1
|
Kumar G. Natural peptides and their synthetic congeners acting against Acinetobacter baumannii through the membrane and cell wall: latest progress. RSC Med Chem 2025; 16:561-604. [PMID: 39664362 PMCID: PMC11629675 DOI: 10.1039/d4md00745j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Acinetobacter baumannii is one of the deadliest Gram-negative bacteria (GNB), responsible for 2-10% of hospital-acquired infections. Several antibiotics are used to control the growth of A. baumannii. However, in recent decades, the abuse and misuse of antibiotics to treat non-microbial diseases have led to the emergence of multidrug-resistant A. baumannii strains. A. baumannii possesses a complex cell wall structure. Cell wall-targeting agents remain the center of antibiotic drug discovery. Notably, the antibacterial drug discovery intends to target the membrane of the bacteria, offering several advantages over antibiotics targeting intracellular systems, as membrane-targeting agents do not have to travel through the plasma membrane to reach the cytoplasmic targets. Microorganisms, insects, and mammals produce antimicrobial peptides as their first line of defense to protect themselves from pathogens and predators. Importantly, antimicrobial peptides are considered potential alternatives to antibiotics. This communication summarises the recently identified peptides of natural origin and their synthetic congeners acting against the A. baumannii membrane by cell wall disruption.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| |
Collapse
|
2
|
Kharga K, Jha S, Vishwakarma T, Kumar L. Current developments and prospects of the antibiotic delivery systems. Crit Rev Microbiol 2025; 51:44-83. [PMID: 38425122 DOI: 10.1080/1040841x.2024.2321480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Antibiotics have remained the cornerstone for the treatment of bacterial infections ever since their discovery in the twentieth century. The uproar over antibiotic resistance among bacteria arising from genome plasticity and biofilm development has rendered current antibiotic therapies ineffective, urging the development of innovative therapeutic approaches. The development of antibiotic resistance among bacteria has further heightened the clinical failure of antibiotic therapy, which is often linked to its low bioavailability, side effects, and poor penetration and accumulation at the site of infection. In this review, we highlight the potential use of siderophores, antibodies, cell-penetrating peptides, antimicrobial peptides, bacteriophages, and nanoparticles to smuggle antibiotics across impermeable biological membranes to achieve therapeutically relevant concentrations of antibiotics and combat antimicrobial resistance (AMR). We will discuss the general mechanisms via which each delivery system functions and how it can be tailored to deliver antibiotics against the paradigm of mechanisms underlying antibiotic resistance.
Collapse
Affiliation(s)
- Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Shubhang Jha
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Tanvi Vishwakarma
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| |
Collapse
|
3
|
Dyson PJ, Banat IM, Quinn GA. War and peace: exploring microbial defence systems as a source of new antimicrobial therapies. Front Pharmacol 2025; 15:1504901. [PMID: 39840088 PMCID: PMC11747395 DOI: 10.3389/fphar.2024.1504901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
The WHO has compiled a list of pathogens that urgently require new antibiotics in response to the rising reports of antibiotic resistance and a diminished supply of new antibiotics. At the top of this list is fluoroquinolone-resistant Salmonella typhi, fluoroquinolone-resistant Shigella spp. and vancomycin-resistant Enterococcus faecium. Although these problems have been covered in great detail by other contemporary reviews, there are still some fundamental gaps in the translation of current knowledge of the infectious process and the molecular ecology of antibiotic production into a sustainable protocol for the treatment of pathogenic diseases. Therefore, in this narrative review we briefly discuss newly approved antimicrobial drugs (since 2014) that could help to alleviate the burden of multiresistant pathogens listed on the WHO priority list. Being conscious that such treatments may eventually run the risk of future cycles of resistance, we also discuss how new understandings in the molecular ecology of antibiotic production and the disease process can be harnessed to create a more sustainable solution for the treatment of pathogenic diseases.
Collapse
Affiliation(s)
- Paul J. Dyson
- Medical School, Institute of Life Sciences, Swansea University, Swansea, United Kingdom
| | - Ibrahim M. Banat
- Centre for Molecular Biosciences, Ulster University, Coleraine, United Kingdom
| | - Gerry A. Quinn
- Centre for Molecular Biosciences, Ulster University, Coleraine, United Kingdom
| |
Collapse
|
4
|
Jiang J, Okuda S, Itoh H, Okamoto K, Nakanishi H, Suzuki M, Lu P, Nagata K. Structure-Guided Discovery of a Potent Inhibitor of the Ferric Citrate Binding Protein FecB in Vibrio Bacteria. Angew Chem Int Ed Engl 2024; 63:e202411688. [PMID: 39304960 DOI: 10.1002/anie.202411688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
Infections caused by Gram-negative bacteria present a significant risk to human health worldwide. Novel strategies are needed to deal with the challenge caused by drug-resistant bacteria. Here, we report a new approach to combat infections by targeting iron-binding proteins to suppress bacterial growth. We investigated the function of the conserved periplasmic binding protein FecB from Vibrio alginolyticus. FecB was known to play a crucial role in the bacterial growth and to relate with biofilm formation. We then solved the crystal structures and elucidated the binding mechanism of FecB with ferric ion chelated by citrate. The results indicated that FecB binds weakly to one citrate molecule and strongly to the Fe3+-(citrate)2 complex. Based on these results, a structure-based virtual screening approach was conducted against FecB to identify small molecules that block ferric citrate uptake. Further evaluations in vivo and in vitro demonstrated that salvianolic acid C significantly suppressed bacterial growth, indicating that targeting bacterial nutrient absorption is a promising strategy for identifying potential antibacterial drugs.
Collapse
Affiliation(s)
- Jinyan Jiang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Suguru Okuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hideaki Itoh
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ken Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiromi Nakanishi
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Peng Lu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, 828, Zhongxing Road, Xitang Town, Jiashan County, Jiaxing City, Zhejiang Province, 314100, China
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Research Center for Food Safety, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
5
|
Grygiel I, Bajrak O, Wójcicki M, Krusiec K, Jończyk-Matysiak E, Górski A, Majewska J, Letkiewicz S. Comprehensive Approaches to Combatting Acinetobacter baumannii Biofilms: From Biofilm Structure to Phage-Based Therapies. Antibiotics (Basel) 2024; 13:1064. [PMID: 39596757 PMCID: PMC11591314 DOI: 10.3390/antibiotics13111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Acinetobacter baumannii-a multidrug-resistant (MDR) pathogen that causes, for example, skin and soft tissue wounds; urinary tract infections; pneumonia; bacteremia; and endocarditis, particularly due to its ability to form robust biofilms-poses a significant challenge in clinical settings. This structure protects the bacteria from immune responses and antibiotic treatments, making infections difficult to eradicate. Given the rise in antibiotic resistance, alternative therapeutic approaches are urgently needed. Bacteriophage-based strategies have emerged as a promising solution for combating A. baumannii biofilms. Phages, which are viruses that specifically infect bacteria, offer a targeted and effective means of disrupting biofilm and lysing bacterial cells. This review explores the current advancements in bacteriophage therapy, focusing on its potential for treating A. baumannii biofilm-related infections. We described the mechanisms by which phages interact with biofilms, the challenges in phage therapy implementation, and the strategies being developed to enhance its efficacy (phage cocktails, engineered phages, combination therapies with antibiotics). Understanding the role of bacteriophages in both biofilm disruption and in inhibition of its forming could pave the way for innovative treatments in combating MDR A. baumannii infections as well as the prevention of their development.
Collapse
Affiliation(s)
- Ilona Grygiel
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Olaf Bajrak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Michał Wójcicki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Klaudia Krusiec
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Professor Emeritus, Department of Immunology, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Joanna Majewska
- Department of Pathogen Biology and Immunology, University of Wrocław, 51-148 Wrocław, Poland;
| | - Sławomir Letkiewicz
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Collegium Medicum, Jan Długosz University, 42-200 Częstochowa, Poland
| |
Collapse
|
6
|
Golden MM, Heppe AC, Zaremba CL, Wuest WM. Metal chelation as an antibacterial strategy for Pseudomonas aeruginosa and Acinetobacter baumannii. RSC Chem Biol 2024; 5:d4cb00175c. [PMID: 39372678 PMCID: PMC11446287 DOI: 10.1039/d4cb00175c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
It is estimated that by 2050, bacterial infections will cause 1.8 million more deaths than cancer annually, and the current lack of antibiotic drug discovery is only exacerbating the crisis. Two pathogens in particular, Gram-negative bacteria A. baumannii and P. aeruginosa, are of grave concern because of their heightened multi-drug resistance due to a dense, impermeable outer membrane. However, targeting specific cellular processes may prove successful in overcoming bacterial resistance. This review will concentrate on a novel approach to combatting pathogenicity by disarming bacteria through the disruption of metal homeostasis to reduce virulence and enhance antibiotic uptake. The varying levels of success in bringing metallophores to clinical trials, with currently only one FDA-approved siderophore antibiotic to date, will also be detailed.
Collapse
Affiliation(s)
| | - Amelia C Heppe
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | - Cassandra L Zaremba
- Department of Chemistry and Biochemistry, Denison University Granville OH 43023 USA
| | - William M Wuest
- Department of Chemistry, Emory University Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory School of Medicine, Emory University Atlanta GA 30322 USA
| |
Collapse
|
7
|
Wang TSA, Chen PL, Chen YCS, Chiu YW, Lin ZJ, Kao CY, Hung HM. Evaluation of the Stereochemistry of Staphyloferrin A for Developing Staphylococcus-Specific Targeting Conjugates. Chembiochem 2024; 25:e202400480. [PMID: 38965052 DOI: 10.1002/cbic.202400480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Bacteria in the genus Staphylococcus are pathogenic and harmful to humans. Alarmingly, some Staphylococcus, such as methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) have spread worldwide and become notoriously resistant to antibiotics, threatening and concerning public health. Hence, the development of new Staphylococcus-targeting diagnostic and therapeutic agents is urgent. Here, we chose the S. aureus-secreted siderophore staphyloferrin A (SA) as a guiding unit. We developed a series of Staphyloferrin A conjugates (SA conjugates) and showed the specific targeting ability to Staphylococcus bacteria. Furthermore, among the structural factors we evaluated, the stereo-chemistry of the amino acid backbone of SA conjugates is essential to efficiently target Staphylococci. Finally, we demonstrated that fluorescent Staphyloferrin A probes (SA-FL probes) could specifically target Staphylococci in complex bacterial mixtures.
