dependent RNA polymerase. Thus, 10m is a potential lead compound for the further exploration of treatment options for influenza.
Collapse
Affiliation(s)
- Xinjin Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhichao Xu
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jinsen Liang
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ting Xu
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wenting Zou
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lijun Zhu
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yihe Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Chune Dong
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Shuwen Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Hai-Bing Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, Provincial Key Laboratory of Developmentally Originated Disease, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
8
|
Borgelt L, Wu P. Targeting Ribonucleases with Small Molecules and Bifunctional Molecules. ACS Chem Biol 2023; 18:2101-2113. [PMID: 37382390 PMCID: PMC10594538 DOI: 10.1021/acschembio.3c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023]
Abstract
Ribonucleases (RNases) cleave and process RNAs, thereby regulating the biogenesis, metabolism, and degradation of coding and noncoding RNAs. Thus, small molecules targeting RNases have the potential to perturb RNA biology, and RNases have been studied as therapeutic targets of antibiotics, antivirals, and agents for autoimmune diseases and cancers. Additionally, the recent advances in chemically induced proximity approaches have led to the discovery of bifunctional molecules that target RNases to achieve RNA degradation or inhibit RNA processing. Here, we summarize the efforts that have been made to discover small-molecule inhibitors and activators targeting bacterial, viral, and human RNases. We also highlight the emerging examples of RNase-targeting bifunctional molecules and discuss the trends in developing such molecules for both biological and therapeutic applications.
Collapse
Affiliation(s)
- Lydia Borgelt
- Chemical Genomics Centre, Max
Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, Dortmund 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, Dortmund 44227, Germany
| | | |
Collapse
|
9
|
Ogasawara S, Ebashi S. RNA Overwriting of Cellular mRNA by Cas13b-Directed RNA-Dependent RNA Polymerase of Influenza A Virus. Int J Mol Sci 2023; 24:10000. [PMID: 37373148 DOI: 10.3390/ijms241210000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Dysregulation of mRNA processing results in diseases such as cancer. Although RNA editing technologies attract attention as gene therapy for repairing aberrant mRNA, substantial sequence defects arising from mis-splicing cannot be corrected by existing techniques using adenosine deaminase acting on RNA (ADAR) due to the limitation of adenosine-to-inosine point conversion. Here, we report an RNA editing technology called "RNA overwriting" that overwrites the sequence downstream of a designated site on the target RNA by utilizing the RNA-dependent RNA polymerase (RdRp) of the influenza A virus. To enable RNA overwriting within living cells, we developed a modified RdRp by introducing H357A and E361A mutations in the polymerase basic 2 of RdRp and fusing the C-terminus with catalytically inactive Cas13b (dCas13b). The modified RdRp knocked down 46% of the target mRNA and further overwrote 21% of the mRNA. RNA overwriting is a versatile editing technique that can perform various modifications, including addition, deletion, and mutation introduction, and thus allow for repair of the aberrant mRNA produced by dysregulation of mRNA processing, such as mis-splicing.
Collapse
Affiliation(s)
- Shinzi Ogasawara
- Department of Biology, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| | - Sae Ebashi
- Department of Biology, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| |
Collapse
|
10
|
Medicinal chemistry strategies in the discovery and optimization of HBV core protein allosteric modulators (2018–2022 update). CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
11
|
Respiratory Syncytial Virus Infection: Treatments and Clinical Management. Vaccines (Basel) 2023; 11:vaccines11020491. [PMID: 36851368 PMCID: PMC9962240 DOI: 10.3390/vaccines11020491] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/29/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a major healthcare concern, especially for immune-compromised individuals and infants below 5 years of age. Worldwide, it is known to be associated with incidences of morbidity and mortality in infants. Despite the seriousness of the issue and continuous rigorous scientific efforts, no approved vaccine or available drug is fully effective against RSV. The purpose of this review article is to provide insights into the past and ongoing efforts for securing effective vaccines and therapeutics against RSV. The readers will be able to confer the mechanism of existing therapies and the loopholes that need to be overcome for future therapeutic development against RSV. A methodological approach was applied to collect the latest data and updated results regarding therapeutics and vaccine development against RSV. We outline the latest throughput vaccination technologies and prophylactic development efforts linked with RSV. A range of vaccination approaches with the already available vaccine (with limited use) and those undergoing trials are included. Moreover, important drug regimens used alone or in conjugation with adjuvants or vaccines are also briefly discussed. After reading this article, the audience will be able to understand the current standing of clinical management in the form of the vaccine, prophylactic, and therapeutic candidates against RSV. An understanding of the biological behavior acting as a reason behind the lack of effective therapeutics against RSV will also be developed. The literature indicates a need to overcome the limitations attached to RSV clinical management, drugs, and vaccine development that could be explained by dealing with the challenges of current study designs with continuous improvement and further work and approval on novel therapeutic applications.
Collapse
|
12
|
Liao Y, Ye Y, Liu M, Liu Z, Wang J, Li B, Huo L, Zhuang Y, Chen L, Chen J, Gao Y, Ning X, Li S, Liu S, Song G. Identification of N- and C-3-Modified Laudanosoline Derivatives as Novel Influenza PA N Endonuclease Inhibitors. J Med Chem 2023; 66:188-219. [PMID: 36521178 DOI: 10.1021/acs.jmedchem.2c00857] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Influenza PAN inhibitors are of particular importance in current efforts to develop a new generation of antiviral drugs due to the growing emergence of highly pathogenic influenza viruses and the resistance to existing antiviral inhibitors. Herein, we design and synthesize a set of 1,3-cis-N-substituted-1,2,3,4-tetrahydroisoquinoline derivatives to enhance their potency by further exploiting the pockets 3 and 4 in the PAN endonuclease based on the hit d,l-laudanosoline. Particularly, the lead compound 35 exhibited potent and broad anti-influenza virus effects with EC50 values ranging from 0.43 to 1.12 μM in vitro and good inhibitory activity in a mouse model. Mechanistic studies demonstrated that 35 could bind tightly to the PAN endonuclease of RNA-dependent RNA polymerase, thus blocking the viral replication to exert antiviral activity. Overall, our study might establish the importance of 1,2,3,4-tetrahydroisoquinoline-6,7-diol-based derivatives for the development of novel PAN inhibitors of influenza viruses.
Collapse
Affiliation(s)
- Yixian Liao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yilu Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mingjian Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhihao Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jinshen Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Baixi Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Lijian Huo
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yilian Zhuang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Liye Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yongfeng Gao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyun Ning
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Sumei Li
- College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou 510632, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, China
| | - Gaopeng Song
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
13
|
Structural and Biochemical Basis for Development of Diketo Acid Inhibitors Targeting the Cap-Snatching Endonuclease of the Ebinur Lake Virus (Order: Bunyavirales). J Virol 2022; 96:e0217321. [PMID: 35266805 DOI: 10.1128/jvi.02173-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bunyavirales contain many important human pathogens that lack an antiviral therapy. The cap-snatching endonuclease (EN) of segmented negative-strand RNA viruses is an attractive target for broad-spectrum antivirals due to its essential role in initiating viral transcription. L-742,001, a previously reported diketo acid inhibitor against influenza virus EN, demonstrated potent EN inhibition and antiviral activity on various bunyaviruses. However, the precise inhibitory mechanism of the compound is still poorly understood. We recently characterized a highly active EN from Ebinur Lake virus (EBIV), a newly identified member of the Orthobunyavirus genus, and obtained its high-resolution structures, paving the way for structure-guided inhibitor development. Here, nine L-742,001 derivatives were designed and synthesized de novo, and their structure-activity relationship with EBIV EN was studied. In vitro biochemical data showed that the compounds inhibited the EBIV EN activity with different levels and could be divided into three categories. Five representative compounds were selected for further cell-based antiviral assay, and the results largely agreed with those of the EN assays. Furthermore, the precise binding modes of L-742,001 and its derivatives in EN were revealed by determining the high-resolution crystal structures of EN-inhibitor complexes, which suggested that the p-chlorobenzene is essential for the inhibitory activity and the flexible phenyl has the greatest exploration potential. This study provides an important basis for the structure-based design and optimization of inhibitors targeting EN of segmented negative-strand RNA viruses. IMPORTANCE The Bunyavirales contain many important human pathogens such as Crimean-Congo hemorrhagic fever virus and Lassa virus that pose serious threats to public health; however, currently there are no specific antiviral drugs against these viruses. The diketo acid inhibitor L-742,001 is a potential drug as it inactivates the cap-snatching endonuclease (EN) encoded by bunyaviruses. Here, we designed and synthesized nine L-742,001 derivatives and assessed the structure-activity relationship using EN of the newly identified Ebinur Lake virus (EBIV) as a research model. Our results revealed that the p-chlorobenzene of this broad-spectrum EN inhibitor is crucial for the inhibitory activity and the flexible phenyl "arm" has the best potential for further optimization. As cap-snatching ENs are present not only in bunyaviruses but also in influenza viruses, our data provide important guidelines for the development of novel and more potent diketo acid-based antiviral drugs against those viruses.
