1
|
Sandner P, Follmann M, Becker-Pelster E, Hahn MG, Meier C, Freitas C, Roessig L, Stasch JP. Soluble GC stimulators and activators: Past, present and future. Br J Pharmacol 2024; 181:4130-4151. [PMID: 34600441 DOI: 10.1111/bph.15698] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022] Open
Abstract
The discovery of soluble GC (sGC) stimulators and sGC activators provided valuable tools to elucidate NO-sGC signalling and opened novel pharmacological opportunities for cardiovascular indications and beyond. The first-in-class sGC stimulator riociguat was approved for pulmonary hypertension in 2013 and vericiguat very recently for heart failure. sGC stimulators enhance sGC activity independent of NO and also act synergistically with endogenous NO. The sGC activators specifically bind to, and activate, the oxidised haem-free form of sGC. Substantial research efforts improved on the first-generation sGC activators such as cinaciguat, culminating in the discovery of runcaciguat, currently in clinical Phase II trials for chronic kidney disease and diabetic retinopathy. Here, we highlight the discovery and development of sGC stimulators and sGC activators, their unique modes of action, their preclinical characteristics and the clinical studies. In the future, we expect to see more sGC agonists in new indications, reflecting their unique therapeutic potential.
Collapse
Affiliation(s)
- Peter Sandner
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
- Institute of Pharmacology, Hannover Medical School, Hanover, Germany
| | - Markus Follmann
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
| | | | - Michael G Hahn
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
| | - Christian Meier
- Pharmaceuticals Medical Affairs and Pharmacovigilance, Bayer AG, Berlin, Germany
| | - Cecilia Freitas
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
| | - Lothar Roessig
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
| | - Johannes-Peter Stasch
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
2
|
Rao J, Chen X, Liu Y, Wang X, Cheng P, Wang Z. Assessment of adverse events of the novel cardiovascular drug vericiguat: a real-world pharmacovigilance study based on FAERS. Expert Opin Drug Saf 2024; 23:1317-1325. [PMID: 39021273 DOI: 10.1080/14740338.2024.2382226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND This study aims to analyze the adverse event reports (AERs) to vericiguat using data from the Food and Drug Administration Adverse Event Reporting System (FAERS) and provide evidence for the clinical use. METHODS AERs due to vericiguat from 2021Q1 to 2024Q1 identified as the primary suspect were screened, with duplicate reports subsequently eliminated. Various quantitative signal detection methods, including reporting odds ratio (ROR), proportional reporting ratio (PRR), Bayesian confidence propagation neural network, and multi-item gamma poisson shrinker, were then employed for data mining and analysis. Signal strength is represented by the 95% confidence interval, information component (IC), and empirical Bayesian geometric mean (EBGM). RESULTS A total of 617 vericiguat-related AERs were identified. Strong signals were observed in 21 system organ classes. Furthermore, the most frequently reported preferred terms (PT) was hypotension (n = 86, ROR 25.92, PRR 24.11, IC 4.59, EBGM 24.07), followed by dizziness (n = 52, ROR 6.44, PRR 6.20, IC 2.63, EBGM 6.20), malaise (n = 25, ROR 3.59, PRR 3.54, IC 1.82, EBGM 3.54), blood pressure decreased (n = 23, ROR 20.00, PRR 19.64, IC 4.29, EBGM 19.61), and anemia (n = 21, ROR 6.67, PRR 6.57, IC 2.72, EBGM 6.57). CONCLUSIONS This study extended the adverse reactions documented in the FDA instruction and provided supplementary evidence regarding the clinical safety of vericiguat.
Collapse
Affiliation(s)
- Jin Rao
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiangyu Chen
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yudi Liu
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xuefu Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Pengchao Cheng
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhinong Wang
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Zhazykbayeva S, Budde H, Kaçmaz M, Zemedie Y, Osman H, Hassoun R, Jaquet K, Akin I, El-Battrawy I, Herwig M, Hamdani N. Exploring PKG signaling as a therapeutic avenue for pressure overload, ischemia, and HFpEF. Expert Opin Ther Targets 2024:1-17. [PMID: 39329430 DOI: 10.1080/14728222.2024.2400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
INTRODUCTION Heart failure (HF) is a complex and heterogeneous syndrome resulting from any diastolic or systolic dysfunction of the cardiac muscle. In addition to comorbid conditions, pressure overload, and myocardial ischemia are associated with cardiac remodeling which manifests as extracellular matrix (ECM) perturbations, impaired cellular responses, and subsequent ventricular dysfunction. AREAS COVERED The current review discusses the main aspects of the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway (cGMP-PKG) pathway modulators and highlights the promising outcomes of its novel pharmacological boosters. EXPERT OPINION Among several signaling pathways involved in the pathogenesis of pressure overload, ischemia and HF with preserved ejection fraction (HFpEF) is cGMP-PKG pathway. This pathway plays a pivotal role in the regulation of cardiac contractility, and modulation of cGMP-PKG signaling, contributing to the development of the diseases. Ventricular cardiomyocytes of HF patients and animal models are known to exhibit reduced cGMP levels and disturbed cGMP signaling including hypophosphorylation of PKG downstream targets. However, restoration of cGMP-PKG signaling improves cardiomyocyte function and promotes cardioprotective effects.
