1
|
Lin HF, Jiang YC, Chen ZW, Zheng LL. Design, synthesis, and anti-inflammatory activity of indole-2-formamide benzimidazole[2,1- b]thiazole derivatives. RSC Adv 2024; 14:16349-16357. [PMID: 38812824 PMCID: PMC11134322 DOI: 10.1039/d4ra00557k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Molecular hybridization is a widely employed technique in medicinal chemistry for drug modification, aiming to enhance pharmacological activity and minimize side effects. The combination of an indole ring and imidazole[2,1-b]thiazole has shown promising potential as a group that exhibits potent anti-inflammatory effects. In this study, we designed and synthesized a series of derivatives comprising indole-2-formamide benzimidazole[2,1-b]thiazole to evaluate their impact on LPS-induced production of pro-inflammatory cytokines NO, IL-6, and TNF-α release, as well as iron death in RAW264.7 cells. The findings revealed that most compounds effectively inhibited LPS-induced production of pro-inflammatory cytokines NO, IL-6, and TNF-α release in RAW264.7 cells. Compound 13b exhibited the most potent anti-inflammatory activity among the tested compounds. The results of the cytotoxicity assay indicated that compound 13b was nontoxic. Additionally, compound 13b was found to elevate the levels of ROS, MDA, and Fe2+, while reducing GSH content, thereby facilitating the iron death process. Consequently, compound 13b showed promise for future development as an anti-inflammatory drug.
Collapse
Affiliation(s)
- Hai-Feng Lin
- Department of Gastroenterology, Affiliated Hospital of Putian University Putian China
| | - Yu-Cai Jiang
- Department of Pharmacy, Affiliated Hospital of Putian University Putian China
| | - Zhi-Wei Chen
- Department of Pathology, Affiliated Hospital of Putian University Putian China
| | - Lin-Lin Zheng
- Department of Oncology, Affiliated Hospital of Putian University Putian China
| |
Collapse
|
2
|
Li X, Hu Y, He B, Li L, Tian Y, Xiao Y, Shang H, Zou Z. Design, synthesis and evaluation of ursodeoxycholic acid-cinnamic acid hybrids as potential anti-inflammatory agents by inhibiting Akt/NF-κB and MAPK signaling pathways. Eur J Med Chem 2023; 260:115785. [PMID: 37678142 DOI: 10.1016/j.ejmech.2023.115785] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
A series of ursodeoxycholic acid (UDCA)-cinnamic acid hybrids were designed and synthesized. The anti-inflammatory activity of these derivatives was screened through evaluating their inhibitory effects of LPS-induced nitric oxide production in RAW264.7 macrophages. The preliminary structure-activity relationship was concluded. Among them, 2m showed the best inhibitory activity against NO (IC50 = 7.70 μM) with no significant toxicity. Further study revealed that 2m significantly decreased the levels of TNF-α, IL-1β, IL-6 and PGE2, down-regulated the expression of iNOS and COX-2. Preliminary mechanism study indicated that the anti-inflammatory activity of 2m was related to the inhibition of the Akt/NF-κB and MAPK signaling pathway. Furthermore, 2m reduced inflammation by a mouse model of LPS-induced inflammatory disease in vivo. In brief, our findings indicated that 2m might serve as a new lead compound for further development of anti-inflammatory agents.
Collapse
Affiliation(s)
- Xiaoxue Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yue Hu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Bingxin He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Lingyu Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yu Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yingjie Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Hai Shang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Zhongmei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
3
|
Zhang TY, Li CS, Li P, Bai XQ, Guo SY, Jin Y, Piao SJ. Synthesis and evaluation of ursolic acid-based 1,2,4-triazolo[1,5-a]pyrimidines derivatives as anti-inflammatory agents. Mol Divers 2022; 26:27-38. [PMID: 33200293 DOI: 10.1007/s11030-020-10154-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022]
Abstract
Here, two series of novel ursolic acid-based 1,2,4-triazolo[1,5-a]pyrimidines derivatives were synthesized and screened for their anti-inflammatory activity by evaluating their inhibition effect of using LPS-induced inflammatory response in RAW 264.7 macrophages in vitro; the effects of different concentrations of the compounds on the secretion of nitric oxide (NO) and inflammatory cytokines including TNF-α and IL-6 were evaluated. Their toxicity was also assessed in vitro. Results showed that the most prominent compound 3 could significantly decrease production of the above inflammatory factors. Docking study was performed for the representative compounds 3, UA, and Celecoxib to explain their interaction with cyclooxygenase-2 (COX-2) receptor active site. In vitro enzyme study implied that compound 3 exerted its anti-inflammatory activity through COX-2 inhibition.