Collapse
|
14
|
Karges J, Stokes RW, Cohen SM. Computational Prediction of the Binding Pose of Metal-Binding Pharmacophores. ACS Med Chem Lett 2022; 13:428-435. [PMID: 35300086 PMCID: PMC8919381 DOI: 10.1021/acsmedchemlett.1c00584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/14/2022] [Indexed: 01/22/2023] Open
Abstract
Computational modeling of inhibitors for metalloenzymes in virtual drug development campaigns has proven challenging. To overcome this limitation, a technique for predicting the binding pose of metal-binding pharmacophores (MBPs) is presented. Using a combination of density functional theory (DFT) calculations and docking using a genetic algorithm, inhibitor binding was evaluated in silico and compared with inhibitor-enzyme cocrystal structures. The predicted binding poses were found to be consistent with the cocrystal structures. The computational strategy presented represents a useful tool for predicting metalloenzyme-MBP interactions.
Collapse
Affiliation(s)
- Johannes Karges
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Ryjul W Stokes
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
15
|
Chen W, Shao J, Ying Z, Du Y, Yu Y. Approaches for discovery of small-molecular antivirals targeting to influenza A virus PB2 subunit. Drug Discov Today 2022; 27:1545-1553. [PMID: 35247593 DOI: 10.1016/j.drudis.2022.02.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/03/2022]
Abstract
Influenza is an acute respiratory infectious disease caused by influenza virus, leading to huge morbidity and mortality in humans worldwide. Despite the availability of antivirals in the clinic, the emergence of resistant strains calls for antivirals with novel mechanisms of action. The PB2 subunit of the influenza A virus polymerase is a promising target because of its vital role in the 'cap-snatching' mechanism. In this review, we summarize the technologies and medicinal chemistry strategies for hit identification, hit-to-lead and lead-to-candidate optimization, and current challenges in PB2 inhibitor development, as well as offering insights for the fight against drug resistance.
Collapse
Affiliation(s)
- Wenteng Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jiaan Shao
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Zhimin Ying
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yushen Du
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China(1)
| | - Yongping Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Liu X, Liang J, Yu Y, Han X, Yu L, Chen F, Xu Z, Chen Q, Jin M, Dong C, Zhou HB, Lan K, Wu S. Discovery of Aryl Benzoyl Hydrazide Derivatives as Novel Potent Broad-Spectrum Inhibitors of Influenza A Virus RNA-Dependent RNA Polymerase (RdRp). J Med Chem 2022; 65:3814-3832. [PMID: 35212527 DOI: 10.1021/acs.jmedchem.1c01257] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Influenza A viruses possess a high antigenic shift, and the approved anti-influenza drugs are extremely limited, which makes the development of novel anti-influenza drugs for the clinical treatment and prevention of influenza outbreaks imperative. Herein, we report a series of novel aryl benzoyl hydrazide analogs as potent anti-influenza agents. Particularly, analogs 10b, 10c, 10g, 11p, and 11q exhibited potent inhibitory activity against the avian H5N1 flu strain with EC50 values ranging from 0.009 to 0.034 μM. Moreover, compound 11q exhibited nanomolar antiviral effects against both the H1N1 virus and Flu B virus and possessed good oral bioavailability and inhibitory activity against influenza A virus in a mouse model. Preliminary mechanistic studies suggested that these compounds exert anti-influenza virus effects mainly by interacting with the PB1 subunit of RNA-dependent RNA polymerase (RdRp). These results revealed that 11q has the potential to become a potent clinical candidate to combat seasonal influenza and influenza pandemics.
Collapse
Affiliation(s)
- Xinjin Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jinsen Liang
- Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Yongshi Yu
- Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xin Han
- Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Lei Yu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Feifei Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhichao Xu
- Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Qi Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengyu Jin
- Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Chune Dong
- Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Hai-Bing Zhou
- Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ke Lan
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shuwen Wu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
17
|
Zhang C, Xiang JJ, Zhao J, Meng YL, Zhang FR, Jin Z, Shaw PC, Liu XP, Hu C. Design, synthesis, and biological activity of a novel series of 2-ureidonicotinamide derivatives against influenza A virus. Curr Med Chem 2022; 29:4610-4627. [PMID: 35209813 DOI: 10.2174/0929867329666220224114627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Viral resistance to existing inhibitors and the time-dependent effectiveness of neuraminidase inhibitors have limited the number of antivirals that can be used for prophylaxis and therapeutic treatment of severe influenza infection. Thus, there is an urgent need to develop new drugs to prevent and treat influenza infection. OBJECTIVE The aim of this study was to design and synthesize a novel series of 2-ureidonicotinamide derivatives, and evaluate their anti-IAV activities. Furthermore, we predicted the abilities of these compounds inhibiting PA-PB1 subunit and forecasted the docking poses of these compounds with RNA polymerase protein (PDB ID 3CM8). METHOD The novel designed compounds were synthesized using classical methods of organic chemistry and tested in vitro for their abilities inhibiting RNP and against influenza A virus. In addition, the 23 synthesized molecules were subjected to the generated pharmacophore Hypo1 to forecast the activity target PA-PB1 subunit of RNA polymerase. The ADMET pharmacokinetic parameters were calculated by the ADMET modules in Discovery Studio 2016. The docking results helped us to demonstrate the possible interactions between these compounds with 3CM8. RESULTS The synthesized 2-ureidonicotinamide derivatives were characterized as potent anti-influenza inhibitors. The target compounds 7b and 7c demonstrated significant antiviral activities, and could be considered as novel lead compounds of antiviral inhibitors. In addition, compound 7b revealed suitable ADME properties expressed, and might be a significant RNA polymerase inhibitor targeting PA-PB1 subunit based on the predictable results and the docking results. CONCLUSION This study revealed a novel series of compounds that might be useful in the search for an effective drug against influenza virus.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jun-Jie Xiang
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jing Zhao
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan-Li Meng
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fu-Rong Zhang
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhe Jin
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Pang-Chui Shaw
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao-Ping Liu
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun Hu
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
18
|
Zhan P. Meet the Editorial Board Member. Curr Med Chem 2022. [DOI: 10.2174/092986732905220211160202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Silva LR, da Silva-Júnior EF. Multi-Target Approaches of Epigallocatechin-3-O-gallate (EGCG) and its Derivatives Against Influenza Viruses. Curr Top Med Chem 2022; 22:1485-1500. [PMID: 35086449 DOI: 10.2174/1568026622666220127112056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/13/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Influenza viruses (INFV), Orthomyxoviridae family, are mainly transmitted among humans, via aerosols or droplets from the respiratory secretions. However, fomites could be a potential transmission pathway. Annually, seasonal INFV infections account for 290-650 thousand deaths worldwide. Currently, there are two classes of approved drugs to treat INFV infections, being neuraminidase (NA) inhibitors and blockers of matrix-2 (M2) ion channel. However, cases of resistance have been observed for both chemical classes, reducing the efficacy of treatment. The emergence of influenza outbreaks and pandemics calls for new antiviral molecules more effective and that could overcome the current resistance to anti-influenza drugs. In this context, polyphenolic compounds are found in various plants and these have displayed different multi-target approaches against diverse pathogens. Among these, green tea (Camellia sinensis) catechins, in special epigallocatechin-3-O-gallate (EGCG), have demonstrated significant activities against the two most relevant human INFV, subtypes A and lineages B. In this sense, EGCG has been found a promising multi-target agent against INFV since can act inhibiting NA, hemagglutination (HA), RNA-dependent RNA polymerase (RdRp), and viral entry/adsorption. In general, the lack of knowledge about potential multi-target natural products prevents an adequate exploration of them, increasing the time for developing multi-target drugs. Then, this review aimed to compile to most relevant studies showing the anti-INFV effects of EGCG and its derivatives, which could become antiviral drug prototypes in the future.