Collapse
Affiliation(s)
- Tsung-Shing Andrew Wang
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Pin-Lung Chen
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Yi-Chen Sarah Chen
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Yu-Wei Chiu
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Zih-Jheng Lin
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Chih-Yao Kao
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Hsuan-Min Hung
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| |
Collapse
|
8
|
Luo VC, Peczuh MW. Location, Location, Location: Establishing Design Principles for New Antibacterials from Ferric Siderophore Transport Systems. Molecules 2024; 29:3889. [PMID: 39202968 PMCID: PMC11357680 DOI: 10.3390/molecules29163889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
This review strives to assemble a set of molecular design principles that enables the delivery of antibiotic warheads to Gram-negative bacterial targets (ESKAPE pathogens) using iron-chelating siderophores, known as the Trojan Horse strategy for antibiotic development. Principles are derived along two main lines. First, archetypical siderophores and their conjugates are used as case studies for native iron transport. They enable the consideration of the correspondence of iron transport and antibacterial target location. The second line of study charts the rationale behind the clinical antibiotic cefiderocol. It illustrates the potential versatility for the design of new Trojan Horse-based antibiotics. Themes such as matching the warhead to a location where the siderophore delivers its cargo (i.e., periplasm vs. cytoplasm), whether or not a cleavable linker is required, and the relevance of cheaters to the effectiveness and selectivity of new conjugates will be explored. The effort to articulate rules has identified gaps in the current understanding of iron transport pathways and suggests directions for new investigations.
Collapse
Affiliation(s)
| | - Mark W. Peczuh
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, U3060, Storrs, CT 06269, USA;
| |
Collapse
|
9
|
Zhang S, Di L, Qi Y, Qian X, Wang S. Treatment of infections caused by carbapenem-resistant Acinetobacter baumannii. Front Cell Infect Microbiol 2024; 14:1395260. [PMID: 39081869 PMCID: PMC11287075 DOI: 10.3389/fcimb.2024.1395260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Patients with severe carbapenem-resistant Acinetobacter baumannii (CRAB) infections currently face significant treatment challenges. When patients display signs of infection and the clinical suspicion of CRAB infections is high, appropriate treatment should be immediately provided. However, current treatment plans and clinical data for CRAB are limited. Inherent and acquired resistance mechanisms, as well as host factors, significantly restrict options for empirical medication. Moreover, inappropriate drug coverage can have detrimental effects on patients. Most existing studies have limitations, such as a restricted sample size, and are predominantly observational or non-randomized, which report significant variability in patient infection severity and comorbidities. Therefore, a gold-standard therapy remains lacking. Current and future treatment options of infections due to CRAB were described in this review. The dose and considerable side effects restrict treatment options for polymyxins, and high doses of ampicillin-sulbactam or tigecycline appear to be the best option at the time of initial treatment. Moreover, new drugs such as durlobactam and cefiderocol have substantial therapeutic capabilities and may be effective salvage treatments. Bacteriophages and antimicrobial peptides may serve as alternative treatment options in the near future. The advantages of a combination antimicrobial regimen appear to predominate those of a single regimen. Despite its significant nephrotoxicity, colistin is considered a primary treatment and is often used in combination with antimicrobials, such as tigecycline, ampicillin-sulbactam, meropenem, or fosfomycin. The Infectious Diseases Society of America (IDSA) has deemed high-dose ampicillin-sulbactam, which is typically combined with high-dose tigecycline, polymyxin, and other antibacterial agents, the best option for treating serious CRAB infections. A rational combination of drug use and the exploration of new therapeutic drugs can alleviate or prevent the effects of CRAB infections, shorten hospital stays, and reduce patient mortality.
Collapse
Affiliation(s)
- Siqin Zhang
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingfang Di
- Department of Clinical Laboratory, Tongxiang First People’s Hospital, Tongxiang, Zhejiang, China
| | - Yan Qi
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang Qian
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Siwei Wang
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| |
Collapse
|
10
|
Parkhill SL, Johnson EO. Integrating bacterial molecular genetics with chemical biology for renewed antibacterial drug discovery. Biochem J 2024; 481:839-864. [PMID: 38958473 PMCID: PMC11346456 DOI: 10.1042/bcj20220062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
The application of dyes to understanding the aetiology of infection inspired antimicrobial chemotherapy and the first wave of antibacterial drugs. The second wave of antibacterial drug discovery was driven by rapid discovery of natural products, now making up 69% of current antibacterial drugs. But now with the most prevalent natural products already discovered, ∼107 new soil-dwelling bacterial species must be screened to discover one new class of natural product. Therefore, instead of a third wave of antibacterial drug discovery, there is now a discovery bottleneck. Unlike natural products which are curated by billions of years of microbial antagonism, the vast synthetic chemical space still requires artificial curation through the therapeutics science of antibacterial drugs - a systematic understanding of how small molecules interact with bacterial physiology, effect desired phenotypes, and benefit the host. Bacterial molecular genetics can elucidate pathogen biology relevant to therapeutics development, but it can also be applied directly to understanding mechanisms and liabilities of new chemical agents with new mechanisms of action. Therefore, the next phase of antibacterial drug discovery could be enabled by integrating chemical expertise with systematic dissection of bacterial infection biology. Facing the ambitious endeavour to find new molecules from nature or new-to-nature which cure bacterial infections, the capabilities furnished by modern chemical biology and molecular genetics can be applied to prospecting for chemical modulators of new targets which circumvent prevalent resistance mechanisms.
Collapse
Affiliation(s)
- Susannah L. Parkhill
- Systems Chemical Biology of Infection and Resistance Laboratory, The Francis Crick Institute, London, U.K
- Faculty of Life Sciences, University College London, London, U.K
| | - Eachan O. Johnson
- Systems Chemical Biology of Infection and Resistance Laboratory, The Francis Crick Institute, London, U.K
- Faculty of Life Sciences, University College London, London, U.K
- Department of Chemistry, Imperial College, London, U.K
- Department of Chemistry, King's College London, London, U.K
| |
Collapse
|
11
|
Shein AMS, Hongsing P, Smith OK, Phattharapornjaroen P, Miyanaga K, Cui L, Ishikawa H, Amarasiri M, Monk PN, Kicic A, Chatsuwan T, Pletzer D, Higgins PG, Abe S, Wannigama DL. Current and novel therapies for management of Acinetobacter baumannii-associated pneumonia. Crit Rev Microbiol 2024:1-22. [PMID: 38949254 DOI: 10.1080/1040841x.2024.2369948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
Acinetobacter baumannii is a common pathogen associated with hospital-acquired pneumonia showing increased resistance to carbapenem and colistin antibiotics nowadays. Infections with A. baumannii cause high patient fatalities due to their capability to evade current antimicrobial therapies, emphasizing the urgency of developing viable therapeutics to treat A. baumannii-associated pneumonia. In this review, we explore current and novel therapeutic options for overcoming therapeutic failure when dealing with A. baumannii-associated pneumonia. Among them, antibiotic combination therapy administering several drugs simultaneously or alternately, is one promising approach for optimizing therapeutic success. However, it has been associated with inconsistent and inconclusive therapeutic outcomes across different studies. Therefore, it is critical to undertake additional clinical trials to ascertain the clinical effectiveness of different antibiotic combinations. We also discuss the prospective roles of novel antimicrobial therapies including antimicrobial peptides, bacteriophage-based therapy, repurposed drugs, naturally-occurring compounds, nanoparticle-based therapy, anti-virulence strategies, immunotherapy, photodynamic and sonodynamic therapy, for utilizing them as additional alternative therapy while tackling A. baumannii-associated pneumonia. Importantly, these innovative therapies further require pharmacokinetic and pharmacodynamic evaluation for safety, stability, immunogenicity, toxicity, and tolerability before they can be clinically approved as an alternative rescue therapy for A. baumannii-associated pulmonary infections.
Collapse
Affiliation(s)
- Aye Mya Sithu Shein
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in, Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - O'Rorke Kevin Smith
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Phatthranit Phattharapornjaroen
- Department of Emergency Medicine, Center of Excellence, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Surgery, Sahlgrenska Academy, Institute of Clinical Sciences, Gothenburg University, Gothenburg, Sweden
| | - Kazuhiko Miyanaga
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Longzhu Cui
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Hitoshi Ishikawa
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Japan
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Japan
| | - Peter N Monk
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, UK
| | - Anthony Kicic
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Western Australia, Australia
- School of Population Health, Curtin University, Bentley, Western Australia, Australia
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in, Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Dhammika Leshan Wannigama
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in, Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, UK
- Pathogen Hunter's Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| |
Collapse
|
12
|
Pals MJ, Wijnberg L, Yildiz Ç, Velema WA. Catechol-Siderophore Mimics Convey Nucleic Acid Therapeutics into Bacteria. Angew Chem Int Ed Engl 2024; 63:e202402405. [PMID: 38407513 DOI: 10.1002/anie.202402405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 02/27/2024]
Abstract
Antibacterial resistance is a major threat for human health. There is a need for new antibacterials to stay ahead of constantly-evolving resistant bacteria. Nucleic acid therapeutics hold promise as powerful antibiotics, but issues with their delivery hamper their applicability. Here, we exploit the siderophore-mediated iron uptake pathway to efficiently transport antisense oligomers into bacteria. We appended a synthetic siderophore to antisense oligomers targeting the essential acpP gene in Escherichia coli. Siderophore-conjugated PNA and PMO antisense oligomers displayed potent antibacterial properties. Conjugates bearing a minimal siderophore consisting of a mono-catechol group showed equally effective. Targeting the lacZ transcript resulted in dose-dependent decreased β-galactosidase production, demonstrating selective protein downregulation. Applying this concept to Acinetobacter baumannii also showed concentration-dependent growth inhibition. Whole-genome sequencing of resistant mutants and competition experiments with the endogenous siderophore verified selective uptake through the siderophore-mediated iron uptake pathway. Lastly, no toxicity towards mammalian cells was found. Collectively, we demonstrate for the first time that large nucleic acid therapeutics can be efficiently transported into bacteria using synthetic siderophore mimics.
Collapse
Affiliation(s)
- Mathijs J Pals
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Luuk Wijnberg
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Çağlar Yildiz
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Willem A Velema
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Huang YJ, Zang YP, Peng LJ, Yang MH, Lin J, Chen WM. Cajaninstilbene acid derivatives conjugated with siderophores of 3-hydroxypyridin-4(1H)-ones as novel antibacterial agents against Gram-negative bacteria based on the Trojan horse strategy. Eur J Med Chem 2024; 269:116339. [PMID: 38537513 DOI: 10.1016/j.ejmech.2024.116339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/07/2024]
Abstract
The low permeability of the outer membrane of Gram-negative bacteria is a serious obstacle to the development of new antibiotics against them. Conjugation of antibiotic with siderophore based on the "Trojan horse strategy" is a promising strategy to overcome the outer membrane obstacle. In this study, series of antibacterial agents were designed and synthesized by conjugating the 3-hydroxypyridin-4(1H)-one based siderophores with cajaninstilbene acid (CSA) derivative 4 which shows good activity against Gram-positive bacteria by targeting their cell membranes but is ineffective against Gram-negative bacteria. Compared to the inactive parent compound 4, the conjugates 45c or 45d exhibits significant improvement in activity against Gram-negative bacteria, including Escherichia coli, Klebsiella pneumoniae and especially P. aeruginosa (minimum inhibitory concentrations, MICs = 7.8-31.25 μM). The antibacterial activity of the conjugates is attributed to the CSA derivative moiety, and the action mechanism is by disruption of bacterial cell membranes. Further studies on the uptake mechanisms showed that the bacterial siderophore-dependent iron transport system was involved in the uptake of the conjugates. In addition, the conjugates 45c and 45d showed a lower cytotoxic effects in vivo and in vitro and a positive therapeutic effect in the treatment of C. elegans infected by P. aeruginosa. Overall, our work describes a new class and a promising 3-hydroxypyridin-4(1H)-one-CSA derivative conjugates for further development as antibacterial agents against Gram-negative bacteria.