Collapse
Affiliation(s)
- Tian-Yi Zhang
- Jilin Medical University, Jilin, 132013, Jilin Province, People's Republic of China.
| | - Chun-Shi Li
- The Third People's Hospital of Dalian, Dalian, 116000, Liaoning Province, People's Republic of China
| | - Ping Li
- Jilin Medical University, Jilin, 132013, Jilin Province, People's Republic of China
| | - Xue-Qian Bai
- Jilin Medical University, Jilin, 132013, Jilin Province, People's Republic of China
| | - Shu-Ying Guo
- Jilin Medical University, Jilin, 132013, Jilin Province, People's Republic of China
| | - Ying Jin
- Jilin Medical University, Jilin, 132013, Jilin Province, People's Republic of China.
| | - Sheng-Jun Piao
- Department of General Surgery, Affiliated Hospital of Yanbian University, Yanji, 133000, Jilin Province, People's Republic of China.
| |
Collapse
|
4
|
Chen LZ, Zhang XX, Liu MM, Wu J, Ma D, Diao LZ, Li Q, Huang YS, Zhang R, Ruan BF, Liu XH. Discovery of Novel Pterostilbene-Based Derivatives as Potent and Orally Active NLRP3 Inflammasome Inhibitors with Inflammatory Activity for Colitis. J Med Chem 2021; 64:13633-13657. [PMID: 34506712 DOI: 10.1021/acs.jmedchem.1c01007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Studies have shown that the abnormal activation of the NLRP3 inflammasome is involved in a variety of inflammatory-based diseases. In this study, a high content screening model targeting the activation of inflammasome was first established and pterostilbene was discovered as the active scaffold. Based on this finding, total of 50 pterostilbene derivatives were then designed and synthesized. Among them, compound 47 was found to be the best one for inhibiting cell pyroptosis [inhibitory rate (IR) = 73.09% at 10 μM], showing low toxicity and high efficiency [against interleukin-1β (IL-1β): half-maximal inhibitory concentration (IC50) = 0.56 μM]. Further studies showed that compound 47 affected the assembly of the NLRP3 inflammasomes by targeting NLRP3. The in vivo biological activity showed that this compound significantly alleviated dextran sodium sulfate (DSS)-induced colitis in mice. In general, our study provided a novel lead compound directly targeting the NLRP3 protein, which is worthy of further research and structural optimization.
Collapse
Affiliation(s)
- Liu Zeng Chen
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
- Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei 230601, P.R. China
| | - Xing Xing Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
| | - Ming Ming Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
| | - Jing Wu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
| | - Duo Ma
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
| | - Liang Zhuo Diao
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
| | - Qingshan Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230059, P.R. China
| | - Yan Shuang Huang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
| | - Rui Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
| | - Ban Feng Ruan
- Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei 230601, P.R. China
| | - Xin Hua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
| |
Collapse
|
5
|
Chen X, Yan Y, Zhang Z, Zhang F, Liu M, Du L, Zhang H, Shen X, Zhao D, Shi JB, Liu X. Discovery and In Vivo Anti-inflammatory Activity Evaluation of a Novel Non-peptidyl Non-covalent Cathepsin C Inhibitor. J Med Chem 2021; 64:11857-11885. [PMID: 34374541 DOI: 10.1021/acs.jmedchem.1c00104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cathepsin C (Cat C) participates in inflammation and immune regulation by affecting the activation of neutrophil serine proteases (NSPs). Therefore, cathepsin C is an attractive target for treatment of NSP-related inflammatory diseases. Here, the complete discovery process of the first potent "non-peptidyl non-covalent cathepsin C inhibitor" was described with hit finding, structure optimization, and lead discovery. Starting with hit 14, structure-based optimization and structure-activity relationship study were comprehensively carried out, and lead compound 54 was discovered as a potent drug-like cathepsin C inhibitor both in vivo and in vitro. Also, compound 54 (with cathepsin C Enz IC50 = 57.4 nM) exhibited effective anti-inflammatory activity in an animal model of chronic obstructive pulmonary disease. These results confirmed that the non-peptidyl and non-covalent derivative could be used as an effective cathepsin C inhibitor and encouraged us to continue further drug discovery on the basis of this finding.