Collapse
Affiliation(s)
- Leandro Rocha Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Melo Mota Avenue, 57072-970, AC Simões campus, Maceió, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Melo Mota Avenue, 57072-970, AC Simões campus, Maceió, Brazil
| |
Collapse
|
20
|
Ogasawara S, Yamada A. RNA Editing with Viral RNA-Dependent RNA Polymerase. ACS Synth Biol 2022; 11:46-52. [PMID: 34978432 DOI: 10.1021/acssynbio.1c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RNA editing is currently attracting attention as a method for editing genetic information without injury to the genome. The most common approach to edit RNA sequences involves the induction of an A-to-I change by adenosine deaminase acting on RNA (ADAR). However, this method only allows point editing. Here, we report a highly flexible RNA editing method called "RNA overwriting" that employs the influenza A virus RNA-dependent RNA polymerase (RdRp) comprising PA, PB1, and PB2 subunits. RdRp binds to the 5'-cap structure of the host mRNA and cleaves at the AG site, followed by transcription of the viral RNA; this process is called cap-snatching. We engineered a targeting snatch system wherein the target RNA is cleaved and extended at any site addressed by guide RNA (gRNA). We constructed five recombinant RdRps containing a PB2 mutant and demonstrated the editing capability of RdRp mutants by using short RNAs in vitro. PB2-480-containing RdRp exhibited good performance in both cleavage and extension assays; we succeeded in RNA overwriting using PB2-480-containing RdRp. In principle, this method allows RNA editing of any type including mutation, addition, and deletion, by changing the sequence of the template RNA to the sequence of interest; hence, the use of viral RdRp could open new avenues in RNA editing and be a powerful tool in life science.
Collapse
Affiliation(s)
- Shinzi Ogasawara
- Department of Biology, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Ai Yamada
- Department of Biology, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| |
Collapse
|
21
|
Dufrasne F. Baloxavir Marboxil: An Original New Drug against Influenza. Pharmaceuticals (Basel) 2021; 15:28. [PMID: 35056085 PMCID: PMC8779813 DOI: 10.3390/ph15010028] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Baloxavir marboxil is a new drug developed in Japan by Shionogi to treat seasonal flu infection. This cap-dependent endonuclease inhibitor is a prodrug that releases the biologically active baloxavir acid. This new medicine has been marketed in Japan, the USA and Europe. It is well tolerated (more than 1% of the patients experienced diarrhea, bronchitis, nausea, nasopharyngitis, and headache), and both influenza A and B viruses are sensitive, although the B strain is more resistant due to variations in the amino acid residues in the binding site. The drug is now in post-marketing pharmacovigilance phase, and its interest will be especially re-evaluated in the future during the annual flu outbreaks. It has been also introduced in a recent clinical trial against COVID-19 with favipiravir.
Collapse
Affiliation(s)
- François Dufrasne
- Unité de Microbiologie, Chimie Bioorganique et Macromoléculaire, Département de Recherche et Développement du Médicament, Faculté de Pharmacie, Campus Plaine CP 205/5, Université Libre de Bruxelles, 1050 Brussels, Belgium
| |
Collapse
|
22
|
Zhang C, Xiang J, Xie Q, Zhao J, Zhang H, Huang E, Shaw P, Liu X, Hu C. Identification of Influenza PA N Endonuclease Inhibitors via 3D-QSAR Modeling and Docking-Based Virtual Screening. Molecules 2021; 26:molecules26237129. [PMID: 34885710 PMCID: PMC8659138 DOI: 10.3390/molecules26237129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 11/24/2022] Open
Abstract
Structural and biochemical studies elucidate that PAN may contribute to the host protein shutdown observed during influenza A infection. Thus, inhibition of the endonuclease activity of viral RdRP is an attractive approach for novel antiviral therapy. In order to envisage structurally diverse novel compounds with better efficacy as PAN endonuclease inhibitors, a ligand-based-pharmacophore model was developed using 3D-QSAR pharmacophore generation (HypoGen algorithm) methodology in Discovery Studio. As the training set, 25 compounds were taken to generate a significant pharmacophore model. The selected pharmacophore Hypo1 was further validated by 12 compounds in the test set and was used as a query model for further screening of 1916 compounds containing 71 HIV-1 integrase inhibitors, 37 antibacterial inhibitors, 131 antiviral inhibitors and other 1677 approved drugs by the FDA. Then, six compounds (Hit01–Hit06) with estimated activity values less than 10 μM were subjected to ADMET study and toxicity assessment. Only one potential inhibitory ‘hit’ molecule (Hit01, raltegravir’s derivative) was further scrutinized by molecular docking analysis on the active site of PAN endonuclease (PDB ID: 6E6W). Hit01 was utilized for designing novel potential PAN endonuclease inhibitors through lead optimization, and then compounds were screened by pharmacophore Hypo1 and docking studies. Six raltegravir’s derivatives with significant estimated activity values and docking scores were obtained. Further, these results certainly do not confirm or indicate the seven compounds (Hit01, Hit07, Hit08, Hit09, Hit10, Hit11 and Hit12) have antiviral activity, and extensive wet-laboratory experimentation is needed to transmute these compounds into clinical drugs.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.Z.); (J.X.); (Q.X.); (J.Z.); (E.H.); (X.L.)
| | - Junjie Xiang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.Z.); (J.X.); (Q.X.); (J.Z.); (E.H.); (X.L.)
| | - Qian Xie
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.Z.); (J.X.); (Q.X.); (J.Z.); (E.H.); (X.L.)
| | - Jing Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.Z.); (J.X.); (Q.X.); (J.Z.); (E.H.); (X.L.)
| | - Hong Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
- Correspondence: (H.Z.); (C.H.); Tel.: +86-24-43520246 (C.H.)
| | - Erfang Huang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.Z.); (J.X.); (Q.X.); (J.Z.); (E.H.); (X.L.)
| | - Pangchui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China;
| | - Xiaoping Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.Z.); (J.X.); (Q.X.); (J.Z.); (E.H.); (X.L.)
| | - Chun Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.Z.); (J.X.); (Q.X.); (J.Z.); (E.H.); (X.L.)
- Correspondence: (H.Z.); (C.H.); Tel.: +86-24-43520246 (C.H.)
| |
Collapse
|
23
|
Liu Z, Gu S, Zhu X, Liu M, Cao Z, Qiu P, Li S, Liu S, Song G. Discovery and optimization of new 6, 7-dihydroxy-1, 2, 3, 4-tetrahydroisoquinoline derivatives as potent influenza virus PA N inhibitors. Eur J Med Chem 2021; 227:113929. [PMID: 34700269 DOI: 10.1016/j.ejmech.2021.113929] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022]
Abstract
Annual unpredictable efficacy of vaccines, coupled with emerging drug resistance, underlines the development of new antiviral drugs to treat influenza infections. The N-terminal domain of the PA (PAN) endonuclease is both highly conserved across influenza strains and serotypes and is indispensable for the viral lifecycle, making it an attractive target for new antiviral therapies. Here, we describe the discovery of a new class of PAN inhibitors derived from recently identified, highly active hits for PAN endonuclease inhibition. By use of structure-guided design and systematic SAR exploration, the hits were elaborated through a fragment growing strategy, giving rise to a series of 1, 3-cis-2-substituted-1-(3, 4-dihydroxybenzyl)-6, 7-dihydroxy-1, 2, 3, 4-tetrahydroisoquinoline-3-carboxylic acid derivatives as potent PAN inhibitors. This approach ultimately resulted in the development of a new lead compound 13e, which exhibited an EC50 value of 4.50 μM against H1N1 influenza virus in MDCK cells.