Collapse
Affiliation(s)
- Yong-Jun Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 511400, China
| | - Yi-Peng Zang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 511400, China
| | - Li-Jun Peng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 511400, China
| | - Ming-Han Yang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 511400, China
| | - Jing Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 511400, China.
| | - Wei-Min Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 511400, China.
| |
Collapse
|
14
|
Yus C, Gámez E, Arruebo M. Expert opinion on antimicrobial therapies: is there enough scientific evidence to state that targeted therapies outperform non-targeted ones? Expert Opin Drug Deliv 2024; 21:593-609. [PMID: 38619078 DOI: 10.1080/17425247.2024.2340661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Different active and passive strategies have been developed to fight against pathogenic bacteria. Those actions are undertaken to reduce the bacterial burden while minimizing the possibilities to develop not only antimicrobial resistance but also antimicrobial side-effects such as allergic or hypersensitivity reactions. AREAS COVERED We have reviewed preclinical results that evidence that targeted antimicrobial therapies outperform non-targeted ones. Active selective targeting against pathogenic bacteria has been achieved through the functionalization of antimicrobials, either alone or encapsulated within micro- or nanocarriers, with various recognition moieties. These moieties include peptides, aptamers, antibodies, carbohydrates, extracellular vesicles, cell membranes, infective agents, and other affinity ligands with specific bacterial tropism. Those selective ligands increase retention and enhance effectiveness reducing the side-effects and the required dose to exert the antimicrobial action at the site of infection. EXPERT OPINION When using targeted antimicrobial therapies not only reduced side-effects are observed, but also, compared to the administration of equivalent doses of the non-targeted drugs, a superior efficacy has been demonstrated against planktonic, sessile, and intracellular pathogenic bacterial persisters. The translation of those targeted therapies to subsequent phases of clinical development still requires the demonstration of a reduction in the probabilities for the pathogen to develop resistance when using targeted approaches.
Collapse
Affiliation(s)
- Cristina Yus
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza, Zaragoza, Spain
| | - Enrique Gámez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza, Zaragoza, Spain
| | - Manuel Arruebo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza, Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain
| |
Collapse
|
15
|
Khazaal MT, Faraag AHI, El-Hendawy HH. In vitro and in silico studies of enterobactin-inspired Ciprofloxacin and Fosfomycin first generation conjugates on the antibiotic resistant E. coli OQ866153. BMC Microbiol 2024; 24:95. [PMID: 38519885 PMCID: PMC10958948 DOI: 10.1186/s12866-024-03248-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 03/03/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The emergence of antimicrobial resistance in bacterial pathogens is a growing concern worldwide due to its impact on the treatment of bacterial infections. The "Trojan Horse" strategy has been proposed as a potential solution to overcome drug resistance caused by permeability issues. OBJECTIVE The objective of our research was to investigate the bactericidal activity and mechanism of action of the "Trojan Horse" strategy using enterobactin conjugated with Ciprofloxacin and Fosfomycin against the antibiotic-resistant Escherichia coli strain OQ866153. METHODOLOGY Enterobactin, a mixed ligand of E. coli OQ866153, was conjugated with Ciprofloxacin and Fosfomycin individually to aid active absorption via specific enterobactin binding proteins (FepABCDG). The effectiveness of the conjugates was assessed by measuring their bactericidal activity against E. coli OQ866153, as well as their ability to inhibit DNA gyrase enzyme and biofilm formation. RESULTS The Fe+3-enterobactin-Ciprofloxacin conjugate effectively inhibited the DNA gyrase enzyme (Docking score = -8.597 kcal/mol) and resulted in a lower concentration (25 μg/ml) required to eliminate supercoiled DNA plasmids compared to the parent drug (35 μg/ml; Docking score = -6.264 kcal/mol). The Fe+3-Enterobactin-Fosfomycin conjugate showed a higher inhibition percentage (100%) of biofilm formation compared to Fosfomycin (21.58%) at a concentration of 2 mg/ml, with docking scores of -5.481 and -3.756 kcal/mol against UDP-N acetylglucosamine 1-carboxyvinyltransferase MurA. CONCLUSION The findings of this study suggest that the "Trojan Horse" strategy using enterobactin conjugated with Ciprofloxacin and Fosfomycin can effectively overcome permeability issues caused by efflux proteins and enhance the bactericidal activity of these drugs against antibiotic-resistant strains of E. coli.
Collapse
Affiliation(s)
- Mohamed T Khazaal
- Botany and Microbiology Department, Faculty of Science, Helwan University, HelwanCairo, 11795, Egypt
| | - Ahmed H I Faraag
- Botany and Microbiology Department, Faculty of Science, Helwan University, HelwanCairo, 11795, Egypt.
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt.
| | - Hoda H El-Hendawy
- Botany and Microbiology Department, Faculty of Science, Helwan University, HelwanCairo, 11795, Egypt.
| |
Collapse
|
16
|
Renard S, Versluys S, Taillier T, Dubarry N, Leroi-Geissler C, Rey A, Cornaire E, Sordello S, Carry JCB, Angouillant-Boniface O, Gouyon T, Thompson F, Lebourg G, Certal V, Balazs L, Arranz E, Doerflinger G, Bretin F, Gervat V, Brohan E, Kraft V, Boulenc X, Ducelier C, Bacqué E, Couturier C. Optimization of the Antibacterial Spectrum and the Developability Profile of the Novel-Class Natural Product Corramycin. J Med Chem 2023; 66:16869-16887. [PMID: 38088830 DOI: 10.1021/acs.jmedchem.3c01564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Corramycin 1 is a novel zwitterionic antibacterial peptide isolated from a culture of the myxobacterium Corallococcus coralloides. Though Corramycin displayed a narrow spectrum and modest MICs against sensitive bacteria, its ADMET and physchem profile as well as its high tolerability in mice along with an outstanding in vivo efficacy in an Escherichia coli septicemia mouse model were promising and prompted us to embark on an optimization program aiming at enlarging the spectrum and at increasing the antibacterial activities by modulating membrane permeability. Scanning the peptidic moiety by the Ala-scan strategy followed by key stabilization and introduction of groups such as a primary amine or siderophore allowed us to enlarge the spectrum and increase the overall developability profile. The optimized Corramycin 28 showed an improved mouse IV PK and a broader spectrum with high potency against key Gram-negative bacteria that translated into excellent efficacy in several in vivo mouse infection models.
Collapse
Affiliation(s)
| | | | - Thomas Taillier
- Evotec, 1541, Avenue Marcel Mérieux, Marcy L'Etoile 69280, France
| | | | | | - Astrid Rey
- Evotec, 1541, Avenue Marcel Mérieux, Marcy L'Etoile 69280, France
| | - Emilie Cornaire
- Evotec, 1541, Avenue Marcel Mérieux, Marcy L'Etoile 69280, France
| | | | | | | | - Thierry Gouyon
- Sanofi, 13 Quai Jules Guesde, Vitry-sur-Seine 94403, France
| | | | - Gilles Lebourg
- Sanofi, 13 Quai Jules Guesde, Vitry-sur-Seine 94403, France
| | - Victor Certal
- Sanofi, 13 Quai Jules Guesde, Vitry-sur-Seine 94403, France
| | - Laszlo Balazs
- Sanofi, 13 Quai Jules Guesde, Vitry-sur-Seine 94403, France
| | - Esther Arranz
- Sanofi, 13 Quai Jules Guesde, Vitry-sur-Seine 94403, France
| | | | | | - Vincent Gervat
- Sanofi, 13 Quai Jules Guesde, Vitry-sur-Seine 94403, France
| | - Eric Brohan
- Sanofi, 13 Quai Jules Guesde, Vitry-sur-Seine 94403, France
| | - Volker Kraft
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt am Main 65926, Germany
| | | | - Cécile Ducelier
- Sanofi, 1 Avenue Pierre Brossolette, Chilly-Mazarin 91385, France
| | - Eric Bacqué
- Evotec, 1541, Avenue Marcel Mérieux, Marcy L'Etoile 69280, France
| | - Cédric Couturier
- Evotec, 1541, Avenue Marcel Mérieux, Marcy L'Etoile 69280, France
| |
Collapse
|
17
|
Weng C, Tan YLK, Koh WG, Ang WH. Harnessing Transition Metal Scaffolds for Targeted Antibacterial Therapy. Angew Chem Int Ed Engl 2023; 62:e202310040. [PMID: 37621226 DOI: 10.1002/anie.202310040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
Antimicrobial resistance, caused by persistent adaptation and growing resistance of pathogenic bacteria to overprescribed antibiotics, poses one of the most serious and urgent threats to global public health. The limited pipeline of experimental antibiotics in development further exacerbates this looming crisis and new drugs with alternative modes of action are needed to tackle evolving pathogenic adaptation. Transition metal complexes can replenish this diminishing stockpile of drug candidates by providing compounds with unique properties that are not easily accessible using pure organic scaffolds. We spotlight four emerging strategies to harness these unique properties to develop new targeted antibacterial agents.
Collapse
Affiliation(s)
- Cheng Weng
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | | | - Wayne Gareth Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
- NUS Graduate School of Integrative Sciences and Engineering, 28 Medical Drive, Singapore, 117456, Singapore
| |
Collapse
|
18
|
Krajnc A, Gobec S. Conjugates of monocyclic β-lactams and siderophore mimetics: a patent evaluation (WO2023023393). Expert Opin Ther Pat 2023; 33:471-476. [PMID: 37902072 DOI: 10.1080/13543776.2023.2262135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023]
Abstract
INTRODUCTION β-Lactams, which include monobactams, remain the most important class of antibiotics worldwide. Aztreonam, the only monobactam in clinical use, has remarkable activity against many Gram-negative bacteria, but limited activity against some of the most problematic multidrug-resistant (MDR) pathogens, such as MDR Pseudomonas aeruginosa and Acinetobacter baumannii co-expressing extended-spectrum- and metallo-β-lactamases, which can inactivate aztreonam by hydrolysis. AREAS COVERED Structurally novel siderophore-conjugated aztreonam derivatives with improved antibacterial properties against several high-priority pathogens are claimed. This invention reports that sidechain extension of aztreonam is tolerated; the coupling of its aminothiazoloxime carboxylic acid part with a siderophore mimetic significantly improved the antibacterial activity against several problematic strains, including MDR A. baumannii isolates with carbapenemase/cephalosporinase activity. EXPERT OPINION Finding new strategies to tackle bacterial resistance to β-lactam antibiotics is critical. Considering that β lactams are validated and safe drugs, this research may stimulate the field to develop new ideas in the arena of antimicrobial drug discovery, particularly with respect to siderophore mimetics.