Collapse
Affiliation(s)
- Xing Chen
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Yaoyao Yan
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Zhaoyan Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Faming Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Mingming Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Leran Du
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Haixia Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Xiaobao Shen
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Dahai Zhao
- Affiliated Hospital 2, Anhui Medical University, Hefei 230601, P. R. China
| | - Jing Bo Shi
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Xinhua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
6
|
Madkour MM, Anbar HS, El-Gamal MI. Current status and future prospects of p38α/MAPK14 kinase and its inhibitors. Eur J Med Chem 2021; 213:113216. [PMID: 33524689 DOI: 10.1016/j.ejmech.2021.113216] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
P38α (which is also named MAPK14) plays a pivotal role in initiating different disease states such as inflammatory disorders, neurodegenerative diseases, cardiovascular cases, and cancer. Inhibitors of p38α can be utilized for treatment of these diseases. In this article, we reviewed the structural and biological characteristics of p38α, its relationship to the fore-mentioned disease states, as well as the recently reported inhibitors and classified them according to their chemical structures. We focused on the articles published in the literature during the last decade (2011-2020).
Collapse
Affiliation(s)
- Moustafa M Madkour
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, 19099, United Arab Emirates
| | - Mohammed I El-Gamal
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, 35516, Egypt.
| |
Collapse
|
7
|
Li Y, Huang S, Li J, Li J, Ji X, Liu J, Chen L, Peng S, Zhang K. Access to 2-pyridinylamide and imidazopyridine from 2-fluoropyridine and amidine hydrochloride. Org Biomol Chem 2020; 18:9292-9299. [PMID: 33164006 DOI: 10.1039/d0ob01904f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Under catalyst-free conditions, an efficient method to synthesize 2-pyridinylamides has been developed, and the protocol uses inexpensive and readily available 2-fluoropyridine and amidine derivatives as the starting materials. Simultaneously, the copper-catalysed approach to imidazopyridine derivatives has been established with high chemoselectivity and regiospecificity. The results suggest that the nitrogen-heterocycles containing iodide substituents can also be compatible for the reaction via the cascade Ullmann-type coupling, and the nucleophilic substitution reaction provides the target products in a one-pot manner.
Collapse
Affiliation(s)
- Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Shuo Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Jiaming Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Jian Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Xiaoliang Ji
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Jiasheng Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Lu Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Shiyong Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| |
Collapse
|
8
|
Rossi R, Ciofalo M. Current Advances in the Synthesis and Biological Evaluation of Pharmacologically Relevant 1,2,4,5-Tetrasubstituted-1H-Imidazole Derivatives. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666191014154129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
:
In recent years, the synthesis and evaluation of the
biological properties of 1,2,4,5-tetrasubstituted-1H-imidazole
derivatives have been the subject of a large number of studies
by academia and industry. In these studies it has been shown
that this large and highly differentiated class of heteroarene
derivatives includes high valuable compounds having important
biological and pharmacological properties such as
antibacterial, antifungal, anthelmintic, anti-inflammatory, anticancer,
antiviral, antihypertensive, cholesterol-lowering, antifibrotic,
antiuricemic, antidiabetic, antileishmanial and antiulcer
activities.
:
The present review with 411 references, in which we focused on the literature data published mainly from 2011
to 2017, aims to update the readers on the recent developments on the synthesis and biological evaluation of
pharmacologically relevant 1,2,4,5-tetrasubstituted-1H-imidazole derivatives with an emphasis on their different
molecular targets and their potential use as drugs to treat various types of diseases. Reference was also
made to substantial literature data acquired before 2011 in this burgeoning research area.