Collapse
Affiliation(s)
- Zhihao Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Shuyin Gu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiang Zhu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingjian Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenqing Cao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Pengsen Qiu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Sumei Li
- Department of Human Anatomy, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Shuwen Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Gaopeng Song
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
24
|
Dawre S, Maru S. Human respiratory viral infections: Current status and future prospects of nanotechnology-based approaches for prophylaxis and treatment. Life Sci 2021; 278:119561. [PMID: 33915132 PMCID: PMC8074533 DOI: 10.1016/j.lfs.2021.119561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/09/2021] [Accepted: 04/18/2021] [Indexed: 12/23/2022]
Abstract
Respiratory viral infections are major cause of highly mortal pandemics. They are impacting socioeconomic development and healthcare system globally. These emerging deadly respiratory viruses develop newer survival strategies to live inside host cells and tricking the immune system of host. Currently, medical facilities, therapies and research -development teams of every country kneel down before novel corona virus (SARS-CoV-2) which claimed ~2,828,629 lives till date. Thus, there is urgent requirement of novel treatment strategies to combat against these emerging respiratory viral infections. Nanocarriers come under the umbrella of nanotechnology and offer numerous benefits compared to traditional dosage forms. Further, unique physicochemical properties (size, shape and surface charge) of nanocarriers provide additional advantage for targeted delivery. This review discusses in detail about the respiratory viruses, their transmission mode and cell invasion pathways, survival strategies, available therapies, and nanocarriers for the delivery of therapeutics. Further, the role of nanocarriers in the development of treatment therapy against SARS-CoV-2 is also overviewed.
Collapse
Affiliation(s)
- Shilpa Dawre
- Department of Pharmaceutics, School of Pharmacy &, Technology Management, SVKM's NMIMS, Babulde Banks of Tapi River, Mumbai-Agra Road, Shirpur, Maharashtra 425405, India.
| | - Saurabh Maru
- School of Pharmacy and Technology Management, SVKM's NMIMS, Babulde Banks of Tapi River, Mumbai-Agra Road, Shirpur, Maharashtra 425405, India.
| |
Collapse
|
25
|
Synthesis and In Vitro Evaluation of C-7 and C-8 Luteolin Derivatives as Influenza Endonuclease Inhibitors. Int J Mol Sci 2021; 22:ijms22147735. [PMID: 34299354 PMCID: PMC8305651 DOI: 10.3390/ijms22147735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 01/30/2023] Open
Abstract
The part of the influenza polymerase PA subunit featuring endonuclease activity is a target for anti-influenza therapies, including the FDA-approved drug Xofluza. A general feature of endonuclease inhibitors is their ability to chelate Mg2+ or Mn2+ ions located in the enzyme’s catalytic site. Previously, we screened a panel of flavonoids for PA inhibition and found luteolin and its C-glucoside orientin to be potent inhibitors. Through structural analysis, we identified the presence of a 3′,4′-dihydroxyphenyl moiety as a crucial feature for sub-micromolar inhibitory activity. Here, we report results from a subsequent investigation exploring structural changes at the C-7 and C-8 positions of luteolin. Experimental IC50 values were determined by AlphaScreen technology. The most potent inhibitors were C-8 derivatives with inhibitory potencies comparable to that of luteolin. Bio-isosteric replacement of the C-7 hydroxyl moiety of luteolin led to a series of compounds with one-order-of-magnitude-lower inhibitory potencies. Using X-ray crystallography, we solved structures of the wild-type PA-N-terminal domain and its I38T mutant in complex with orientin at 1.9 Å and 2.2 Å resolution, respectively.
Collapse
|
26
|
Ma Y, Frutos-Beltrán E, Kang D, Pannecouque C, De Clercq E, Menéndez-Arias L, Liu X, Zhan P. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses. Chem Soc Rev 2021; 50:4514-4540. [PMID: 33595031 DOI: 10.1039/d0cs01084g] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the last forty years we have witnessed impressive advances in the field of antiviral drug discovery culminating with the introduction of therapies able to stop human immunodeficiency virus (HIV) replication, or cure hepatitis C virus infections in people suffering from liver disease. However, there are important viral diseases without effective treatments, and the emergence of drug resistance threatens the efficacy of successful therapies used today. In this review, we discuss strategies to discover antiviral compounds specifically designed to combat drug resistance. Currently, efforts in this field are focused on targeted proteins (e.g. multi-target drug design strategies), but also on drug conformation (either improving drug positioning in the binding pocket or introducing conformational constraints), in the introduction or exploitation of new binding sites, or in strengthening interaction forces through the introduction of multiple hydrogen bonds, covalent binding, halogen bonds, additional van der Waals forces or multivalent binding. Among the new developments, proteolysis targeting chimeras (PROTACs) have emerged as a valid approach taking advantage of intracellular mechanisms involving protein degradation by the ubiquitin-proteasome system. Finally, several molecules targeting host factors (e.g. human dihydroorotate dehydrogenase and DEAD-box polypeptide 3) have been identified as broad-spectrum antiviral compounds. Implementation of herein described medicinal chemistry strategies are expected to contribute to the discovery of new drugs effective against current and future threats due to emerging and re-emerging viral pandemics.
Collapse
Affiliation(s)
- Yue Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang M, Zhang G, Zhao J, Cheng N, Wang Y, Fu Y, Zheng Y, Wang J, Zhu M, Cen S, He J, Wang Y. Synthesis and antiviral activity of a series of novel quinoline derivatives as anti-RSV or anti-IAV agents. Eur J Med Chem 2021; 214:113208. [PMID: 33571829 DOI: 10.1016/j.ejmech.2021.113208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 11/24/2020] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
We report herein the synthesis of a series of novel quinoline derivatives, based on the lead compound 1a, identified from a rRSV-mGFP high-throughput screening assay. Our results revealed that target compounds 1b, 1g-h, 1af and 1ah (IC50 = 3.10-6.93 μM) had good in vitro activity against RSV, which were better than 1a and ribavirin. In addition, we found that compound 1g displayed the lower cytotoxicity (CC50: 2490.33 μM) and the highest selective index (SI = 673.06), suggesting its promising potential as a candidate for further development. On the other hand, compounds 1a, 1m, 1v, 1ad-1af and 1ah-1ai (IC50s: 1.87-14.28 μM) were more active against IAV than or comparable to ribavirin (IC50: 15.36 ± 0.93 μM). Particularly, the most active compound 1ae (IC50: 1.87 ± 0.58 μM) was found to be 8.2-fold more potent than the reference drug, which could inhibit the virus transcription and replication cycle at an early stage.
Collapse
Affiliation(s)
- Minghua Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Guoning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ningning Cheng
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Yujia Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuanhui Fu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Yanpeng Zheng
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Juxian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mei Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jinsheng He
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China.
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
28
|
Terrier O, Slama-Schwok A. Anti-Influenza Drug Discovery and Development: Targeting the Virus and Its Host by All Possible Means. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:195-218. [PMID: 34258742 DOI: 10.1007/978-981-16-0267-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infections by influenza virus constitute a major and recurrent threat for human health. Together with vaccines, antiviral drugs play a key role in the prevention and treatment of influenza virus infection and disease. Today, the number of antiviral molecules approved for the treatment of influenza is relatively limited, and their use is threatened by the emergence of viral strains with resistance mutations. There is therefore a real need to expand the prophylactic and therapeutic arsenal. This chapter summarizes the state of the art in drug discovery and development for the treatment of influenza virus infections, with a focus on both virus-targeting and host cell-targeting strategies. Novel antiviral strategies targeting other viral proteins or targeting the host cell, some of which are based on drug repurposing, may be used in combination to strengthen our therapeutic arsenal against this major pathogen.