Collapse
Affiliation(s)
- S Zhazykbayeva
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - H Budde
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - M Kaçmaz
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, Budapest, Hungary
| | - Y Zemedie
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - H Osman
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - R Hassoun
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - K Jaquet
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - I Akin
- Medical University Mannheim, Medical Faculty, Mannheim University, Heidelberg, Germany
| | - I El-Battrawy
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University, Bochum, Germany
| | - M Herwig
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - N Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, Budapest, Hungary
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University, Bochum, Germany
- Department of Physiology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Jiang Y, Liu P, Qiu Z, Zhou M, Cheng M, Yang T. The U.S. FDA approved cardiovascular drugs from 2011 to 2023: A medicinal chemistry perspective. Eur J Med Chem 2024; 275:116593. [PMID: 38889609 DOI: 10.1016/j.ejmech.2024.116593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. A total of 28 new molecular entities (NMEs) were approved by the U.S. Food and Drug Administration (FDA) for the treatment of cardiovascular diseases from 2011 to 2023. Approximately 25 % of the medications were sanctioned for the management of diverse vascular disorders. The other major therapeutic areas of focus included antilipemic agents (15 %), blood pressure disease (11 %), heart failure, hyperkalemia, and cardiomyopathy (7-8% each). Among all the approved drugs, there are a total of 22 new chemical entities (NCEs), including inhibitors, agonists, polymers, and inorganic compounds. In addition to NCEs, 6 biological agents (BLAs), including monoclonal antibodies, small interfering RNAs (siRNAs), and antisense oligonucleotides, have also obtained approval for the treatment of cardiovascular diseases. From this perspective, approved NCEs are itemized and discussed based on their disease, targets, chemical classes, major drug metabolites, and biochemical and pharmacological properties. Systematic analysis has been conducted to examine the binding modes of these approved drugs with their targets using cocrystal structure information or docking studies to provide valuable insights for designing next-generation agents. Furthermore, the synthetic approaches employed in the creation of these drug molecules have been emphasized, aiming to inspire the development of novel, efficient, and applicable synthetic methodologies. Generally, the primary objective of this review is to provide a comprehensive examination of the clinical applications, pharmacology, binding modes, and synthetic methodologies employed in small-molecule drugs approved for treating CVD. This will facilitate the development of more potent and innovative therapeutics for effectively managing cardiovascular diseases.
Collapse
Affiliation(s)
- Yunhan Jiang
- Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China; Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pingxian Liu
- Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqiang Qiu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Zhou
- Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengdi Cheng
- Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Wu L, Rodriguez M, Hachem KE, Tang WHW, Krittanawong C. Management of patients with heart failure and chronic kidney disease. Heart Fail Rev 2024; 29:989-1023. [PMID: 39073666 DOI: 10.1007/s10741-024-10415-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Chronic kidney disease (CKD) and heart failure are often co-existing conditions due to a shared pathophysiological process involving neurohormonal activation and hemodynamic maladaptation. A wide range of pharmaceutical and interventional tools are available to patients with CKD, consisting of traditional ones with decades of experience and newer emerging therapies that are rapidly reshaping the landscape of medical care for this population. Management of patients with heart failure and CKD requires a stepwise approach based on renal function and the clinical phenotype of heart failure. This is often challenging due to altered drug pharmacokinetics interactions with various degrees of kidney function and frequent adverse effects from the therapy that lead to poor patient tolerance. Despite a great body of clinical evidence and guidelines that have offered various treatment options for patients with heart failure and CKD, respectively, patients with CKD are still underrepresented in heart failure clinical trials, especially for those with advanced CKD and end-stage renal disease (ESRD). Future studies are needed to better understand the generalizability of these therapeutic options among heart failures with different stages of CKD.
Collapse
Affiliation(s)
- Lingling Wu
- Cardiovascular Division, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mario Rodriguez
- John T Milliken Department of Medicine, Division of Cardiovascular disease, Section of Advanced Heart Failure and Transplant, Barnes-Jewish Hospital, Washington University in St. Louis School of Medicine, St. Louis, USA
| | - Karim El Hachem
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY, USA
| | - W H Wilson Tang
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland, Clinic, Cleveland, OH, USA
| | - Chayakrit Krittanawong
- Cardiology Division, Section of Cardiology, NYU Langone Health and NYU School of Medicine, 550 First Avenue, New York, NY, 10016, USA.
| |
Collapse
|
6
|
Marshall CM, Federice JG, Bell CN, Cox PB, Njardarson JT. An Update on the Nitrogen Heterocycle Compositions and Properties of U.S. FDA-Approved Pharmaceuticals (2013-2023). J Med Chem 2024; 67:11622-11655. [PMID: 38995264 DOI: 10.1021/acs.jmedchem.4c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
This Perspective is a continuation of our analysis of U.S. FDA-approved small-molecule drugs (1938-2012) containing nitrogen heterocycles. In this study we report drug structure and property analyses of 321 unique new small-molecule drugs approved from January 2013 to December 2023 as well as information about frequency of important heteroatoms such as sulfur and fluorine and key small nitrogen substituents (CN and NO2). The most notable change is an incredible increase in drugs containing at least one nitrogen heterocycle─82%, compared to 59% from preceding decades─as well as a significant increase in the number of nitrogen heterocycles per drug. Pyridine has claimed the #1 high-frequency nitrogen heterocycle occurrence spot from piperidine (#2), with pyrimidine (#5), pyrazole (#6), and morpholine (#9) being the big top 10 climbers. Also notable is high number of fused nitrogen heterocycles, apparently driven largely by newly approved cancer drugs.