Collapse
Affiliation(s)
- Alen Krajnc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Stanislav Gobec
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
19
|
Kadeřábková N, Mahmood AJS, Furniss RCD, Mavridou DAI. Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope. Adv Microb Physiol 2023; 83:221-307. [PMID: 37507160 PMCID: PMC10517717 DOI: 10.1016/bs.ampbs.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing antimicrobials. As a result, its presence creates a major obstacle for the treatment of resistant infections and for the development of new antibiotics. Despite this seemingly impenetrable armor, in-depth understanding of the cell envelope, including structural, functional and systems biology insights, has promoted efforts to target it that can ultimately lead to the generation of new antibacterial therapies. In this article, we broadly overview the biology of the cell envelope and highlight attempts and successes in generating inhibitors that impair its function or biogenesis. We argue that the very structure that has hampered antibiotic discovery for decades has untapped potential for the design of novel next-generation therapeutics against bacterial pathogens.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Ayesha J S Mahmood
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
20
|
Rayner B, Verderosa AD, Ferro V, Blaskovich MAT. Siderophore conjugates to combat antibiotic-resistant bacteria. RSC Med Chem 2023; 14:800-822. [PMID: 37252105 PMCID: PMC10211321 DOI: 10.1039/d2md00465h] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/21/2023] [Indexed: 10/31/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global threat to society due to the increasing emergence of multi-drug resistant bacteria that are not susceptible to our last line of defence antibiotics. Exacerbating this issue is a severe gap in antibiotic development, with no new clinically relevant classes of antibiotics developed in the last two decades. The combination of the rapidly increasing emergence of resistance and scarcity of new antibiotics in the clinical pipeline means there is an urgent need for new efficacious treatment strategies. One promising solution, known as the 'Trojan horse' approach, hijacks the iron transport system of bacteria to deliver antibiotics directly into cells - effectively tricking bacteria into killing themselves. This transport system uses natively produced siderophores, which are small molecules with a high affinity for iron. By linking antibiotics to siderophores, to make siderophore antibiotic conjugates, the activity of existing antibiotics can potentially be reinvigorated. The success of this strategy was recently exemplified with the clinical release of cefiderocol, a cephalosporin-siderophore conjugate with potent antibacterial activity against carbapenem-resistant and multi-drug resistant Gram-negative bacilli. This review discusses the recent advancements in siderophore antibiotic conjugates and the challenges associated with the design of these compounds that need to be overcome to deliver more efficacious therapeutics. Potential strategies have also been suggested for new generations of siderophore-antibiotics with enhanced activity.
Collapse
Affiliation(s)
- Beth Rayner
- Centre for Superbug Solutions, Institute for Molecular Bioscience, University of Queensland Brisbane Queensland Australia
- Australian Infectious Disease Research Centre, The University of Queensland Brisbane Queensland Australia
| | - Anthony D Verderosa
- Centre for Superbug Solutions, Institute for Molecular Bioscience, University of Queensland Brisbane Queensland Australia
- Australian Infectious Disease Research Centre, The University of Queensland Brisbane Queensland Australia
| | - Vito Ferro
- Australian Infectious Disease Research Centre, The University of Queensland Brisbane Queensland Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, University of Queensland Brisbane Queensland Australia
- Australian Infectious Disease Research Centre, The University of Queensland Brisbane Queensland Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland Australia
| |
Collapse
|
21
|
Evenson GE, Powell WC, Hinds AB, Walczak MA. Catalytic Amide Activation with Thermally Stable Molybdenum(VI) Dioxide Complexes. J Org Chem 2023; 88:6192-6202. [PMID: 37027833 PMCID: PMC10422866 DOI: 10.1021/acs.joc.3c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Oxazolines and thiazolines are important constituents of bioactive natural products and pharmaceuticals. Here, we report the development of an effective and practical method of oxazoline and thiazoline formation, which can facilitate the synthesis of natural products, chiral ligands, and pharmaceutical intermediates. This method capitalized on a Mo(VI) dioxide catalyst stabilized by substituted picolinic acid ligands, which is tolerant to many functional groups that would otherwise be sensitive to highly electrophilic alternative reagents.
Collapse
Affiliation(s)
- Garrett E Evenson
- University of Colorado, Department of Chemistry, Boulder, Colorado 80309, United States
| | - Wyatt C Powell
- University of Colorado, Department of Chemistry, Boulder, Colorado 80309, United States
| | - Aaron B Hinds
- University of Colorado, Department of Chemistry, Boulder, Colorado 80309, United States
| | - Maciej A Walczak
- University of Colorado, Department of Chemistry, Boulder, Colorado 80309, United States
| |
Collapse
|
22
|
Stelitano G, Cocorullo M, Mori M, Villa S, Meneghetti F, Chiarelli LR. Iron Acquisition and Metabolism as a Promising Target for Antimicrobials (Bottlenecks and Opportunities): Where Do We Stand? Int J Mol Sci 2023; 24:ijms24076181. [PMID: 37047161 PMCID: PMC10094389 DOI: 10.3390/ijms24076181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) infections is one of the most crucial challenges currently faced by the scientific community. Developments in the fundamental understanding of their underlying mechanisms may open new perspectives in drug discovery. In this review, we conducted a systematic literature search in PubMed, Web of Science, and Scopus, to collect information on innovative strategies to hinder iron acquisition in bacteria. In detail, we discussed the most interesting targets from iron uptake and metabolism pathways, and examined the main chemical entities that exhibit anti-infective activities by interfering with their function. The mechanism of action of each drug candidate was also reviewed, together with its pharmacodynamic, pharmacokinetic, and toxicological properties. The comprehensive knowledge of such an impactful area of research will hopefully reflect in the discovery of newer antibiotics able to effectively tackle the antimicrobial resistance issue.
Collapse
|
23
|
Zhang S, Chen Y, Zhu J, Lu Q, Cryle MJ, Zhang Y, Yan F. Structural diversity, biosynthesis, and biological functions of lipopeptides from Streptomyces. Nat Prod Rep 2023; 40:557-594. [PMID: 36484454 DOI: 10.1039/d2np00044j] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2022Streptomyces are ubiquitous in terrestrial and marine environments, where they display a fascinating metabolic diversity. As a result, these bacteria are a prolific source of active natural products. One important class of these natural products is the nonribosomal lipopeptides, which have diverse biological activities and play important roles in the lifestyle of Streptomyces. The importance of this class is highlighted by the use of related antibiotics in the clinic, such as daptomycin (tradename Cubicin). By virtue of recent advances spanning chemistry and biology, significant progress has been made in biosynthetic studies on the lipopeptide antibiotics produced by Streptomyces. This review will serve as a comprehensive guide for researchers working in this multidisciplinary field, providing a summary of recent progress regarding the investigation of lipopeptides from Streptomyces. In particular, we highlight the structures, properties, biosynthetic mechanisms, chemical and chemoenzymatic synthesis, and biological functions of lipopeptides. In addition, the application of genome mining techniques to Streptomyces that have led to the discovery of many novel lipopeptides is discussed, further demonstrating the potential of lipopeptides from Streptomyces for future development in modern medicine.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yunliang Chen
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- The Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 1000050, China.
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiujie Lu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800 Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800 Australia
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Fu Yan
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
24
|
Frei A, Verderosa AD, Elliott AG, Zuegg J, Blaskovich MAT. Metals to combat antimicrobial resistance. Nat Rev Chem 2023; 7:202-224. [PMID: 37117903 PMCID: PMC9907218 DOI: 10.1038/s41570-023-00463-4] [Citation(s) in RCA: 188] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/10/2023]
Abstract
Bacteria, similar to most organisms, have a love-hate relationship with metals: a specific metal may be essential for survival yet toxic in certain forms and concentrations. Metal ions have a long history of antimicrobial activity and have received increasing attention in recent years owing to the rise of antimicrobial resistance. The search for antibacterial agents now encompasses metal ions, nanoparticles and metal complexes with antimicrobial activity ('metalloantibiotics'). Although yet to be advanced to the clinic, metalloantibiotics are a vast and underexplored group of compounds that could lead to a much-needed new class of antibiotics. This Review summarizes recent developments in this growing field, focusing on advances in the development of metalloantibiotics, in particular, those for which the mechanism of action has been investigated. We also provide an overview of alternative uses of metal complexes to combat bacterial infections, including antimicrobial photodynamic therapy and radionuclide diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Angelo Frei
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Anthony D Verderosa
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alysha G Elliott
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Johannes Zuegg
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark A T Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
25
|
Peukert C, Rox K, Karge B, Hotop SK, Brönstrup M. Synthesis and Characterization of DOTAM-Based Sideromycins for Bacterial Imaging and Antimicrobial Therapy. ACS Infect Dis 2023; 9:330-341. [PMID: 36719860 PMCID: PMC9927285 DOI: 10.1021/acsinfecdis.2c00523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Indexed: 02/01/2023]
Abstract
The rise of antimicrobial resistance, especially in Gram-negative bacteria, calls for novel diagnostics and antibiotics. To efficiently penetrate their double-layered cell membrane, we conjugated the potent antibiotics daptomycin, vancomycin, and sorangicin A to catechol siderophores, which are actively internalized by the bacterial iron uptake machinery. LC-MS/MS uptake measurements of sorangicin derivatives verified that the conjugation led to a 100- to 525-fold enhanced uptake into bacteria compared to the free drug. However, the transfer to the cytosol was insufficient, which explains their lack of antibiotic efficacy. Potent antimicrobial effects were observed for the daptomycin conjugate 7 (∼1 μM) against multidrug-resistant Acinetobacter baumannii. A cyanin-7 label aside the daptomycin warhead furnished the theranostic 13 that retained its antibiotic activity and was also able to label ESKAPE bacteria, as demonstrated by microscopy and fluorescence assays. 13 and the cyanin-7 imaging conjugate 14 were stable in human plasma and had low plasma protein binding and cytotoxicity.