Collapse
Affiliation(s)
- Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Anny Slama-Schwok
- Sorbonne Université, Centre de Recherche Saint-Antoine, INSERM U938, Biologie et Thérapeutique du Cancer, Paris, France.
| |
Collapse
|
29
|
Design, synthesis and in vitro anti-influenza A virus evaluation of novel quinazoline derivatives containing S-acetamide and NH-acetamide moieties at C-4. Eur J Med Chem 2020; 206:112706. [DOI: 10.1016/j.ejmech.2020.112706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 11/20/2022]
|
30
|
Li M, Cheng LP, Pang W, Zhong ZJ, Guo LL. Design, Synthesis, and Biological Evaluation of Novel Acylhydrazone Derivatives as Potent Neuraminidase Inhibitors. ACS Med Chem Lett 2020; 11:1745-1750. [PMID: 32944142 DOI: 10.1021/acsmedchemlett.0c00313] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/24/2020] [Indexed: 12/26/2022] Open
Abstract
Neuraminidase (NA) is an important target for current research on anti-influenza drugs. The acylhydrazone derivatives containing the -CONHN=CH- framework have been shown to have good NA inhibitory activity. In this paper, a series of novel acylhydrazone NA inhibitors (9a-9n) were designed and synthesized, and the inhibitory activities against NA were evaluated in vitro. The NA inhibition results showed that compound 9j has the most potent inhibitory activity (IC50 = 0.6 μM) against NA, which is significantly lower than that of the positive control oseltamivir carboxylic acid (OSC) (IC50 = 17.00 μM). Molecular docking analysis indicates that the acylhydrazone group plays an important role in compound 9j, which can bind well to the residues Arg371 and Arg292 in the S1 subsite of NA. The good potency of 9j may be also ascribed to the extending of morpholinyl ring into the 430-cavity. The results of this work may contribute to the development of more potent NA inhibitors to against mutant influenza viruses.
Collapse
Affiliation(s)
- Meng Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Li Ping Cheng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wan Pang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhi Jian Zhong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Ling Ling Guo
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
31
|
Zima V, Radilová K, Kožíšek M, Albiñana CB, Karlukova E, Brynda J, Fanfrlík J, Flieger M, Hodek J, Weber J, Majer P, Konvalinka J, Machara A. Unraveling the anti-influenza effect of flavonoids: Experimental validation of luteolin and its congeners as potent influenza endonuclease inhibitors. Eur J Med Chem 2020; 208:112754. [PMID: 32883638 DOI: 10.1016/j.ejmech.2020.112754] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 08/09/2020] [Indexed: 01/27/2023]
Abstract
The biological effects of flavonoids on mammal cells are diverse, ranging from scavenging free radicals and anti-cancer activity to anti-influenza activity. Despite appreciable effort to understand the anti-influenza activity of flavonoids, there is no clear consensus about their precise mode-of-action at a cellular level. Here, we report the development and validation of a screening assay based on AlphaScreen technology and illustrate its application for determination of the inhibitory potency of a large set of polyols against PA N-terminal domain (PA-Nter) of influenza RNA-dependent RNA polymerase featuring endonuclease activity. The most potent inhibitors we identified were luteolin with an IC50 of 72 ± 2 nM and its 8-C-glucoside orientin with an IC50 of 43 ± 2 nM. Submicromolar inhibitors were also evaluated by an in vitro endonuclease activity assay using single-stranded DNA, and the results were in full agreement with data from the competitive AlphaScreen assay. Using X-ray crystallography, we analyzed structures of the PA-Nter in complex with luteolin at 2.0 Å resolution and quambalarine B at 2.5 Å resolution, which clearly revealed the binding pose of these polyols coordinated to two manganese ions in the endonuclease active site. Using two distinct assays along with the structural work, we have presumably identified and characterized the molecular mode-of-action of flavonoids in influenza-infected cells.
Collapse
Affiliation(s)
- Václav Zima
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00, Prague 2, Czech Republic; Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10, Prague 6, Czech Republic
| | - Kateřina Radilová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10, Prague 6, Czech Republic; First Faculty of Medicine, Charles University, Kateřinská 1660, 121 08, Prague 2, Czech Republic
| | - Milan Kožíšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10, Prague 6, Czech Republic.
| | - Carlos Berenguer Albiñana
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00, Prague 2, Czech Republic; Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10, Prague 6, Czech Republic
| | - Elena Karlukova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10, Prague 6, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10, Prague 6, Czech Republic; Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 140 00, Prague 4, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10, Prague 6, Czech Republic
| | - Miroslav Flieger
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 140 00, Prague 4, Czech Republic
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10, Prague 6, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10, Prague 6, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10, Prague 6, Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10, Prague 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 128 00, Prague 2, Czech Republic
| | - Aleš Machara
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00, Prague 2, Czech Republic; Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10, Prague 6, Czech Republic.
| |
Collapse
|
32
|
Moharana AK, Dash RN, Subudhi BB. Thiosemicarbazides: Updates on Antivirals Strategy. Mini Rev Med Chem 2020; 20:2135-2152. [PMID: 32811412 DOI: 10.2174/1389557520666200818212408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 11/22/2022]
Abstract
The challenges of viral infection have increased in recent decades due to the emergence of resistance, cross-resistance and drying up of antiviral drug discovery. Many neglected tropical viruses including the chikungunya virus, dengue virus & Japanese encephalitis virus have gradually become global pathogens. This has further increased the burden of viral infection which necessitates the continuous development of antiviral therapy. The antiviral chemistry began with the development of thiosemicarbazide derived thiosemicarbazones as antiviral. Although very few thiosemicarbazides have progressed into clinical application, it still inspires antiviral development. During last 3 decades (1990- 2020), several efforts have been made to develop suitable antiviral by using thiosemicarbazide scaffold. Its hybridization with other pharmacophores has been used as a strategy to enhance safety and efficacy. Cyclization and substitution of thiosemicarbazides have also been used to develop potent antiviral. With the ability to form coordinate bonds, thiosemicarbazides have been used either as metal complex or chelator against viruses. This work is an attempt to systematically review the research on the use of thiosemicarbazides as an antiviral scaffold. It also reviews the structure-activity relationship and translational suitability of thiosemicarbazide derived compounds.
Collapse
Affiliation(s)
- Alok Kumar Moharana
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751029, Odisha, India
| | - Rudra Narayan Dash
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751029, Odisha, India
| | - Bharat Bhusan Subudhi
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751029, Odisha, India
| |
Collapse
|
33
|
Ivashchenko AA, Mitkin OD, Jones JC, Nikitin AV, Koryakova AG, Ryakhovskiy A, Karapetian RN, Kravchenko DV, Aladinskiy V, Leneva IA, Falynskova IN, Glubokova EA, Govorkova EA, Ivachtchenko AV. Non-rigid Diarylmethyl Analogs of Baloxavir as Cap-Dependent Endonuclease Inhibitors of Influenza Viruses. J Med Chem 2020; 63:9403-9420. [PMID: 32787099 DOI: 10.1021/acs.jmedchem.0c00565] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
4-Substituted 2,4-dioxobutanoic acids inhibit influenza virus cap-dependent endonuclease (CEN) activity. Baloxavir marboxil, 4, is approved for treating influenza virus infections. We describe here the synthesis and biological evaluation of active compounds, 5a-5g, and their precursors (6a, 6b, 6d, and 6e) with flexible bulky hydrophobic groups instead of the rigid polyheterocyclic moieties. In silico docking confirmed the ability of 5a-5g to bind to the active site of influenza A CEN (PDB code: 6FS6) like baloxavir acid, 3. These novel compounds inhibited polymerase complex activity, inhibited virus replication in cells, prevented death in a lethal influenza A virus mouse challenge model, and dramatically lowered viral lung titers. 5a and 5e potently inhibited different influenza genera in vitro. Precursors 6a and 6d demonstrated impressive mouse oral bioavailability with 6a, providing effective in vivo protection. Thus, these novel compounds are potent CEN inhibitors with in vitro and in vivo activity comparable to baloxavir.