Collapse
Affiliation(s)
- Renzo Rossi
- Dipartimento di Chimica e Chimica Industriale, University of Pisa - via Moruzzi, 3, I-56124 Pisa, Italy
| | - Maurizio Ciofalo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo - Viale delle Scienze, Edificio 4, I-90128 Palermo, Italy
| |
Collapse
|
9
|
Kaieda A, Takahashi M, Fukuda H, Okamoto R, Morimoto S, Gotoh M, Miyazaki T, Hori Y, Unno S, Kawamoto T, Tanaka T, Itono S, Takagi T, Sugimoto H, Okada K, Lane W, Sang BC, Saikatendu K, Matsunaga S, Miwatashi S. Structure-Based Design, Synthesis, and Biological Evaluation of Imidazo[4,5-b]Pyridin-2-one-Based p38 MAP Kinase Inhibitors: Part 2. ChemMedChem 2019; 14:2093-2101. [PMID: 31697454 DOI: 10.1002/cmdc.201900373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/11/2019] [Indexed: 11/11/2022]
Abstract
We identified novel potent inhibitors of p38 mitogen-activated protein (MAP) kinase using a structure-based design strategy, beginning with lead compound, 3-(butan-2-yl)-6-(2,4-difluoroanilino)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (1). To enhance the inhibitory activity of 1 against production of tumor necrosis factor-α (TNF-α) in human whole blood (hWB) cell assays, we designed and synthesized hybrid compounds in which the imidazo[4,5-b]pyridin-2-one core was successfully linked with the p-methylbenzamide fragment. Among the compounds evaluated, 3-(3-tert-butyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-6-yl)-4-methyl-N-(1-methyl-1H-pyrazol-3-yl)benzamide (25) exhibited potent p38 inhibition, superior suppression of TNF-α production in hWB cells, and also significant in vivo efficacy in a rat model of collagen-induced arthritis (CIA). In this paper, we report the discovery of potent, selective, and orally bioavailable imidazo[4,5-b]pyridin-2-one-based p38 MAP kinase inhibitors.
Collapse
Affiliation(s)
- Akira Kaieda
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Masashi Takahashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Hiromi Fukuda
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Rei Okamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Shinji Morimoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Masayuki Gotoh
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Takahiro Miyazaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Yuri Hori
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Satoko Unno
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tomohiro Kawamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Toshimasa Tanaka
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Sachiko Itono
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Terufumi Takagi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Hiroshi Sugimoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Kengo Okada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Weston Lane
- Takeda California, 10410 Science Center Drive, San Diego, CA 92121, USA
| | - Bi-Ching Sang
- Takeda California, 10410 Science Center Drive, San Diego, CA 92121, USA
| | - Kumar Saikatendu
- Takeda California, 10410 Science Center Drive, San Diego, CA 92121, USA
| | - Shinichiro Matsunaga
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Seiji Miwatashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| |
Collapse
|
10
|
Novel resveratrol-based flavonol derivatives: Synthesis and anti-inflammatory activity in vitro and in vivo. Eur J Med Chem 2019; 175:114-128. [DOI: 10.1016/j.ejmech.2019.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022]
|
11
|
Ti H, Zhou Y, Liang X, Li R, Ding K, Zhao X. Targeted Treatments for Chronic Obstructive Pulmonary Disease (COPD) Using Low-Molecular-Weight Drugs (LMWDs). J Med Chem 2019; 62:5944-5978. [PMID: 30682248 DOI: 10.1021/acs.jmedchem.8b01520] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a very common and frequently fatal airway disease. Current therapies for COPD depend mainly on long-acting bronchodilators, which cannot target the pathogenic mechanisms of chronic inflammation in COPD. New pharmaceutical therapies for the inflammatory processes of COPD are urgently needed. Several anti-inflammatory targets have been identified based on increased understanding of the pathogenesis of COPD, which raises new hopes for targeted treatment of this fatal respiratory disease. In this review, we discuss the recent advances in bioactive low-molecular-weight drugs (LMWDs) for the treatment of COPD and, in addition to the first-line drug bronchodilators, focus particularly on low-molecular-weight anti-inflammatory agents, including modulators of inflammatory mediators, inflammasome inhibitors, protease inhibitors, antioxidants, PDE4 inhibitors, kinase inhibitors, and other agents. We also provide new insights into targeted COPD treatments using LMWDs, particularly small-molecule agents.