Collapse
Affiliation(s)
- Christopher M Marshall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - John G Federice
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Chloe N Bell
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Philip B Cox
- Discovery Research, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jon T Njardarson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
7
|
Li X, Zhou X, Gao L. Diabetes and Heart Failure: A Literature Review, Reflection and Outlook. Biomedicines 2024; 12:1572. [PMID: 39062145 PMCID: PMC11274420 DOI: 10.3390/biomedicines12071572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Heart failure (HF) is a complex clinical syndrome caused by structural or functional dysfunction of the ventricular filling or blood supply. Diabetes mellitus (DM) is an independent predictor of mortality for HF. The increase in prevalence, co-morbidity and hospitalization rates of both DM and HF has further fueled the possibility of overlapping disease pathology between the two. For decades, antidiabetic drugs that are known to definitively increase the risk of HF are the thiazolidinediones (TZDs) and saxagliptin in the dipeptidyl peptidase-4 (DPP-4) inhibitor, and insulin, which causes sodium and water retention, and whether metformin is effective or safe for HF is not clear. Notably, sodium-glucose transporter 2 (SGLT2) inhibitors and partial glucagon-like peptide-1 receptor agonists (GLP-1 RA) all achieved positive results for HF endpoints, with SGLT2 inhibitors in particular significantly reducing the composite endpoint of cardiovascular mortality and hospitalization for heart failure (HHF). Further understanding of the mutual pathophysiological mechanisms between HF and DM may facilitate the detection of novel therapeutic targets to improve the clinical outcome. This review focuses on the association between HF and DM, emphasizing the efficacy and safety of antidiabetic drugs and HF treatment. In addition, recent therapeutic advances in HF and the important mechanisms by which SGLT2 inhibitors/mineralocorticoid receptor antagonist (MRA)/vericiguat contribute to the benefits of HF are summarized.
Collapse
Affiliation(s)
| | | | - Ling Gao
- Department of Endocrinology, Renmin Hospital, Wuhan University, Wuhan 430060, China; (X.L.); (X.Z.)
| |
Collapse
|
8
|
Hattori Y, Hattori K, Ishii K, Kobayashi M. Challenging and target-based shifting strategies for heart failure treatment: An update from the last decades. Biochem Pharmacol 2024; 224:116232. [PMID: 38648905 DOI: 10.1016/j.bcp.2024.116232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/31/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Heart failure (HF) is a major global health problem afflicting millions worldwide. Despite the significant advances in therapies and prevention, HF still carries very high morbidity and mortality, requiring enormous healthcare-related expenditure, and the search for new weapons goes on. Following initial treatment strategies targeting inotropism and congestion, attention has focused on offsetting the neurohormonal overactivation and three main therapies, including angiotensin-converting enzyme inhibitors or angiotensin II type 1 receptor antagonists, β-adrenoceptor antagonists, and mineralocorticoid receptor antagonists, have been the foundation of standard treatment for patients with HF. Recently, a paradigm shift, including angiotensin receptor-neprilysin inhibitor, sodium glucose co-transporter 2 inhibitor, and ivabradine, has been added. Moreover, soluble guanylate cyclase stimulator, elamipretide, and omecamtiv mecarbil have come out as a next-generation therapeutic agent for patients with HF. Although these pharmacologic therapies have been significantly successful in relieving symptoms, there is still no complete cure for HF. We may be currently entering a new era of treatment for HF with animal experiments and human clinical trials assessing the value of antibody-based immunotherapy and gene therapy as a novel therapeutic strategy. Such tempting therapies still have some challenges to be addressed but may become a weighty option for treatment of HF. This review article will compile the paradigm shifts in HF treatment over the past dozen years or so and illustrate current landscape of antibody-based immunotherapy and gene therapy as a new therapeutic algorithm for patients with HF.
Collapse
Affiliation(s)
- Yuichi Hattori
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Tobetsu, Japan; Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan.
| | - Kohshi Hattori
- Department of Anesthesiology, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Kuniaki Ishii
- Department of Pharmacology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Masanobu Kobayashi
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Tobetsu, Japan
| |
Collapse
|
9
|
Fritsch A, Meyer M, Blaustein RO, Trujillo ME, Kauh E, Roessig L, Boettcher M, Becker C. Clinical Pharmacokinetic and Pharmacodynamic Profile of Vericiguat. Clin Pharmacokinet 2024; 63:751-771. [PMID: 38916717 PMCID: PMC11222283 DOI: 10.1007/s40262-024-01384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/26/2024]
Abstract
Vericiguat is an oral soluble guanylate cyclase stimulator and enhances the cyclic guanosine monophosphate pathway independently of nitric oxide as well as synergistically in normal- and low-nitric oxide conditions. This review describes the pharmacokinetic and pharmacodynamic profile of vericiguat and summarizes the effect of vericiguat on cardiac electrophysiology and population pharmacokinetic/pharmacodynamic relationships. Vericiguat demonstrates virtually complete absorption and increased exposure with food. Vericiguat has high oral bioavailability when taken with food (93.0%) with dose-proportional pharmacokinetics in healthy volunteers. Vericiguat has slightly less than dose-proportional pharmacokinetics with a slight decrease in bioavailability at higher doses in patients with heart failure (HF) with reduced ejection fraction (HFrEF). Vericiguat is a low-clearance drug, with a half-life of approximately 20 h in healthy volunteers and 30 h in patients with HFrEF. Most drug metabolism is achieved by glucuronidation. Vericiguat has pharmacodynamic effects as expected from its pharmacological mechanism of action (i.e., relaxation of the smooth muscles in the vasculature leading to changes in hemodynamics). In the VICTORIA trial (NCT02861534), which enrolled patients with HFrEF, no meaningful exposure-response relationships for the incidence of symptomatic hypotension or syncope were evident. There were no significant imbalances in the incidence of undesirable hemodynamic-related effects (symptomatic hypotension