Collapse
Affiliation(s)
- Andrei A Ivashchenko
- Chemical Diversity Research Institute, Rabochaya Street 2a, Khimki, Moscow Region 141401, Russia.,ChemDiv, 6605 Nancy Ridge Drive, San Diego, California 92121, United States.,Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, Dolgoprudny City, Moscow Region 141700, Russia
| | - Oleg D Mitkin
- Chemical Diversity Research Institute, Rabochaya Street 2a, Khimki, Moscow Region 141401, Russia
| | - Jeremy C Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Alexander V Nikitin
- Chemical Diversity Research Institute, Rabochaya Street 2a, Khimki, Moscow Region 141401, Russia
| | - Angela G Koryakova
- Chemical Diversity Research Institute, Rabochaya Street 2a, Khimki, Moscow Region 141401, Russia
| | - Alexey Ryakhovskiy
- Chemical Diversity Research Institute, Rabochaya Street 2a, Khimki, Moscow Region 141401, Russia
| | - Ruben N Karapetian
- Chemical Diversity Research Institute, Rabochaya Street 2a, Khimki, Moscow Region 141401, Russia
| | - Dmitry V Kravchenko
- Chemical Diversity Research Institute, Rabochaya Street 2a, Khimki, Moscow Region 141401, Russia
| | - Vladimir Aladinskiy
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, Dolgoprudny City, Moscow Region 141700, Russia
| | - Irina A Leneva
- I. Mechnikov Research Institute for Vaccines and Sera, 5a Malyy Kazennyy Lane, Moscow 105064, Russia
| | - Irina N Falynskova
- I. Mechnikov Research Institute for Vaccines and Sera, 5a Malyy Kazennyy Lane, Moscow 105064, Russia
| | - Ekaterina A Glubokova
- I. Mechnikov Research Institute for Vaccines and Sera, 5a Malyy Kazennyy Lane, Moscow 105064, Russia
| | - Elena A Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Alexandre V Ivachtchenko
- Chemical Diversity Research Institute, Rabochaya Street 2a, Khimki, Moscow Region 141401, Russia.,ChemDiv, 6605 Nancy Ridge Drive, San Diego, California 92121, United States.,ASAVI LLC, 1835 E. Hallandale Beach Blvd, #442, Hallandale Beach, Florida 33009, United States
| |
Collapse
|
34
|
Kumar S, Goicoechea S, Kumar S, Pearce CM, Durvasula R, Kempaiah P, Rathi B, Poonam. Oseltamivir analogs with potent anti-influenza virus activity. Drug Discov Today 2020; 25:1389-1402. [DOI: 10.1016/j.drudis.2020.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/09/2020] [Accepted: 06/08/2020] [Indexed: 11/27/2022]
|
35
|
Wang M, Zhang G, Wang Y, Wang J, Zhu M, Cen S, Wang Y. Design, synthesis and anti-influenza A virus activity of novel 2,4-disubstituted quinazoline derivatives. Bioorg Med Chem Lett 2020; 30:127143. [DOI: 10.1016/j.bmcl.2020.127143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 01/20/2023]
|
36
|
Tao Y, Hao X, Ding X, Cherukupalli S, Song Y, Liu X, Zhan P. Medicinal chemistry insights into novel CDC25 inhibitors. Eur J Med Chem 2020; 201:112374. [PMID: 32603979 DOI: 10.1016/j.ejmech.2020.112374] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022]
Abstract
Cell division cycle 25 (CDC25) phosphatases, a kind of cell cycle regulators, have become an attractive target for drug discovery, as they have been found to be over-expressed in various human cancer cells. Several CDC25 inhibitors have achieved significant attention in clinical trials with possible mechanistic actions. Prompted by the significance of CDC25 inhibitors with medicinal chemistry prospect, it is an apt time to review the various drug discovery methods involved in CDC25 drug discovery including high throughput screening (HTS), virtual screening (VS), fragment-based drug design, substitution decorating approach, structural simplification approach and scaffold hopping method to seek trends and identify promising new avenues of CDC25 drug discovery.
Collapse
Affiliation(s)
- Yucen Tao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xia Hao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xiao Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Yuning Song
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, 250012, Jinan, China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
37
|
Wang W, Shin WJ, Zhang B, Choi Y, Yoo JS, Zimmerman MI, Frederick TE, Bowman GR, Gross ML, Leung DW, Jung JU, Amarasinghe GK. The Cap-Snatching SFTSV Endonuclease Domain Is an Antiviral Target. Cell Rep 2020; 30:153-163.e5. [PMID: 31914382 PMCID: PMC7214099 DOI: 10.1016/j.celrep.2019.12.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 10/31/2019] [Accepted: 12/06/2019] [Indexed: 01/08/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne virus with 12%-30% case mortality rates and is related to the Heartland virus (HRTV) identified in the United States. Together, SFTSV and HRTV are emerging segmented, negative-sense RNA viral (sNSV) pathogens with potential global health impact. Here, we characterize the amino-terminal cap-snatching endonuclease domain of SFTSV polymerase (L) and solve a 2.4-Å X-ray crystal structure. While the overall structure is similar to those of other cap-snatching sNSV endonucleases, differences near the C terminus of the SFTSV endonuclease suggest divergence in regulation. Influenza virus endonuclease inhibitors, including the US Food and Drug Administration (FDA) approved Baloxavir (BXA), inhibit the endonuclease activity in in vitro enzymatic assays and in cell-based studies. BXA displays potent activity with a half maximal inhibitory concentration (IC50) of ∼100 nM in enzyme inhibition and an EC50 value of ∼250 nM against SFTSV and HRTV in plaque assays. Together, our data support sNSV endonucleases as an antiviral target.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Woo-Jin Shin
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Bojie Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Younho Choi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ji-Seung Yoo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Maxwell I Zimmerman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas E Frederick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Daisy W Leung
- Division of Infectious Diseases, John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
38
|
Moreira TA, Lafleur-Lambert R, Barbosa LC, Boukouvalas J. Concise, stereocontrolled and modular syntheses of the anti-influenza rubrolides R and S. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
39
|
Credille CV, Morrison CN, Stokes RW, Dick BL, Feng Y, Sun J, Chen Y, Cohen SM. SAR Exploration of Tight-Binding Inhibitors of Influenza Virus PA Endonuclease. J Med Chem 2019; 62:9438-9449. [PMID: 31536340 DOI: 10.1021/acs.jmedchem.9b00747] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significant efforts have been reported on the development of influenza antivirals including inhibitors of the RNA-dependent RNA polymerase PA N-terminal (PAN) endonuclease. Based on recently identified, highly active metal-binding pharmacophores (MBPs) for PAN endonuclease inhibition, a fragment-based drug development campaign was pursued. Guided by coordination chemistry and structure-based drug design, MBP scaffolds were elaborated to improve activity and selectivity. Structure-activity relationships were established and used to generate inhibitors of influenza endonuclease with tight-binding affinities. The activity of these inhibitors was analyzed using a fluorescence-quenching-based nuclease activity assay, and binding was validated using differential scanning fluorometry. Lead compounds were found to be highly selective for PAN endonuclease against several related dinuclear and mononuclear metalloenzymes. Combining principles of bioinorganic and medicinal chemistry in this study has resulted in some of the most active in vitro influenza PAN endonuclease inhibitors with high ligand efficiencies.