Collapse
Affiliation(s)
- Carsten Peukert
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124Braunschweig, Germany
| | - Katharina Rox
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124Braunschweig, Germany
- German
Center for Infection Research (DZIF), Site Hannover-Braunschweig, Inhoffenstraße 7, 38124Braunschweig, Germany
| | - Bianka Karge
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124Braunschweig, Germany
| | - Sven-Kevin Hotop
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124Braunschweig, Germany
| | - Mark Brönstrup
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124Braunschweig, Germany
- Institute
for Organic Chemistry (IOC), Leibniz Universität
Hannover, Schneiderberg
1B, 30167Hannover, Germany
- German
Center for Infection Research (DZIF), Site Hannover-Braunschweig, Inhoffenstraße 7, 38124Braunschweig, Germany
| |
Collapse
|
26
|
Wang YY, Zhang XY, Zhong XL, Huang YJ, Lin J, Chen WM. Design and Synthesis of 3-Hydroxy-pyridin-4(1 H)-ones-Ciprofloxacin Conjugates as Dual Antibacterial and Antibiofilm Agents against Pseudomonas aeruginosa. J Med Chem 2023; 66:2169-2193. [PMID: 36692083 DOI: 10.1021/acs.jmedchem.2c02044] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pseudomonas aeruginosa infections are often complicated by the fact that it can easily form a biofilm that increases its resistance to antibiotics. Consequently, the development of novel antibacterial agents against biofilm-associated drug-resistant P. aeruginosa is urgently needed. Herein, we report a series of 3-hydroxy-pyridin-4(1H)-ones-ciprofloxacin conjugates that were designed and synthesized as dual antibacterial and antibiofilm agents against P. aeruginosa. A potential 2-substituted 3-hydroxy-1,6-dimethylpyridin-4(1H)-one-ciprofloxacin conjugate (5e) was identified and had the best minimum inhibitory concentrations of 0.86 and 0.43 μM against P. aeruginosa 27853 and PAO1 and reduced 78.3% of biofilm formation. In addition, 5e eradicates mature biofilms and kills living bacterial cells that are incorporated into the biofilm. Studies on the antibiofilm mechanism of conjugates showed that 5e interferes with iron uptake by bacteria, inhibits their motility, and reduces the production of virulence. These results demonstrate that 3-hydroxy-pyridin-4(1H)-ones-ciprofloxacin conjugates are potent in the treatment of biofilm-associated drug-resistant P. aeruginosa infections.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Xiao-Yi Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Xiao-Lin Zhong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Yong-Jun Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Jing Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Wei-Min Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| |
Collapse
|
27
|
Rohrbacher C, Zscherp R, Weck SC, Klahn P, Ducho C. Synthesis of an Antimicrobial Enterobactin-Muraymycin Conjugate for Improved Activity Against Gram-Negative Bacteria. Chemistry 2023; 29:e202202408. [PMID: 36222466 PMCID: PMC10107792 DOI: 10.1002/chem.202202408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 12/12/2022]
Abstract
Overcoming increasing antibiotic resistance requires the development of novel antibacterial agents that address new targets in bacterial cells. Naturally occurring nucleoside antibiotics (such as muraymycins) inhibit the bacterial membrane protein MraY, a clinically unexploited essential enzyme in peptidoglycan (cell wall) biosynthesis. Even though a range of synthetic muraymycin analogues has already been reported, they generally suffer from limited cellular uptake and a lack of activity against Gram-negative bacteria. We herein report an approach to overcome these hurdles: a synthetic muraymycin analogue has been conjugated to a siderophore, i. e. the enterobactin derivative EntKL , to increase the cellular uptake into Gram-negative bacteria. The resultant conjugate showed significantly improved antibacterial activity against an efflux-deficient E. coli strain, thus providing a proof-of-concept of this novel approach and a starting point for the future optimisation of such conjugates towards potent agents against Gram-negative pathogens.
Collapse
Affiliation(s)
- Christian Rohrbacher
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| | - Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Stefanie C Weck
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| | - Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.,Department of Chemistry and Molecular Biology, Division of Organic and Medicinal Chemistry, University of Gothenburg, Kemigården 4, 412 96, Göteborg, Sweden
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| |
Collapse
|
28
|
Peukert C, Gasser V, Orth T, Fritsch S, Normant V, Cunrath O, Schalk IJ, Brönstrup M. Trojan Horse Siderophore Conjugates Induce Pseudomonas aeruginosa Suicide and Qualify the TonB Protein as a Novel Antibiotic Target. J Med Chem 2023; 66:553-576. [PMID: 36548006 PMCID: PMC9841981 DOI: 10.1021/acs.jmedchem.2c01489] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 12/24/2022]
Abstract
Rising infection rates with multidrug-resistant pathogens calls for antibiotics with novel modes of action. Herein, we identify the inner membrane protein TonB, a motor of active uptake in Gram-negative bacteria, as a novel target in antimicrobial therapy. The interaction of the TonB box of outer membrane transporters with TonB is crucial for the internalization of essential metabolites. We designed TonB box peptides and coupled them with synthetic siderophores in order to facilitate their uptake into bacteria in up to 32 synthetic steps. Three conjugates repressed the growth of Pseudomonas aeruginosa cells unable to produce their own siderophores, with minimal inhibitory concentrations between 0.1 and 0.5 μM. The transporters mediating uptake of these compounds were identified as PfeA and PirA. The study illustrates a variant of cellular suicide where a transporter imports its own inhibitor and demonstrates that artificial siderophores can import cargo with molecular weights up to 4 kDa.
Collapse
Affiliation(s)
- Carsten Peukert
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Véronique Gasser
- CNRS, University
of Strasbourg, UMR7242, ESBS, Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France
| | - Till Orth
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Sarah Fritsch
- CNRS, University
of Strasbourg, UMR7242, ESBS, Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France
| | - Vincent Normant
- CNRS, University
of Strasbourg, UMR7242, ESBS, Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France
| | - Olivier Cunrath
- CNRS, University
of Strasbourg, UMR7242, ESBS, Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France
| | - Isabelle J. Schalk
- CNRS, University
of Strasbourg, UMR7242, ESBS, Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France
| | - Mark Brönstrup
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- German
Center for Infection Research (DZIF), Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Center for
Biomolecular Drug Research (BMWZ), Schneiderberg 38, 30167 Hannover, Germany
| |
Collapse
|
29
|
Almeida MC, da Costa PM, Sousa E, Resende DISP. Emerging Target-Directed Approaches for the Treatment and Diagnosis of Microbial Infections. J Med Chem 2023; 66:32-70. [PMID: 36586133 DOI: 10.1021/acs.jmedchem.2c01212] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the rising levels of drug resistance, developing efficient antimicrobial therapies has become a priority. A promising strategy is the conjugation of antibiotics with relevant moieties that can potentiate their activity by target-directing. The conjugation of siderophores with antibiotics allows them to act as Trojan horses by hijacking the microorganisms' highly developed iron transport systems and using them to carry the antibiotic into the cell. Through the analysis of relevant examples of the past decade, this Perspective aims to reveal the potential of siderophore-antibiotic Trojan horses for the treatment of infections and the role of siderophores in diagnostic techniques. Other conjugated molecules will be the subject of discussion, namely those involving vitamin B12, carbohydrates, and amino acids, as well as conjugated compounds targeting protein degradation and β-lactamase activated prodrugs.
Collapse
Affiliation(s)
- Mariana C Almeida
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Paulo M da Costa
- CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana I S P Resende
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| |
Collapse
|
30
|
Nazli A, He DL, Liao D, Khan MZI, Huang C, He Y. Strategies and progresses for enhancing targeted antibiotic delivery. Adv Drug Deliv Rev 2022; 189:114502. [PMID: 35998828 DOI: 10.1016/j.addr.2022.114502] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 01/24/2023]
Abstract
Antibiotic resistance is a global health issue and a potential risk for society. Antibiotics administered through conventional formulations are devoid of targeting effect and often spread to various undesired body sites, leading to sub-lethal concentrations at the site of action and thus resulting in emergence of resistance, as well as side effects. Moreover, we have a very slim antibiotic pipeline. Drug-delivery systems have been designed to control the rate, time, and site of drug release, and innovative approaches for antibiotic delivery provide a glint of hope for addressing these issues. This review elaborates different delivery strategies and approaches employed to overcome the limitations of conventional antibiotic therapy. These include antibiotic conjugates, prodrugs, and nanocarriers for local and targeted antibiotic release. In addition, a wide range of stimuli-responsive nanocarriers and biological carriers for targeted antibiotic delivery are discussed. The potential advantages and limitations of targeted antibiotic delivery strategies are described along with possible solutions to avoid these limitations. A number of antibiotics successfully delivered through these approaches with attained outcomes and potentials are reviewed.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | - David L He
- College of Chemistry, University of California, Berkeley, CA 94720, United States
| | - Dandan Liao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | | | - Chao Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| |
Collapse
|
31
|
Dolma KG, Khati R, Paul AK, Rahmatullah M, de Lourdes Pereira M, Wilairatana P, Khandelwal B, Gupta C, Gautam D, Gupta M, Goyal RK, Wiart C, Nissapatorn V. Virulence Characteristics and Emerging Therapies for Biofilm-Forming Acinetobacter baumannii: A Review. BIOLOGY 2022; 11:biology11091343. [PMID: 36138822 PMCID: PMC9495682 DOI: 10.3390/biology11091343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary Acinetobacter baumannii (A. baumannii) is one of the ESKAPE organisms and has the competency to build biofilms. These biofilms account for the most nosocomial infections all over the world. This review reflects on the various physicochemical and environmental factors such as adhesion, pili expression, growth surfaces, drug-resistant genes, and virulence factors that profoundly affect its resistant forte. Emerging drug-resistant issues and limitations to newer drugs are other factors affecting the hospital environment. Here, we discuss newer and alternative methods that can significantly enhance the susceptibility to Acinetobacter spp. Many new antibiotics are under trials, such as GSK-3342830, The Cefiderocol (S-649266), Fimsbactin, and similar. On the other hand, we can also see the impact of traditional medicine and the secondary metabolites of these natural products’ application in searching for new treatments. The field of nanoparticles has demonstrated effective antimicrobial actions and has exhibited encouraging results in the field of nanomedicine. The use of various phages such as vWUPSU and phage ISTD as an alternative treatment for its specificity and effectiveness is being investigated. Cathelicidins obtained synthetically or from natural sources can effectively produce antimicrobial activity in the micromolar range. Radioimmunotherapy and photodynamic therapy have boundless prospects if explored as a therapeutic antimicrobial strategy. Abstract Acinetobacter species is one of the most prevailing nosocomial pathogens with a potent ability to develop antimicrobial resistance. It commonly causes infections where there is a prolonged utilization of medical devices such as CSF shunts, catheters, endotracheal tubes, and similar. There are several strains of Acinetobacter (A) species (spp), among which the majority are pathogenic to humans, but A. baumannii are entirely resistant to several clinically available antibiotics. The crucial mechanism that renders them a multidrug-resistant strain is their potent ability to synthesize biofilms. Biofilms provide ample opportunity for the microorganisms to withstand the harsh environment and further cause chronic infections. Several studies have enumerated multiple physiological and virulence factors responsible for the production and maintenance of biofilms. To further enhance our understanding of this pathogen, in this review, we discuss its taxonomy, pathogenesis, current treatment options, global resistance rates, mechanisms of its resistance against various groups of antimicrobials, and future therapeutics.