and syncope) in subgroups with HFrEF defined by sex, age, race, and renal impairment. In addition, most patients achieved the 10-mg target dose per the blood pressure-guided titration regimen. No dose adjustments due to body weight, age, sex, race, or hepatic/renal impairment are necessary in adult patients with HFrEF. Observed and predicted changes in vericiguat exposure when co-administered with perpetrator drugs were small and not clinically meaningful. In addition, vericiguat has low potential as a perpetrator to affect exposure and/or pharmacodynamic effects of drugs commonly prescribed in patients with heart failure; therefore, no dose adjustment of these drugs is required in patients taking vericiguat. There is limited experience on the combined use of vericiguat with long-acting nitrates in patients with HFrEF. The ongoing VICTOR trial (NCT05093933), which is investigating vericiguat in patients with HFrEF, permits the co-administration of long-acting nitrates. Combined use of vericiguat and phosphodiesterase type-5 inhibitors has not been studied in patients with HFrEF and is therefore not recommended because of the potential increased risk for symptomatic hypotension. Vericiguat was not associated with electrophysiological abnormalities in preclinical and clinical studies up to the approved dose of 10 mg at steady state. Vericiguat is approved for the treatment of recently decompensated patients with worsening HFrEF. Vericiguat's safety and efficacy profile in patients with HFrEF will be further characterized by the VICTOR trial (NCT05093933) in adults without recent decompensation and in a pediatric population with HF due to left ventricular systolic dysfunction (VALOR trial, NCT05714085).
Collapse
Affiliation(s)
- Achim Fritsch
- Clinical Pharmacology, Bayer AG, Wuppertal, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Chen P, Wang Y, Liu X, Yu J, Zheng X. Cost-Utility Analysis of Vericiguat in Heart Failure with Reduced Ejection Fraction After Worsening Heart Failure Events in China. Am J Cardiovasc Drugs 2024; 24:445-454. [PMID: 38619802 DOI: 10.1007/s40256-024-00637-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVE Vericiguat is a new medication to demonstrate clinical efficacy in heart failure with reduced ejection fraction (HFrEF) after worsening heart failure (WHF) events, but its cost-utility was unknown. We aimed to assess the cost-utility of combining the application of vericiguat with standard treatment in HFrEF patients who had WHF events. METHODS A multistate Markov model was implemented to mimic the economic results of HFrEF patients who had WHF events in China after receiving vericiguat or placebo. An analysis of cost-utility was conducted; most parameters were set according to the published studies and related databases. All the utilities and costs were decreased at a rate of 5% annually. The incremental cost-effectiveness ratios (ICERs) were the primary outcome measure. We also conducted sensitivity analyses. RESULTS Over a 20 year lifetime horizon, additional use of vericiguat led to an elevated cost from US$9725.03 to US$20,660.76 at the current vericiguat costs. This was related to increased quality-adjusted life years (QALYs) from 2.50 to 2.66, along with an ICER of US$65,057.24 per QALY, which was over the willingness-to-pay (WTP) threshold of US$36,096.30 per QALY. If the vericiguat costs were discounted at 80%, it contributed to an ICER of US$12,226.77 per QALY. Additional use of vericiguat for patients with plasma N-terminal pro-B-type natriuretic peptide (NT-proBNP) of ≤ 5314 pg per ml produced an ICER of US$23,688.46 per QALY. The outcomes of the one-way sensitivity analysis showed the risk of death from cardiovascular disease in both groups was variable with the highest sensitivity. The probabilistic sensitivity analysis showed that 41.6% of the mimicked population receiving vericiguat combined with standard therapy was cost-effective at the WTP threshold of US$36,096.30 per QALY. CONCLUSIONS From the perspective of Chinese public healthcare system, the combined use of vericiguat and standard treatment in patients with HFrEF following WHF events did not generate advantages in cost-utility in China but was a cost-effective therapeutic strategy for those who with plasma NT-proBNP of ≤ 5314 pg per ml.
Collapse
Affiliation(s)
- Penglei Chen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yixiang Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaqi Yu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuwei Zheng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
11
|
Chang PC, Lee HL, Wo HT, Liu HT, Wen MS, Chou CC. Vericiguat suppresses ventricular tachyarrhythmias inducibility in a rabbit myocardial infarction model. PLoS One 2024; 19:e0301970. [PMID: 38626004 PMCID: PMC11020759 DOI: 10.1371/journal.pone.0301970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/26/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND The VICTORIA trial demonstrated a significant decrease in cardiovascular events through vericiguat therapy. This study aimed to assess the potential mechanisms responsible for the reduction of cardiovascular events with vericiguat therapy in a rabbit model of myocardial infarction (MI). METHODS A chronic MI rabbit model was created through coronary artery ligation. Following 4 weeks, the hearts were harvested and Langendorff perfused. Subsequently, electrophysiological examinations and dual voltage-calcium optical mapping studies were conducted at baseline and after administration of vericiguat at a dose of 5 μmol/L. RESULTS Acute vericiguat therapy demonstrated a significant reduction in premature ventricular beat burden and effectively suppressed ventricular arrhythmic inducibility. The electrophysiological influences of vericiguat therapy included an increased ventricular effective refractory period, prolonged action potential duration, and accelerated intracellular calcium (Cai) homeostasis, leading to the suppression of action potential and Cai alternans. The pacing-induced ventricular arrhythmias exhibited a reentrant pattern, attributed to fixed or functional conduction block in the peri-infarct zone. Vericiguat therapy effectively mitigated the formation of cardiac alternans as well as the development of reentrant impulses, providing additional anti-arrhythmic benefits. CONCLUSIONS In the MI rabbit model, vericiguat therapy demonstrates anti-ventricular arrhythmia effects. The vericiguat therapy reduces ventricular ectopic beats, inhibiting the initiation of ventricular arrhythmias. Furthermore, the therapy successfully suppresses cardiac alternans, preventing conduction block and, consequently, the formation of reentry circuits.