Collapse
Affiliation(s)
- Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Ryjul W Stokes
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Yifan Feng
- State Key Laboratory of Medicinal Chemical Biology , Nankai University , No. 94 Weijin Road , Nankai District, Tianjin , 300071 , P. R. China
| | - Jiaxing Sun
- State Key Laboratory of Medicinal Chemical Biology , Nankai University , No. 94 Weijin Road , Nankai District, Tianjin , 300071 , P. R. China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology , Nankai University , No. 94 Weijin Road , Nankai District, Tianjin , 300071 , P. R. China
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
40
|
Zhang J, Hu Y, Musharrafieh R, Yin H, Wang J. Focusing on the Influenza Virus Polymerase Complex: Recent Progress in Drug Discovery and Assay Development. Curr Med Chem 2019; 26:2243-2263. [PMID: 29984646 DOI: 10.2174/0929867325666180706112940] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 03/27/2018] [Accepted: 05/06/2018] [Indexed: 12/17/2022]
Abstract
Influenza viruses are severe human pathogens that pose persistent threat to public health. Each year more people die of influenza virus infection than that of breast cancer. Due to the limited efficacy associated with current influenza vaccines, as well as emerging drug resistance from small molecule antiviral drugs, there is a clear need to develop new antivirals with novel mechanisms of action. The influenza virus polymerase complex has become a promising target for the development of the next-generation of antivirals for several reasons. Firstly, the influenza virus polymerase, which forms a heterotrimeric complex that consists of PA, PB1, and PB2 subunits, is highly conserved. Secondly, both individual polymerase subunit (PA, PB1, and PB2) and inter-subunit interactions (PA-PB1, PB1- PB2) represent promising drug targets. Lastly, growing insight into the structure and function of the polymerase complex has spearheaded the structure-guided design of new polymerase inhibitors. In this review, we highlight recent progress in drug discovery and assay development targeting the influenza virus polymerase complex and discuss their therapeutic potentials.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Rami Musharrafieh
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Hang Yin
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States.,BIO5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
41
|
Beigel JH, Nam HH, Adams PL, Krafft A, Ince WL, El-Kamary SS, Sims AC. Advances in respiratory virus therapeutics - A meeting report from the 6th isirv Antiviral Group conference. Antiviral Res 2019; 167:45-67. [PMID: 30974127 PMCID: PMC7132446 DOI: 10.1016/j.antiviral.2019.04.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/06/2019] [Indexed: 12/11/2022]
Abstract
The International Society for Influenza and other Respiratory Virus Diseases held its 6th Antiviral Group (isirv-AVG) conference in Rockville, Maryland, November 13-15, 2018. The three-day program was focused on therapeutics towards seasonal and pandemic influenza, respiratory syncytial virus, coronaviruses including MERS-CoV and SARS-CoV, human rhinovirus, and other respiratory viruses. Updates were presented on several influenza antivirals including baloxavir, CC-42344, VIS410, immunoglobulin, immune plasma, MHAA4549A, pimodivir (JNJ-63623872), umifenovir, and HA minibinders; RSV antivirals including presatovir (GS-5806), ziresovir (AK0529), lumicitabine (ALS-008176), JNJ-53718678, JNJ-64417184, and EDP-938; broad spectrum antivirals such as favipiravir, VH244, remdesivir, and EIDD-1931/EIDD-2801; and host directed strategies including nitazoxanide, eritoran, and diltiazem. Other topics included considerations of novel endpoints such as ordinal scales and patient reported outcomes (PRO), and study design issues, and other regulatory considerations for antiviral drug development. The aim of this report is to provide a summary of the presentations given at this meeting.
Collapse
Affiliation(s)
- John H Beigel
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Hannah H Nam
- (b)Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Peter L Adams
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC, USA
| | - Amy Krafft
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - William L Ince
- Division of Antiviral Products, Office of Antimicrobial Products, Office of New Drugs, Center for Drug Evaluation and Research, U.S Food and Drug Administration, Silver Spring, MD, USA
| | - Samer S El-Kamary
- Division of Antiviral Products, Office of Antimicrobial Products, Office of New Drugs, Center for Drug Evaluation and Research, U.S Food and Drug Administration, Silver Spring, MD, USA
| | - Amy C Sims
- Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
42
|
Size and Flexibility Define the Inhibition of the H3N2 Influenza Endonuclease Enzyme by Calix[n]arenes. Antibiotics (Basel) 2019; 8:antibiotics8020073. [PMID: 31163674 PMCID: PMC6627454 DOI: 10.3390/antibiotics8020073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022] Open
Abstract
Inhibition of H3N2 influenza PA endonuclease activity by a panel of anionic calix[n]arenes and β-cyclodextrin sulfate has been studied. The joint experimental and theoretical results reveal that the larger, more flexible and highly water-soluble sulfonato-calix[n]arenes have high inhibitory activity, with para-sulfonato-calix[8]arene, SC8, having an IC50 value of 6.4 μM. Molecular docking calculations show the SC8 can interact at both the polyanion binding site and also the catalytic site of H3N2 influenza PA endonuclease.
Collapse
|
43
|
Wu G, Zhao T, Kang D, Zhang J, Song Y, Namasivayam V, Kongsted J, Pannecouque C, De Clercq E, Poongavanam V, Liu X, Zhan P. Overview of Recent Strategic Advances in Medicinal Chemistry. J Med Chem 2019; 62:9375-9414. [PMID: 31050421 DOI: 10.1021/acs.jmedchem.9b00359] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introducing novel strategies, concepts, and technologies that speed up drug discovery and the drug development cycle is of great importance both in the highly competitive pharmaceutical industry as well as in academia. This Perspective aims to present a "big-picture" overview of recent strategic innovations in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Yuning Song
- Department of Clinical Pharmacy , Qilu Hospital of Shandong University , 250012 Ji'nan , China
| | - Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Vasanthanathan Poongavanam
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| |
Collapse
|
44
|
Walker AP, Fodor E. Interplay between Influenza Virus and the Host RNA Polymerase II Transcriptional Machinery. Trends Microbiol 2019; 27:398-407. [PMID: 30642766 PMCID: PMC6467242 DOI: 10.1016/j.tim.2018.12.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/30/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022]
Abstract
The influenza virus RNA-dependent RNA polymerase (RdRP) cleaves the 5' end of nascent capped host RNAs and uses the capped RNA fragment to prime viral transcription in a mechanism called 'cap snatching'. Cap snatching requires an intimate association between influenza RdRP and cellular RNA polymerase II (Pol II), which is the source of nascent capped host RNAs targeted by influenza virus. Recent structural studies have revealed how influenza RdRP binds to Pol II and how this binding promotes the initiation of viral transcription by influenza RdRP. In this review we focus on these recent insights into the mechanism of cap snatching by influenza virus and the impact of cap snatching on host gene expression during influenza virus infection.
Collapse
Affiliation(s)
- Alexander P Walker
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
45
|
Yang J, Huang Y, Liu S. Investigational antiviral therapies for the treatment of influenza. Expert Opin Investig Drugs 2019; 28:481-488. [PMID: 31018720 DOI: 10.1080/13543784.2019.1606210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Influenza viral ribonucleoprotein complexes (vRNPs) play a key role in viral transcription and replication; hence, the recent development of novel anti-influenza drugs targeting vRNPs has garnered widespread interest. AREAS COVERED We discuss the function of the constituents of vRNPs and summarize those vRNPs-targeted synthetic drugs that are in preclinical and early clinical development. EXPERT OPINION vRNPs contain high-value drug targets; such targets include the subunits PA, PB1, PB2, and NP. Developing a new generation of antiviral therapies with strategies that utilize existing drugs, natural compounds originated from new resources and novel drug combinations may open up new therapeutic approaches to influenza.