Collapse
Affiliation(s)
- Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Rachana Khati
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (P.W.); (V.N.)
| | - Bidita Khandelwal
- Department of Medicine, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Chamma Gupta
- Department of Biotechnology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Deepan Gautam
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Ramesh K. Goyal
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand
- Correspondence: (P.W.); (V.N.)
| |
Collapse
|
32
|
Monteiro KLC, Silva ON, Dos Santos Nascimento IJ, Mendonça Júnior FJB, Aquino PGV, da Silva-Júnior EF, de Aquino TM. Medicinal Chemistry of Inhibitors Targeting Resistant Bacteria. Curr Top Med Chem 2022; 22:1983-2028. [PMID: 35319372 DOI: 10.2174/1568026622666220321124452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/01/2022] [Accepted: 02/13/2022] [Indexed: 12/15/2022]
Abstract
The discovery of antibiotics was a revolutionary feat that provided countless health benefits. The identification of penicillin by Alexander Fleming initiated the era of antibiotics, represented by constant discoveries that enabled effective treatments for the different classes of diseases caused by bacteria. However, the indiscriminate use of these drugs allowed the emergence of resistance mechanisms of these microorganisms against the available drugs. In addition, the constant discoveries in the 20th century generated a shortage of new molecules, worrying health agencies and professionals about the appearance of multidrug-resistant strains against available drugs. In this context, the advances of recent years in molecular biology and microbiology have allowed new perspectives in drug design and development, using the findings related to the mechanisms of bacterial resistance to generate new drugs that are not affected by such mechanisms and supply new molecules to be used to treat resistant bacterial infections. Besides, a promising strategy against bacterial resistance is the combination of drugs through adjuvants, providing new expectations in designing new antibiotics and new antimicrobial therapies. Thus, this manuscript will address the main mechanisms of bacterial resistance under the understanding of medicinal chemistry, showing the main active compounds against efflux mechanisms, and also the application of the use of drug delivery systems, and finally, the main potential natural products as adjuvants or with promising activity against resistant strains.
Collapse
Affiliation(s)
- Kadja Luana Chagas Monteiro
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | - Osmar Nascimento Silva
- Faculty of Pharmacy, University Center of Anápolis, Unievangélica, 75083-515, Anápolis, Goiás, Brazil
| | - Igor José Dos Santos Nascimento
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | | | | | - Edeildo Ferreira da Silva-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| |
Collapse
|
33
|
Wu Z, Shao J, Zheng J, Liu B, Li Z, Shen N. A zero-sum game or an interactive frame? Iron competition between bacteria and humans in infection war. Chin Med J (Engl) 2022; 135:1917-1926. [PMID: 35830263 PMCID: PMC9746790 DOI: 10.1097/cm9.0000000000002233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Iron is an essential trace element for both humans and bacteria. It plays a vital role in life, such as in redox reactions and electron transport. Strict regulatory mechanisms are necessary to maintain iron homeostasis because both excess and insufficient iron are harmful to life. Competition for iron is a war between humans and bacteria. To grow, reproduce, colonize, and successfully cause infection, pathogens have evolved various mechanisms for iron uptake from humans, principally Fe 3+ -siderophore and Fe 2+ -heme transport systems. Humans have many innate immune mechanisms that regulate the distribution of iron and inhibit bacterial iron uptake to help resist bacterial invasion and colonization. Meanwhile, researchers have invented detection test strips and coupled antibiotics with siderophores to create tools that take advantage of this battle for iron, to help eliminate pathogens. In this review, we summarize bacterial and human iron metabolism, competition for iron between humans and bacteria, siderophore sensors, antibiotics coupled with siderophores, and related phenomena. We also discuss how competition for iron can be used for diagnosis and treatment of infection in the future.
Collapse
Affiliation(s)
- Zhenchao Wu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Center for Infectious Diseases, Peking University Third Hospital, Beijing 100191, China
| | - Jiqi Shao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Beibei Liu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Zhiyuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ning Shen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Center for Infectious Diseases, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
34
|
Synthesis and Characterization of Preacinetobactin and 5-Phenyl Preacinetobactin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123688. [PMID: 35744823 PMCID: PMC9227331 DOI: 10.3390/molecules27123688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
We report the first total synthesis of 5-phenyl preacinetobactin and its characterization. The route was developed for the synthesis of preacinetobactin, the siderophore critical to the Gram-negative pathogen A. baumannii. It leverages a C5-substituted benzaldehyde as a key starting material and should enable the synthesis of similar analogs. 5-Phenyl preacinetobactin binds iron in a manner analogous to the natural siderophore, but it did not rescue growth in a strain of A. baumannii unable to produce preacinetobactin.
Collapse
|
35
|
Johnston CW, Badran AH. Natural and engineered precision antibiotics in the context of resistance. Curr Opin Chem Biol 2022; 69:102160. [PMID: 35660248 DOI: 10.1016/j.cbpa.2022.102160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
Abstract
Antibiotics are essential weapons in our fight against infectious disease, yet the consequences of broad-spectrum antibiotic use on microbiome stability and pathogen resistance are prompting investigations into more selective alternatives. Echoing the advent of precision medicine in oncology, precision antibiotics with focused activities are emerging as a means of addressing infections without damaging microbiomes or incentivizing resistance. Historically, antibiotic design principles have been gleaned from Nature, and reinvestigation of overlooked antibacterials is now providing scaffolds and targets for the design of pathogen-specific drugs. In this perspective, we summarize the biosynthetic and antibacterial mechanisms used to access these activities, and discuss how such strategies may be co-opted through engineering approaches to afford precision antibiotics.
Collapse
Affiliation(s)
- Chad W Johnston
- Department of Pharmacology & Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Ahmed H Badran
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
36
|
Klahn P, Zscherp R, Jimidar CC. Advances in the Synthesis of Enterobactin, Artificial Analogues, and Enterobactin-Derived Antimicrobial Drug Conjugates and Imaging Tools for Infection Diagnosis. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1783-0751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractIron is an essential growth factor for bacteria, but although highly abundant in nature, its bioavailability during infection in the human host or the environment is limited. Therefore, bacteria produce and secrete siderophores to ensure their supply of iron. The triscatecholate siderophore enterobactin and its glycosylated derivatives, the salmochelins, play a crucial role for iron acquisition in several bacteria. As these compounds can serve as carrier molecules for the design of antimicrobial siderophore drug conjugates as well as siderophore-derived tool compounds for the detection of infections with bacteria, their synthesis and the design of artificial analogues is of interest. In this review, we give an overview on the synthesis of enterobactin, biomimetic as well as totally artificial analogues, and related drug-conjugates covering up to 12/2021.1 Introduction2 Antibiotic Crisis and Sideromycins as Natural Templates for New Antimicrobial Drugs3 Biosynthesis of Enterobactin, Salmochelins, and Microcins4 Total Synthesis of Enterobactin and Salmochelins5 Chemoenzymatic Semi-synthesis of Salmochelins and Microcin E492m Derivatives6 Synthesis of Biomimetic Enterobactin Derivatives with Natural Tris-lactone Backbone7 Synthesis of Artificial Enterobactin Derivatives without Tris-lactone Backbone8 Conclusions
Collapse
Affiliation(s)
- Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig
- Department for Chemistry and Molecular Biology, University of Gothenburg
| | - Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig
| | | |
Collapse
|
37
|
Fernando DM, Gee CT, Griffith EC, Meyer CJ, Wilt LA, Tangallapally R, Wallace MJ, Miller DJ, Lee RE. Biophysical analysis of the Mycobacteria tuberculosis peptide binding protein DppA reveals a stringent peptide binding pocket. Tuberculosis (Edinb) 2022; 132:102157. [PMID: 34894561 PMCID: PMC8818035 DOI: 10.1016/j.tube.2021.102157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 01/03/2023]
Abstract
The peptide binding protein DppA is an ABC transporter found in prokaryotes that has the potential to be used as drug delivery tool for hybrid antibiotic compounds. Understanding the motifs and structures that bind to DppA is critical to the development of these bivalent compounds. This study focused on the biophysical analysis of the MtDppA from M. tuberculosis. Analysis of the crystal structure revealed a SVA tripeptide was co-crystallized with the protein. Further peptide analysis demonstrated MtDppA shows very little affinity for dipeptides but rather preferentially binds to peptides that are 3-4 amino acids in length. The structure-activity relationships (SAR) between MtDppA and tripeptides with varied amino acid substitutions were evaluated using thermal shift, SPR, and molecular dynamics simulations. Efforts to identify novel ligands for use as alternative scaffolds through the thermal shift screening of 35,000 compounds against MtDppA were unsuccessful, indicating that the MtDppA binding pocket is highly specialized for uptake of peptides. Future development of compounds that seek to utilize MtDppA as a drug delivery mechanism, will likely require a tri- or tetrapeptide component with a hydrophobic -non-acidic peptide sequence.
Collapse
Affiliation(s)
- Dinesh M. Fernando
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Clifford T. Gee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Elizabeth C. Griffith
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Christopher J. Meyer
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Laura A. Wilt
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Rajendra Tangallapally
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Miranda J. Wallace
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Darcie J. Miller
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Richard E. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105,Corresponding Author:
| |
Collapse
|
38
|
Rubey KM, Brenner JS. Nanomedicine to fight infectious disease. Adv Drug Deliv Rev 2021; 179:113996. [PMID: 34634395 PMCID: PMC8665093 DOI: 10.1016/j.addr.2021.113996] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022]
Abstract
The ubiquity and potency of antibiotics may give the false impression that infection is a solved problem. Unfortunately, even bacterial infections, the target of antibiotics, remain a major cause of illness and death. Several major unmet needs persist: biofilms, such as those on implanted hardware, largely resist antibiotics; the inflammatory host response to infection often produces more damage than the infection itself; and systemic antibiotics often decimate the gut microbiome, which can predispose to additional infections and even predispose to non-infectious diseases. Additionally, there is an increasing threat from multi-drug resistant microorganisms, though market forces may continue to inhibit innovation in this realm. These numerous unmet infection-related needs provide attractive goals for innovation of targeted drug delivery technologies, especially those of nanomedicine. Here we review several of those innovations in pre-clinical development, the two such therapies which have made it to clinical use, and the opportunities for further technology development for treating infections.