Collapse
Affiliation(s)
- Po-Cheng Chang
- Department of Internal Medicine, Division of Cardiology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Medical School, Chang Gung University, Taoyuan, Taiwan
| | - Hui-Ling Lee
- Medical School, Chang Gung University, Taoyuan, Taiwan
- Department of Anesthesia, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hung-Ta Wo
- Department of Internal Medicine, Division of Cardiology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Medical School, Chang Gung University, Taoyuan, Taiwan
| | - Hao-Tien Liu
- Department of Internal Medicine, Division of Cardiology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Medical School, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Shien Wen
- Department of Internal Medicine, Division of Cardiology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Medical School, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Chuan Chou
- Department of Internal Medicine, Division of Cardiology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Medical School, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
12
|
Kintos DP, Salagiannis K, Sgouros A, Nikolaropoulos SS, Topouzis S, Fousteris MA. Identification of new multi-substituted 1H-pyrazolo[3,4-c]pyridin-7(6H)-ones as soluble guanylyl cyclase (sGC) stimulators with vasoprotective and anti-inflammatory activities. Bioorg Chem 2024; 144:107170. [PMID: 38335755 DOI: 10.1016/j.bioorg.2024.107170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Herein, we describe the rational design, synthesis and in vitro functional characterization of new heme-dependent, direct soluble guanylyl cyclase (sGC) agonists. These new compounds bear a 1H-pyrazolo[3,4-c]pyridin-7(6H)-one skeleton, modified to enable efficient sGC binding and stimulation. To gain insights into structure-activity relationships, the N6-alkylation of the skeleton was explored, while a pyrimidine ring, substituted with various C5'-polar groups, was installed at position C3. Among the newly synthesized 1H-pyrazolo[3,4-c]pyridin-7(6H)-ones, derivatives 14b, 15b and 16a display characteristic features of sGC "stimulators" in A7r5 vascular smooth muscle cells in vitro. They strongly synergize with the NO donor, sodium nitroprusside (SNP) in inducing cGMP generation in a manner that requires the presence of a reduced heme moiety associated with sGC, and elevate the cGMP-responsive phosphorylation of the protein VASP at Ser239. In line with their sGC stimulating capacity, docking calculations of derivatives 16a, 15(a-c) on a cryo-EM structure of human sGC (hsGC) in an ΝΟ-activated state indicated the implication of 1H-pyrazolo[3,4-c]pyridin-7(6H)-one skeleton in efficient bonding interactions with the recently identified region that binds known sGC stimulators, while the presence of either a N6-H or N6-methyl group pointed to enhanced binding affinity. Moreover, the in vitro functional effects of our newly identified sGC stimulators were compatible with a beneficial role in vascular homeostasis. Specifically, derivative 14b reduced A7r5 cell proliferation, while 16a dampened the expression of adhesion molecules ICAM-1 and P/E-Selectin in Human Umbilical Vein Endothelial Cells (HUVECs), as well as the subsequent adhesion of U937 leukocytes to the HUVECs, triggered by tumor necrosis factor alpha (TNF-α) or interleukin-1 beta (IL-1β). The fact that these compounds elevate cGMP only in the presence of NO may indicate a novel way of interaction with the enzyme and may make them less prone than other direct sGC agonists to induce characteristic hypotension in vivo.
Collapse
Affiliation(s)
| | - Konstantinos Salagiannis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, GR-26500, Greece
| | - Antonis Sgouros
- Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Patras, Patras, GR-26500, Greece
| | - Sotiris S Nikolaropoulos
- Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Patras, Patras, GR-26500, Greece
| | - Stavros Topouzis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, GR-26500, Greece.
| | - Manolis A Fousteris
- Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Patras, Patras, GR-26500, Greece.
| |
Collapse
|
13
|
Mustafa DM, Magdy N, El Azab NF. Different spectrophotometric methods for simultaneous quantitation of Vericiguat and its alkaline degradation product: a comparative study with greenness profile assessment. Sci Rep 2023; 13:23077. [PMID: 38155184 PMCID: PMC10754859 DOI: 10.1038/s41598-023-50097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023] Open
Abstract
Investigations concerning novel drugs and their induced degradation products are necessary for clinical research and quality control in the pharmaceutical industry. Four spectrophotometric techniques have been performed for simultaneous quantitation of Vericiguat (VER) and its alkali-induced degradation product (ADP) without prior separation. Method A is a dual wavelength method (DW) that estimates the absorbance difference at 314-328 nm, and 246-262 nm for VER and ADP; respectively. Method B uses a ratio difference method (RD) to estimate the ratio spectrum's amplitude difference (DP318-342) and (DP284-292) for VER and ADP; respectively. Method C uses a first derivative ratio method (1DD) to estimate the peak ratio spectrum amplitude of the first derivative at 318 and 275 nm for VER and ADP; respectively. Method D uses the mean centering of the ratio spectra (MCR) to estimate amplitude values for VER and ADP at 337 and 292 nm; respectively. In a concentration range of 5.00-50.00 µg/mL for VER and 5.00-100.00 µg/mL for ADP, the methods were validated following ICH criteria and utilized to estimate VER in bulk and its dosage form. The methods' greenness was assessed via three tools: the green analytical procedure index (GAPI), analytical eco-scale, and analytical greenness assessment (AGREE).