Collapse
Affiliation(s)
- Huihui Ti
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Yang Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,Division of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology (KTH) , AlbaNova University Center , Stockholm SE-100 44 , Sweden
| | - Xue Liang
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy , Jinan University , Guangzhou 510632 , P. R. China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Xin Zhao
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,School of Life Sciences , The Chinese University of Hong Kong , Shatin, N.T. , Hong Kong SAR 999077 , P. R. China
| |
Collapse
|
12
|
Proschak E, Stark H, Merk D. Polypharmacology by Design: A Medicinal Chemist's Perspective on Multitargeting Compounds. J Med Chem 2018; 62:420-444. [PMID: 30035545 DOI: 10.1021/acs.jmedchem.8b00760] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multitargeting compounds comprising activity on more than a single biological target have gained remarkable relevance in drug discovery owing to the complexity of multifactorial diseases such as cancer, inflammation, or the metabolic syndrome. Polypharmacological drug profiles can produce additive or synergistic effects while reducing side effects and significantly contribute to the high therapeutic success of indispensable drugs such as aspirin. While their identification has long been the result of serendipity, medicinal chemistry now tends to design polypharmacology. Modern in vitro pharmacological methods and chemical probes allow a systematic search for rational target combinations and recent innovations in computational technologies, crystallography, or fragment-based design equip multitarget compound development with valuable tools. In this Perspective, we analyze the relevance of multiple ligands in drug discovery and the versatile toolbox to design polypharmacology. We conclude that despite some characteristic challenges remaining unresolved, designed polypharmacology holds enormous potential to secure future therapeutic innovation.
Collapse
Affiliation(s)
- Ewgenij Proschak
- Institute of Pharmaceutical Chemistry , Goethe University Frankfurt , Max-von-Laue-Strasse 9 , D-60438 Frankfurt , Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry , Heinrich Heine University Düsseldorf , Universitaetsstrasse 1 , D-40225 , Duesseldorf , Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry , Goethe University Frankfurt , Max-von-Laue-Strasse 9 , D-60438 Frankfurt , Germany.,Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences , Swiss Federal Institute of Technology (ETH) Zürich , Vladimir-Prelog-Weg 4 , CH-8093 Zürich , Switzerland
| |
Collapse
|
13
|
Abstract
‘Drug promiscuity’ refers to a drug that can act on multiple molecular targets, exhibiting similar or different pharmacological effects. Drugs may interact with unwanted targets, leading to off-target effects (one of the main reasons for side effects). Thus, intervention to prevent off-target effects in the early stages of drug discovery could reduce the risk of failure. The conversion between target and off-target effects is important for drug repurposing. Drug repurposing strategies could reduce research and development costs. This review details the research progress in the rational application of drug promiscuity for the discovery of multi-target drugs, drug repurposing and improving druggability in medicinal chemistry over the last 5 years.
Collapse
|
14
|
Brown DG, Boström J. Where Do Recent Small Molecule Clinical Development Candidates Come From? J Med Chem 2018; 61:9442-9468. [DOI: 10.1021/acs.jmedchem.8b00675] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Dean G. Brown
- Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Jonas Boström
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Gothenburg SE-431 83, Sweden
| |
Collapse
|
15
|
Koch P, Ansideri F. 2-Alkylsulfanyl-4(5)-aryl-5(4)-heteroarylimidazoles: An Overview on Synthetic Strategies and Biological Activity. Arch Pharm (Weinheim) 2017; 350. [PMID: 29143361 DOI: 10.1002/ardp.201700258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/14/2022]
Abstract
2-Alkylsulfanyl-4(5)-aryl-5(4)-heteroarylimidazoles represent an important class of ATP-competitive protein kinase inhibitors, offering the possibility of multiple interactions with different regions of the target enzyme. The necessity of exploring the effects of diverse chemical decorations around the imidazole core prompted the design of several synthetic routes aimed at achieving both efficiency and flexibility. Additionally, the optimization of established protocols and the extensive use of transition metal-catalyzed cross-coupling reactions have been broadening the spectrum of preparative methodologies within the last decade. This review summarizes the progress in the development of synthetic strategies leading to 2-alkylsulfanyl-4(5)-aryl-5(4)-heteroarylimidazoles and 1-alkyl-2-alkylsulfanyl-4(5)-aryl-5(4)-heteroarylimidazoles and offers a glance at the biological activities of this class of compounds.
Collapse
Affiliation(s)
- Pierre Koch
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Francesco Ansideri
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|