Collapse
Affiliation(s)
- Jie Yang
- a Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou , China
| | - Yingna Huang
- a Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou , China
| | - Shuwen Liu
- a Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou , China.,b State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology , Southern Medical University , Guangzhou , China
| |
Collapse
|
46
|
Tang J, Do HT, Huber AD, Casey MC, Kirby KA, Wilson DJ, Kankanala J, Parniak MA, Sarafianos SG, Wang Z. Pharmacophore-based design of novel 3-hydroxypyrimidine-2,4-dione subtypes as inhibitors of HIV reverse transcriptase-associated RNase H: Tolerance of a nonflexible linker. Eur J Med Chem 2019; 166:390-399. [PMID: 30739822 PMCID: PMC6459026 DOI: 10.1016/j.ejmech.2019.01.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/17/2019] [Accepted: 01/30/2019] [Indexed: 11/29/2022]
Abstract
The pharmacophore of active site inhibitors of human immunodeficiency virus (HIV) reverse transcriptase (RT)-associated RNase H typically entails a flexible linker connecting the chelating core and the hydrophobic aromatics. We report herein that novel 3-hydroxypyrimidine-2,4-dione (HPD) subtypes with a nonflexible C-6 carbonyl linkage exhibited potent and selective biochemical inhibitory profiles with strong RNase H inhibition at low nM, weak to moderate integrase strand transfer (INST) inhibition at low μM, and no to marginal RT polymerase (pol) inhibition up to 10 μM. A few analogues also demonstrated significant antiviral activity without cytotoxicity. The overall inhibitory profile is comparable to or better than that of previous HPD subtypes with a flexible C-6 linker, suggesting that the nonflexible carbonyl linker can be tolerated in the design of novel HIV RNase H active site inhibitors.
Collapse
Affiliation(s)
- Jing Tang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ha T Do
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Andrew D Huber
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA
| | - Mary C Casey
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA
| | - Karen A Kirby
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA; Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Daniel J Wilson
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jayakanth Kankanala
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael A Parniak
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Stefan G Sarafianos
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA; Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
47
|
Designing influenza polymerase acidic endonuclease inhibitors via ‘privileged scaffold’ re-evolution/refining strategy. Future Med Chem 2019; 11:265-268. [PMID: 30763130 DOI: 10.4155/fmc-2018-0489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
48
|
Saez-Ayala M, Laban Yekwa E, Mondielli C, Roux L, Hernández S, Bailly F, Cotelle P, Rogolino D, Canard B, Ferron F, Alvarez K. Metal chelators for the inhibition of the lymphocytic choriomeningitis virus endonuclease domain. Antiviral Res 2018; 162:79-89. [PMID: 30557576 DOI: 10.1016/j.antiviral.2018.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022]
Abstract
Arenaviridae is a viral family whose members are associated with rodent-transmitted infections to humans responsible of severe diseases. The current lack of a vaccine and limited therapeutic options make the development of efficacious drugs of high priority. The cap-snatching mechanism of transcription of Arenavirus performed by the endonuclease domain of the L-protein is unique and essential, so we developed a drug design program targeting the endonuclease activity of the prototypic Lymphocytic ChorioMeningitis Virus. Since the endonuclease activity is metal ion dependent, we designed a library of compounds bearing chelating motifs (diketo acids, polyphenols, and N-hydroxyisoquinoline-1,3-diones) able to block the catalytic center through the chelation of the critical metal ions, resulting in a functional impairment. We pre-screened 59 compounds by Differential Scanning Fluorimetry. Then, we characterized the binding affinity by Microscale Thermophoresis and evaluated selected compounds in in vitro and in cellula assays. We found several potent binders and inhibitors of the endonuclease activity. This study validates the proof of concept that the endonuclease domain of Arenavirus can be used as a target for anti-arena-viral drug discovery and that both diketo acids and N-hydroxyisoquinoline-1,3-diones can be considered further as potential metal-chelating pharmacophores.
Collapse
Affiliation(s)
- Magali Saez-Ayala
- Aix-Marseille Université, CNRS UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 avenue de Luminy, 13288, Marseille, France; Aix-Marseille Université, CRCM, INSERM U1068, CNRS UMR7258, 13273, Marseille, France
| | - Elsie Laban Yekwa
- Aix-Marseille Université, CNRS UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 avenue de Luminy, 13288, Marseille, France; Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Clémence Mondielli
- Aix-Marseille Université, CNRS UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 avenue de Luminy, 13288, Marseille, France
| | - Loic Roux
- Aix-Marseille Université, CNRS UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 avenue de Luminy, 13288, Marseille, France; Department of Physiology Anatomy and Genetics, Oxford University, Oxford, UK
| | - Sergio Hernández
- Aix-Marseille Université, CNRS UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 avenue de Luminy, 13288, Marseille, France
| | - Fabrice Bailly
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000, Lille, France
| | - Philippe Cotelle
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000, Lille, France; ENSCL, F-59000, Lille, France
| | - Dominga Rogolino
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parma, P.co Area delle Scienze 17/A, Parma, Italy
| | - Bruno Canard
- Aix-Marseille Université, CNRS UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 avenue de Luminy, 13288, Marseille, France
| | - François Ferron
- Aix-Marseille Université, CNRS UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 avenue de Luminy, 13288, Marseille, France
| | - Karine Alvarez
- Aix-Marseille Université, CNRS UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 avenue de Luminy, 13288, Marseille, France.
| |
Collapse
|
49
|
Credille CV, Dick BL, Morrison CN, Stokes RW, Adamek RN, Wu NC, Wilson IA, Cohen SM. Structure-Activity Relationships in Metal-Binding Pharmacophores for Influenza Endonuclease. J Med Chem 2018; 61:10206-10217. [PMID: 30351002 DOI: 10.1021/acs.jmedchem.8b01363] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metalloenzymes represent an important target space for drug discovery. A limitation to the early development of metalloenzyme inhibitors has been the lack of established structure-activity relationships (SARs) for molecules that bind the metal ion cofactor(s) of a metalloenzyme. Herein, we employed a bioinorganic perspective to develop an SAR for inhibition of the metalloenzyme influenza RNA polymerase PAN endonuclease. The identified trends highlight the importance of the electronics of the metal-binding pharmacophore (MBP), in addition to MBP sterics, for achieving improved inhibition and selectivity. By optimization of the MBPs for PAN endonuclease, a class of highly active and selective fragments was developed that displays IC50 values <50 nM. This SAR led to structurally distinct molecules that also displayed IC50 values of ∼10 nM, illustrating the utility of a metal-centric development campaign in generating highly active and selective metalloenzyme inhibitors.
Collapse
Affiliation(s)
- Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Ryjul W Stokes
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Nicholas C Wu
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States.,The Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
50
|
Dar'in D, Zarubaev V, Galochkina A, Gureev M, Krasavin M. Non-chelating p-phenylidene-linked bis-imidazoline analogs of known influenza virus endonuclease inhibitors: Synthesis and anti-influenza activity. Eur J Med Chem 2018; 161:526-532. [PMID: 30390440 DOI: 10.1016/j.ejmech.2018.10.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/24/2018] [Accepted: 10/28/2018] [Indexed: 11/26/2022]
Abstract
A novel chemotype topologically similar to known influenza virus PA endonuclease inhibitors has been designed. It was aimed to reproduce the extended topology of the known metal-chelating ligands with a p-phenylidene-linked bis-imidazoline scaffold. It was envisioned that aromatic groups introduced to this scaffolds via metal-catalyzed N-arylation (Buchwald-Hartwig or Chan-Evans-Lam) would contribute to lipophilic binding to the target and one of the imidazoline nitrogen atoms would ensure non-chelating coordination to the prosthetic divalent metal ion. The compounds displayed appreciable anti-influenza activity in vitro and substantial concentration window from the general cytotoxicity range. Docking analysis of low-energy poses of the most active compound (as well as their comparison to the binding of an inactive compound) revealed that these compounds reproduced similar binding components to a known PA endonuclease inhibitor and displayed similar binding pose and desired monodentate metal coordination, as was initially envisioned. These findings warrant further investigation of the mechanism of action of the newly discovered series.
Collapse
Affiliation(s)
- Dmitry Dar'in
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Vladimir Zarubaev
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, Saint Petersburg, 197101, Russian Federation
| | - Anastasia Galochkina
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, Saint Petersburg, 197101, Russian Federation
| | - Maxim Gureev
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation
| | - Mikhail Krasavin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation.
| |
Collapse
|