Collapse
Affiliation(s)
- Doaa M Mustafa
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbassia, Cairo, 11566, Egypt.
| | - Nancy Magdy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbassia, Cairo, 11566, Egypt
| | - Noha F El Azab
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbassia, Cairo, 11566, Egypt
| |
Collapse
|
14
|
Chen T, Kong B, Shuai W, Gong Y, Zhang J, Huang H. Vericiguat alleviates ventricular remodeling and arrhythmias in mouse models of myocardial infarction via CaMKII signaling. Life Sci 2023; 334:122184. [PMID: 37866806 DOI: 10.1016/j.lfs.2023.122184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
AIMS Maladaptive ventricular remodeling is a major cause of ventricular arrhythmias following myocardial infarction (MI) and adversely impacts the quality of life of affected patients. Vericiguat is a new soluble guanylate cyclase (sGC) activator with cardioprotective properties. However, its effects on MI-induced ventricular remodeling and arrhythmias are not fully comprehended; hence, our research evaluated the effect of vericiguat on mice post-MI. MATERIALS AND METHODS Mice were divided into four treatment groups: Sham, Sham+Veri, MI, and MI + Veri. For the MI groups and MI + Veri groups, the left anterior descending (LAD) coronary artery was occluded to induce MI. Conversely, the Sham group underwent mock surgery. Vericiguat was administered orally daily for 28 days to the Sham+Veri and MI + Veri groups. Additionally, H9c2 cells were cultured for further mechanistic studies. Assessment methods included echocardiography, pathological analysis, electrophysiological analysis, and Western blotting. KEY FINDINGS Vericiguat reduced cardiac dysfunction and infarct size after MI. It also mitigated MI-induced left ventricular fibrosis and cardiomyocyte apoptosis. Vericiguat normalized the expression of ion channel proteins (Kv4.3, Kv4.2, Kv2.1, Kv1.5, Kv7.1, KCNH2, Cav1.2) and the gap junction protein connexin 43, reducing the susceptibility to ventricular arrhythmia. Vericiguat significantly inhibited MI-induced calcium/calmodulin-dependent protein kinase II (CaMKII) pathway activation in mice. SIGNIFICANCE Vericiguat alleviated MI-induced left ventricular adverse remodeling and arrhythmias through modulation of the CamkII signaling pathway.
Collapse
Affiliation(s)
- Tao Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China
| | - Yang Gong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China
| | - Jingjing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China.
| |
Collapse
|
15
|
Dow LF, Case AM, Paustian MP, Pinkerton BR, Simeon P, Trippier PC. The evolution of small molecule enzyme activators. RSC Med Chem 2023; 14:2206-2230. [PMID: 37974956 PMCID: PMC10650962 DOI: 10.1039/d3md00399j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
There is a myriad of enzymes within the body responsible for maintaining homeostasis by providing the means to convert substrates to products as and when required. Physiological enzymes are tightly controlled by many signaling pathways and their products subsequently control other pathways. Traditionally, most drug discovery efforts focus on identifying enzyme inhibitors, due to upregulation being prevalent in many diseases and the existence of endogenous substrates that can be modified to afford inhibitor compounds. As enzyme downregulation and reduction of endogenous activators are observed in multiple diseases, the identification of small molecules with the ability to activate enzymes has recently entered the medicinal chemistry toolbox to afford chemical probes and potential therapeutics as an alternative means to intervene in diseases. In this review we highlight the progress made in the identification and advancement of non-kinase enzyme activators and their potential in treating various disease states.
Collapse
Affiliation(s)
- Louise F Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Alfie M Case
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Megan P Paustian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Braeden R Pinkerton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Princess Simeon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center Omaha NE 68106 USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center Omaha NE 68106 USA
| |
Collapse
|
16
|
Wunder F, Stasch JP, Knorr A, Mondritzki T, Brockschnieder D, Becker-Pelster EM, Sandner P, Tinel H, Redlich G, Hartung IV, Vakalopoulos A, Follmann M. Identification and characterization of the new generation soluble guanylate cyclase stimulator BAY-747 designed for the treatment of resistant hypertension. Br J Pharmacol 2023; 180:2500-2513. [PMID: 37170767 DOI: 10.1111/bph.16142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND AND PURPOSE First-generation soluble guanylate cyclase (sGC) stimulators have shown clinical benefit in pulmonary hypertension (riociguat) and chronic heart failure (vericiguat). However, given the broad therapeutic opportunities for sGC stimulators, tailored molecules for distinct indications are required. EXPERIMENTAL APPROACH We report the high-throughput screening (HTS)-based discovery of a second generation of sGC stimulators from a novel imidazo[1,2-a]pyridine lead series. An intense medicinal chemistry programme resulted in the discovery of the sGC stimulator BAY 1165747 (BAY-747). The pharmacokinetic profile of BAY-747 was determined in different species, and it was broadly characterized in pharmacological model systems relevant for vasodilatation and hypertension. KEY RESULTS BAY-747 is a highly potent sGC stimulator in vitro. In addition, BAY-747 showed an excellent pharmacokinetic profile with long half-life and low peak-to-trough ratio. BAY-747 was investigated in experimental in vivo models of malignant and resistant hypertension (rHT). In spontaneously hypertensive (SH) rats, BAY-747 caused a dose-related and long-lasting decrease in mean arterial blood pressure (MAP). Oral treatment over 12 days resulted in a persistent decrease. BAY-747 provided additional benefit when dosed on top of losartan, amlodipine or spironolactone and even on top of triple combinations of frequently used antihypertensive drugs. In a new canine model of rHT, BAY-747 caused a dose-related and long-lasting (>6 h) MAP decrease. CONCLUSION AND IMPLICATIONS BAY-747 is a potent, orally available sGC stimulator. BAY-747 shows long-acting pharmacodynamic effects with a very low peak-to-trough ratio. BAY-747 could be a treatment alternative for patients with hypertension, especially those not responding to standard-of-care therapy.