Collapse
Affiliation(s)
- Kathryn M Rubey
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jacob S Brenner
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
39
|
Liu R, Miller PA, Miller MJ. Conjugation of Aztreonam, a Synthetic Monocyclic β-Lactam Antibiotic, to a Siderophore Mimetic Significantly Expands Activity Against Gram-Negative Bacteria. ACS Infect Dis 2021; 7:2979-2986. [PMID: 34668698 DOI: 10.1021/acsinfecdis.1c00458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Monocyclic β-lactams with antibiotic activity were first synthesized more than 40 years ago. Extensive early structure-activity relationship (SAR) studies, especially in the 1980s, emphasized the need for heteroatom activation of monocyclic β-lactams and led to studies of oxamazins, monobactams, monosulfactams, and monocarbams with various side chains and peripheral substitution that revealed potent activity against select strains of Gram-negative bacteria. Aztreonam, still the only clinically used monobactam, has notable activity against many Gram-negative bacteria but limited activity against some of the most problematic multidrug resistant (MDR) strains of Pseudomonas aeruginosa and Acinetobacter baumannii. Herein, we report that extension of the side chain of aztreonam is tolerated and especially that coupling of the side chain free acid with a bis-catechol siderophore mimetic significantly improves activity against the MDR strains of Gram-negative bacteria that are of most significant concern.
Collapse
Affiliation(s)
- Rui Liu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Patricia A. Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Marvin J. Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
40
|
Pandey A, Śmiłowicz D, Boros E. Galbofloxacin: a xenometal-antibiotic with potent in vitro and in vivo efficacy against S. aureus. Chem Sci 2021; 12:14546-14556. [PMID: 34881006 PMCID: PMC8580130 DOI: 10.1039/d1sc04283a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/14/2021] [Indexed: 11/21/2022] Open
Abstract
Siderophore-antibiotic drug conjugates are considered potent tools to deliver and potentiate the antibacterial activity of antibiotics, but only few have seen preclinical and clinical success. Here, we introduce the gallium(iii) complex of a ciprofloxacin-functionalized linear desferrichrome, Galbofloxacin, with a cleavable serine linker as a potent therapeutic for S. aureus bacterial infections. We employed characterization using in vitro inhibitory assays, radiochemical, tracer-based uptake and pharmacokinetic assessment of our lead compound, culminating in in vivo efficacy studies in a soft tissue model of infection. Galbofloxacin exhibits a minimum inhibitory concentration of (MIC98) 93 nM in wt S. aureus, exceeding the potency of the parent antibiotic ciprofloxacin (0.9 μM). Galbofloxacin is a protease substrate that can release the antibiotic payload in the bacterial cytoplasm. Radiochemical experiments with wt bacterial strains reveal that 67Galbofloxacin is taken up efficiently using siderophore mediated, active uptake. Biodistribution of 67Galbofloxacin in a mouse model of intramuscular S. aureus infection revealed renal clearance and enhanced uptake in infected muscle when compared to 67Ga-citrate, which showed no selectivity. A subsequent in vivo drug therapy study reveals efficient reduction in S. aureus infection burden and sustained survival with Galbofloxacin for 7 days. Ciprofloxacin had no treatment efficacy at identical molecular dose (9.3 μmol kg−1) and resulted in death of all study animals in <24 hours. Taken together, the favorable bacterial growth inhibitory, pharmacokinetic and in vivo efficacy properties qualify Galbofloxacin as the first rationally designed Ga-coordination complex for the management of S. aureus bacterial infections. Galbofloxacin, a novel theranostic xenosiderophore antibiotic, exhibits unparalleled potency in combating S. aureus infections in vivo.![]()
Collapse
Affiliation(s)
- Apurva Pandey
- Department of Chemistry, Stony Brook University 100 Nicolls Road, Stony Brook New York 11790 USA
| | - Dariusz Śmiłowicz
- Department of Chemistry, Stony Brook University 100 Nicolls Road, Stony Brook New York 11790 USA
| | - Eszter Boros
- Department of Chemistry, Stony Brook University 100 Nicolls Road, Stony Brook New York 11790 USA
| |
Collapse
|
41
|
Pinkert L, Lai YH, Peukert C, Hotop SK, Karge B, Schulze LM, Grunenberg J, Brönstrup M. Antibiotic Conjugates with an Artificial MECAM-Based Siderophore Are Potent Agents against Gram-Positive and Gram-Negative Bacterial Pathogens. J Med Chem 2021; 64:15440-15460. [PMID: 34619959 DOI: 10.1021/acs.jmedchem.1c01482] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of novel drugs against Gram-negative bacteria represents an urgent medical need. To overcome their outer cell membrane, we synthesized conjugates of antibiotics and artificial siderophores based on the MECAM core, which are imported by bacterial iron uptake systems. Structures, spin states, and iron binding properties were predicted in silico using density functional theory. The capability of MECAM to function as an effective artificial siderophore in Escherichia coli was proven in microbiological growth recovery and bioanalytical assays. Following a linker optimization focused on transport efficiency, five β-lactam and one daptomycin conjugates were prepared. The most potent conjugate 27 showed growth inhibition of Gram-positive and Gram-negative multidrug-resistant pathogens at nanomolar concentrations. The uptake pathway of MECAMs was deciphered by knockout mutants and highlighted the relevance of FepA, CirA, and Fiu. Resistance against 27 was mediated by a mutation in the gene encoding ExbB, which is involved in siderophore transport.
Collapse
Affiliation(s)
- Lukas Pinkert
- Department of Chemical Biology Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Yi-Hui Lai
- Department of Chemical Biology Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Carsten Peukert
- Department of Chemical Biology Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Sven-Kevin Hotop
- Department of Chemical Biology Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Bianka Karge
- Department of Chemical Biology Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Lara Marie Schulze
- Institute for Organic Chemistry, Technical University of Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Jörg Grunenberg
- Institute for Organic Chemistry, Technical University of Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Mark Brönstrup
- Department of Chemical Biology Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.,German Center for Infection Research (DZIF), Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Center of Biomolecular Drug Research (BMWZ), Leibniz Universität, 30159 Hannover, Germany
| |
Collapse
|
42
|
Conde-Pérez K, Vázquez-Ucha JC, Álvarez-Fraga L, Ageitos L, Rumbo-Feal S, Martínez-Guitián M, Trigo-Tasende N, Rodríguez J, Bou G, Jiménez C, Beceiro A, Poza M. In-Depth Analysis of the Role of the Acinetobactin Cluster in the Virulence of Acinetobacter baumannii. Front Microbiol 2021; 12:752070. [PMID: 34675911 PMCID: PMC8524058 DOI: 10.3389/fmicb.2021.752070] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii is a multidrug-resistant pathogen that represents a serious threat to global health. A. baumannii possesses a wide range of virulence factors that contribute to the bacterial pathogenicity. Among them, the siderophore acinetobactin is one of the most important, being essential for the development of the infection. In this study we performed an in-depth analysis of the acinetobactin cluster in the strain A. baumannii ATCC 17978. For this purpose, nineteen individual isogenic mutant strains were generated, and further phenotypical analysis were performed. Individual mutants lacking the biosynthetic genes entA, basG, basC, basD, and basB showed a significant loss in virulence, due to the disruption in the acinetobactin production. Similarly, the gene bauA, coding for the acinetobactin receptor, was also found to be crucial for the bacterial pathogenesis. In addition, the analysis of the ΔbasJ/ΔfbsB double mutant strain demonstrated the high level of genetic redundancy between siderophores where the role of specific genes of the acinetobactin cluster can be fulfilled by their fimsbactin redundant genes. Overall, this study highlights the essential role of entA, basG, basC, basD, basB and bauA in the pathogenicity of A. baumannii and provides potential therapeutic targets for the design of new antivirulence agents against this microorganism.
Collapse
Affiliation(s)
- Kelly Conde-Pérez
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain.,Microbiome and Health, Faculty of Science, University of A Coruña, A Coruña, Spain
| | - Juan C Vázquez-Ucha
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Laura Álvarez-Fraga
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain.,School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Lucía Ageitos
- Centro de Investigaciones Científicas Avanzadas (CICA) y Departamento de Química, Facultad de Ciencias, Agrupación Estratégica CICA-INIBIC, Universidad de A Coruña, A Coruña, Spain
| | - Soraya Rumbo-Feal
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain.,Microbiome and Health, Faculty of Science, University of A Coruña, A Coruña, Spain
| | - Marta Martínez-Guitián
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Noelia Trigo-Tasende
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Jaime Rodríguez
- Centro de Investigaciones Científicas Avanzadas (CICA) y Departamento de Química, Facultad de Ciencias, Agrupación Estratégica CICA-INIBIC, Universidad de A Coruña, A Coruña, Spain
| | - Germán Bou
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Carlos Jiménez
- Centro de Investigaciones Científicas Avanzadas (CICA) y Departamento de Química, Facultad de Ciencias, Agrupación Estratégica CICA-INIBIC, Universidad de A Coruña, A Coruña, Spain
| | - Alejandro Beceiro
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Margarita Poza
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain.,Microbiome and Health, Faculty of Science, University of A Coruña, A Coruña, Spain
| |
Collapse
|
43
|
Zhu F, Powell WC, Jing R, Walczak MA. Organometallic Ala M Reagents for Umpolung Peptide Diversification. CHEM CATALYSIS 2021; 1:870-884. [PMID: 34738092 PMCID: PMC8562471 DOI: 10.1016/j.checat.2021.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Selective modifications of peptides and proteins have emerged as a promising strategy to develop novel mechanistic probes and prepare compounds with translational potentials. Here, we report alanine carbastannatranes AlaSn as a universal synthon in various C-C and C-heteroatom bond-forming reactions. These reagents are compatible with peptide manipulation techniques and can undergo chemoselective conjugation in minutes when promoted by Pd(0). Despite their increased nucleophilicity and propensity to transfer the alkyl group, C(sp3)-C(sp2) coupling with AlaSn can be accomplished at room temperature under buffered conditions (pH 6.5-8.5). We also show that AlaSn can be easily transformed into several canonical L- and D-amino acids in arylation, acylation, and etherification reactions. Furthermore, AlaSn can partake in macrocyclizations exemplified by the synthesis of medium size cyclic peptides with various topologies. Taken together, metalated alanine AlaSn demonstrates unparalleled scope and represents a new type of umpolung reagents suitable for structure-activity relationship studies and peptide diversification.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Chemistry, University of Colorado, Boulder, CO 80309, United States
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. C
- These authors contributed equally
| | - Wyatt C. Powell
- Department of Chemistry, University of Colorado, Boulder, CO 80309, United States
- These authors contributed equally
| | - Ruiheng Jing
- Department of Chemistry, University of Colorado, Boulder, CO 80309, United States
| | - Maciej A. Walczak
- Department of Chemistry, University of Colorado, Boulder, CO 80309, United States
| |
Collapse
|
44
|
Bheemanaboina RRY, Wang J, Hu YY, Meng JP, Guan Z, Zhou CH. A facile reaction to access novel structural sulfonyl-hybridized imidazolyl ethanols as potential DNA-targeting antibacterial agents. Bioorg Med Chem Lett 2021; 47:128198. [PMID: 34119615 DOI: 10.1016/j.bmcl.2021.128198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022]
Abstract
A novel type of sulfonyl-hybridized imidazolyl ethanols as potential DNA-targeting antibacterial agents was constructed via the unique ring-opened reaction of oxiranes by imidazoles for the first time. Some developed target hybrids showed potential antimicrobial potency against the tested microbes. Especially, imidazole derivative 5f could strongly suppressed the growth of MRSA (MIC = 4 μg/mL), which was 2-fold and 16-fold more potent than the positive control sulfathiazole and norfloxacin. This compound exhibited quite low propensity to induce bacterial resistance. Antibacterial mechanism exploration indicated that compound 5f could embed in MRSA DNA to form steady 5f-DNA complex, which possibly hinder DNA replication to exert antimicrobial behavior. Molecular docking showed that molecule 5f could bind with dihydrofolate synthetase through hydrogen bonds. These results implied that imidazole derivative 5f could be served as a promising molecule for the exploration of novel antibacterial candidates.