Collapse
Affiliation(s)
- Frank Wunder
- Lead Identification & Characterization, Pharma Research and Development Center, Bayer AG, Wuppertal, Germany
| | - Johannes-Peter Stasch
- Cardiovascular Research, Pharma Research and Development Center, Bayer AG, Wuppertal, Germany
- Institute of Pharmacy, University of Halle, Halle, Germany
| | - Andreas Knorr
- Cardiovascular Research, Pharma Research and Development Center, Bayer AG, Wuppertal, Germany
| | - Thomas Mondritzki
- Cardiovascular Research, Pharma Research and Development Center, Bayer AG, Wuppertal, Germany
- University of Witten/Herdecke, Witten, Germany
| | - Damian Brockschnieder
- Cardiovascular Research, Pharma Research and Development Center, Bayer AG, Wuppertal, Germany
| | | | - Peter Sandner
- Cardiovascular Research, Pharma Research and Development Center, Bayer AG, Wuppertal, Germany
- Institute of Pharmacology, Hannover Medical School, Hanover, Germany
| | - Hanna Tinel
- Cardiovascular Research, Pharma Research and Development Center, Bayer AG, Wuppertal, Germany
| | - Gorden Redlich
- Pharmacokinetics, Pharma Research and Development Center, Bayer AG, Wuppertal, Germany
| | - Ingo V Hartung
- Synthetic Modalities, Pharma Research and Development Center, Bayer AG, Wuppertal, Germany
| | | | - Markus Follmann
- Synthetic Modalities, Pharma Research and Development Center, Bayer AG, Wuppertal, Germany
| |
Collapse
|
17
|
Mozzini C, Pagani M. The Heart Failure Knights. Curr Probl Cardiol 2023; 48:101834. [PMID: 37244515 DOI: 10.1016/j.cpcardiol.2023.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
The 2021 European Society of Cardiology guidelines for the diagnosis and treatment of acute and chronic heart failure (HF) have abandoned the sequential approach for optimal drug therapy and proposed four drug classes, the so-called 4 "pillars" (angiotensin-converting enzyme inhibitors; angiotensin receptor-neprilysin inhibitors; beta-blockers; mineralocorticoid receptor antagonists and sodium-glucose co-transporter 2 inhibitors) to be initiated and titrated in all patients with reduced ejection fraction HF (HFrEF). In addition, new molecules have been considered, derived from recently reported advances from trials in HFrEF. In this review, Authors examine in particular these new molecules, as further "knights" for HF. In particular, vericiguat, a novel oral soluble guanylate cyclase stimulator, has proved effective in patients with HFrEF who had recently been hospitalized or had received intravenous diuretic therapy. The selective cardiac myosin activator omecamtiv mecarbil and the cardiac myosin inhibitors aficamten and mavacamten are under investigation. Cardiac myosin stimulator, omecamtiv mecarbil, has shown efficacy in HFrEF, lowering HF related events or cardiovascular death, while the 2 inhibitors, mavacamten and aficamten have been shown to reduce hypercontractility and left ventricular outflow obstruction improving functional capacity in randomized trials targeting hypertrophic cardiomyopathy. These agents are the prototypes of active pipelines promising to deliver an array of molecules against HF in the near future.
Collapse
Affiliation(s)
- Chiara Mozzini
- Department of Medicine, ASST Mantova, C. Poma Hospital, Mantova, Italy.