Collapse
Affiliation(s)
- Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Juan Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuan-Yuan Hu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jiang-Ping Meng
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Zhi Guan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
45
|
Bohac TJ, Fang L, Banas VS, Giblin DE, Wencewicz TA. Synthetic Mimics of Native Siderophores Disrupt Iron Trafficking in Acinetobacter baumannii. ACS Infect Dis 2021; 7:2138-2151. [PMID: 34110766 DOI: 10.1021/acsinfecdis.1c00119] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Many pathogenic bacteria biosynthesize and excrete small molecule metallophores, known as siderophores, that are used to extract ferric iron from host sources to satisfy nutritional need. Native siderophores are often structurally complex multidentate chelators that selectively form high-affinity octahedral ferric iron complexes with defined chirality recognizable by cognate protein receptors displayed on the bacterial cell surface. Simplified achiral analogues can serve as synthetically tractable siderophore mimics with potential utility as chemical probes and therapeutic agents to better understand and treat bacterial infections, respectively. Here, we demonstrate that synthetic spermidine-derived mixed ligand bis-catecholate monohydroxamate siderophores (compounds 1-3) are versatile structural and biomimetic analogues of two native siderophores, acinetobactin and fimsbactin, produced by Acinetobacter baumannii, a multidrug-resistant Gram-negative human pathogen. The metal-free and ferric iron complexes of the synthetic siderophores are growth-promoting agents of A. baumannii, while the Ga(III)-complexes are potent growth inhibitors of A. baumannii with MIC values <1 μM. The synthetic siderophores compete with native siderophores for uptake in A. baumannii and maintain comparable apparent binding affinities for ferric iron (KFe) and the siderophore-binding protein BauB (Kd). Our findings provide new insight to guide the structural fine-tuning of these compounds as siderophore-based therapeutics targeting pathogenic strains of A. baumannii.
Collapse
Affiliation(s)
- Tabbetha J. Bohac
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Luting Fang
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Victoria S. Banas
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Daryl E. Giblin
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Timothy A. Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
46
|
Zscherp R, Coetzee J, Vornweg J, Grunenberg J, Herrmann J, Müller R, Klahn P. Biomimetic enterobactin analogue mediates iron-uptake and cargo transport into E. coli and P. aeruginosa. Chem Sci 2021; 12:10179-10190. [PMID: 34377407 PMCID: PMC8336463 DOI: 10.1039/d1sc02084f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
The design, synthesis and biological evaluation of the artificial enterobactin analogue EntKL and several fluorophore-conjugates thereof are described. EntKL provides an attachment point for cargos such as fluorophores or antimicrobial payloads. Corresponding conjugates are recognized by outer membrane siderophore receptors of Gram-negative pathogens and retain the natural hydrolyzability of the tris-lactone backbone. Initial density-functional theory (DFT) calculations of the free energies of solvation (ΔG(sol)) and relaxed Fe-O force constants of the corresponding [Fe-EntKL]3- complexes indicated a similar iron binding constant compared to natural enterobactin (Ent). The synthesis of EntKL was achieved via an iterative assembly based on a 3-hydroxylysine building block over 14 steps with an overall yield of 3%. A series of growth recovery assays under iron-limiting conditions with Escherichia coli and Pseudomonas aeruginosa mutant strains that are defective in natural siderophore synthesis revealed a potent concentration-dependent growth promoting effect of EntKL similar to natural Ent. Additionally, four cargo-conjugates differing in molecular size were able to restore growth of E. coli indicating an uptake into the cytosol. P. aeruginosa displayed a stronger uptake promiscuity as six different cargo-conjugates were found to restore growth under iron-limiting conditions. Imaging studies utilizing BODIPYFL-conjugates, demonstrated the ability of EntKL to overcome the Gram-negative outer membrane permeability barrier and thus deliver molecular cargos via the bacterial iron transport machinery of E. coli and P. aeruginosa.
Collapse
Affiliation(s)
- Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Janetta Coetzee
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Johannes Vornweg
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Jörg Grunenberg
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Jennifer Herrmann
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Rolf Müller
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| |
Collapse
|
47
|
Abbasi U, Abbina S, Gill A, Takuechi LE, Kizhakkedathu JN. Role of Iron in the Molecular Pathogenesis of Diseases and Therapeutic Opportunities. ACS Chem Biol 2021; 16:945-972. [PMID: 34102834 DOI: 10.1021/acschembio.1c00122] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Iron is an essential mineral that serves as a prosthetic group for a variety of proteins involved in vital cellular processes. The iron economy within humans is highly conserved in that there is no proper iron excretion pathway. Therefore, iron homeostasis is highly evolved to coordinate iron acquisition, storage, transport, and recycling efficiently. A disturbance in this state can result in excess iron burden in which an ensuing iron-mediated generation of reactive oxygen species imparts widespread oxidative damage to proteins, lipids, and DNA. On the contrary, problems in iron deficiency either due to genetic or nutritional causes can lead to a number of iron deficiency disorders. Iron chelation strategies have been in the works since the early 1900s, and they still remain the most viable therapeutic approach to mitigate the toxic side effects of excess iron. Intense investigations on improving the efficacy of chelation strategies while being well tolerated and accepted by patients have been a particular focus for many researchers over the past 30 years. Moreover, recent advances in our understanding on the role of iron in the pathogenesis of different diseases (both in iron overload and iron deficiency conditions) motivate the need to develop new therapeutics. We summarized recent investigations into the role of iron in health and disease conditions, iron chelation, and iron delivery strategies. Information regarding small molecule as well as macromolecular approaches and how they are employed within different disease pathogenesis such as primary and secondary iron overload diseases, cancer, diabetes, neurodegenerative diseases, infections, and in iron deficiency is provided.
Collapse
Affiliation(s)
- Usama Abbasi
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Srinivas Abbina
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Arshdeep Gill
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Lily E. Takuechi
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
- The School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
48
|
Kim DY, Kim HJ. Function of Fimsbactin B as an Acinetobacter-Selective Antibiotic Delivery Vehicle. Org Lett 2021; 23:5256-5260. [PMID: 34133175 DOI: 10.1021/acs.orglett.1c01786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability of fimsbactin B, a natural siderophore of Acinetobacter baumannii, to function as an antibiotic delivery vehicle was investigated by synthesizing three structurally diversified fimsbactin B-cefaclor conjugates. Their antimicrobial activities were Acinetobacter-selective and up to 128-fold more potent than that of cefaclor alone. This activity enhancement originated from the fimsbactin-B-dependent active uptake of cefaclor. Thus, fimsbactin-B-based antibiotic delivery can be an effective approach in combating antibiotic-resistant Acinetobacter infections.
Collapse
Affiliation(s)
- Do Young Kim
- Department of Chemistry and Center for ProteoGenomics Research, Korea University, Seoul 02841, Republic of Korea
| | - Hak Joong Kim
- Department of Chemistry and Center for ProteoGenomics Research, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
49
|
Khasheii B, Mahmoodi P, Mohammadzadeh A. Siderophores: Importance in bacterial pathogenesis and applications in medicine and industry. Microbiol Res 2021; 250:126790. [PMID: 34098495 DOI: 10.1016/j.micres.2021.126790] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022]
Abstract
Iron is an essential element for all microorganisms. Siderophores are low-weight, high-affinity iron chelating molecules produced in response to iron deficiency by Gram-positive and Gram-negative bacteria which also known as essential virulence factors of bacteria. Several studies have indicated that defective production and/or function of these molecules as well as iron acquisition systems in pathogens are associated with a reduction in pathogenicity of bacteria. Because of their potential role in various biological pathways, siderophores have been received special attention as secondary metabolites. Siderophores can detect iron levels in a variety of environments with a biosensor function. In medicine, siderophores are used to deliver antibiotics (Trojan horse strategy) to resistant bacteria and to treat diseases such as cancer and malaria. In this review, we discuss the iron acquisition pathways in Gram-positive and -negative bacteria, importance of siderophore production in pathogenesis of bacteria, classification of siderophores, and main applications of siderophores in medicine and industry.
Collapse
Affiliation(s)
- Behnoush Khasheii
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Pezhman Mahmoodi
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran.
| | - Abdolmajid Mohammadzadeh
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
50
|
Zampieri D, Mamolo MG. Hybridization Approach to Drug Discovery Inhibiting Mycobacterium tuberculosis-An Overview. Curr Top Med Chem 2021; 21:777-788. [PMID: 32814528 DOI: 10.2174/1568026620666200819151342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Tuberculosis is one of the top 10 causes of death worldwide and the leading cause of death from a single infectious agent, mainly due to Mycobacterium tuberculosis (MTB). Recently, clinical prognoses have worsened due to the emergence of multi-drug resistant (MDR) and extensive-drug resistant (XDR) tuberculosis, which lead to the need for new, efficient and safe drugs. Among the several strategies, polypharmacology could be considered one of the best solutions, in particular, the multitarget directed ligands strategy (MTDLs), based on the synthesis of hybrid ligands acting against two targets of the pathogen. The framework strategy comprises linking, fusing and merging approaches to develop new chemical entities. With these premises, this review aims to provide an overview of the recent hybridization approach, in medicinal chemistry, of the most recent and promising multitargeting antimycobacterial candidates.
Collapse
Affiliation(s)
- Daniele Zampieri
- Department of Chemical and Pharmaceutical Sciences, P.le Europa 1, University of Trieste, Trieste 34127, Italy
| | - Maria G Mamolo
- Department of Chemical and Pharmaceutical Sciences, P.le Europa 1, University of Trieste, Trieste 34127, Italy
| |
Collapse
|