| | - Mauro Pagani
- Department of Medicine, ASST Mantova, C. Poma Hospital, Mantova, Italy
| |
Collapse
|
18
|
Kraehling JR, Benardeau A, Schomber T, Popp L, Vienenkoetter J, Ellinger-Ziegelbauer H, Pavkovic M, Hartmann E, Siudak K, Freyberger A, Hagelschuer I, Mathar I, Hueser J, Hahn MG, Geiss V, Eitner F, Sandner P. The sGC Activator Runcaciguat Has Kidney Protective Effects and Prevents a Decline of Kidney Function in ZSF1 Rats. Int J Mol Sci 2023; 24:13226. [PMID: 37686032 PMCID: PMC10488129 DOI: 10.3390/ijms241713226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Chronic kidney disease (CKD) progression is associated with persisting oxidative stress, which impairs the NO-sGC-cGMP signaling cascade through the formation of oxidized and heme-free apo-sGC that cannot be activated by NO. Runcaciguat (BAY 1101042) is a novel, potent, and selective sGC activator that binds and activates oxidized and heme-free sGC and thereby restores NO-sGC-cGMP signaling under oxidative stress. Therefore, runcaciguat might represent a very effective treatment option for CKD/DKD. The potential kidney-protective effects of runcaciguat were investigated in ZSF1 rats as a model of CKD/DKD, characterized by hypertension, hyperglycemia, obesity, and insulin resistance. ZSF1 rats were treated daily orally for up to 12 weeks with runcaciguat (1, 3, 10 mg/kg/bid) or placebo. The study endpoints were proteinuria, kidney histopathology, plasma, urinary biomarkers of kidney damage, and gene expression profiling to gain information about relevant pathways affected by runcaciguat. Furthermore, oxidative stress was compared in the ZSF1 rat kidney with kidney samples from DKD patients. Within the duration of the 12-week treatment study, kidney function was significantly decreased in obese ZSF1 rats, indicated by a 20-fold increase in proteinuria, compared to lean ZSF1 rats. Runcaciguat dose-dependently and significantly attenuated the development of proteinuria in ZSF1 rats with reduced uPCR at the end of the study by -19%, -54%, and -70% at 1, 3, and 10 mg/kg/bid, respectively, compared to placebo treatment. Additionally, average blood glucose levels measured as HbA1C, triglycerides, and cholesterol were increased by five times, twenty times, and four times, respectively, in obese ZSF1 compared to lean rats. In obese ZSF1 rats, runcaciguat reduced HbA1c levels by -8%, -34%, and -76%, triglycerides by -42%, -55%, and -71%, and cholesterol by -16%, -17%, and -34%, at 1, 3, and 10 mg/kg/bid, respectively, compared to placebo. Concomitantly, runcaciguat also reduced kidney weights, morphological kidney damage, and urinary and plasma biomarkers of kidney damage. Beneficial effects were accompanied by changes in gene expression that indicate reduced fibrosis and inflammation and suggest improved endothelial stabilization. In summary, the sGC activator runcaciguat significantly prevented a decline in kidney function in a DKD rat model that mimics common comorbidities and conditions of oxidative stress of CKD patients. Thus, runcaciguat represents a promising treatment option for CKD patients, which is in line with recent phase 2 clinical study data, where runcaciguat showed promising efficacy in CKD patients (NCT04507061).
Collapse
Affiliation(s)
- Jan R. Kraehling
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Agnes Benardeau
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
- Novo Nordisk A/S, Global Drug Discovery, T1D-Kidney Disease, 2760 Måløv, Denmark
| | - Tibor Schomber
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
- Vincerx Pharma GmbH, 40789 Monheim, Germany
| | - Laura Popp
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Julia Vienenkoetter
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | | | - Mira Pavkovic
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Elke Hartmann
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Krystyna Siudak
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Alexius Freyberger
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Ina Hagelschuer
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Ilka Mathar
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Joerg Hueser
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Michael G. Hahn
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Volker Geiss
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Frank Eitner
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52062 Aachen, Germany
| | - Peter Sandner
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
- Department of Pharmacology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
19
|
Shabir G, Saeed A, Zahid W, Naseer F, Riaz Z, Khalil N, Muneeba, Albericio F. Chemistry and Pharmacology of Fluorinated Drugs Approved by the FDA (2016-2022). Pharmaceuticals (Basel) 2023; 16:1162. [PMID: 37631077 PMCID: PMC10458641 DOI: 10.3390/ph16081162] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Fluorine is characterized by high electronegativity and small atomic size, which provide this molecule with the unique property of augmenting the potency, selectivity, metabolic stability, and pharmacokinetics of drugs. Fluorine (F) substitution has been extensively explored in drug research as a means of improving biological activity and enhancing chemical or metabolic stability. Selective F substitution onto a therapeutic or diagnostic drug candidate can enhance several pharmacokinetic and physicochemical properties such as metabolic stability and membrane permeation. The increased binding ability of fluorinated drug target proteins has also been reported in some cases. An emerging line of research on F substitution has been addressed by using 18F as a radiolabel tracer atom in the extremely sensitive methodology of positron emission tomography (PET) imaging. This review aims to report on the fluorinated drugs approved by the US Food and Drug Administration (FDA) from 2016 to 2022. It cites selected examples from a variety of therapeutic and diagnostic drugs. FDA-approved drugs in this period have a variety of heterocyclic cores, including pyrrole, pyrazole, imidazole, triazole, pyridine, pyridone, pyridazine, pyrazine, pyrimidine, triazine, purine, indole, benzimidazole, isoquinoline, and quinoline appended with either F-18 or F-19. Some fluorinated oligonucleotides were also authorized by the FDA between 2019 and 2022.
Collapse
Affiliation(s)
- Ghulam Shabir
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Wajeeha Zahid
- Department of Chemistry, Government Graduate College Toba Tek Singh, Punjab 36050, Pakistan; (W.Z.); (F.N.); (Z.R.); (N.K.); (M.)
| | - Fatima Naseer
- Department of Chemistry, Government Graduate College Toba Tek Singh, Punjab 36050, Pakistan; (W.Z.); (F.N.); (Z.R.); (N.K.); (M.)
| | - Zainab Riaz
- Department of Chemistry, Government Graduate College Toba Tek Singh, Punjab 36050, Pakistan; (W.Z.); (F.N.); (Z.R.); (N.K.); (M.)
| | - Nafeesa Khalil
- Department of Chemistry, Government Graduate College Toba Tek Singh, Punjab 36050, Pakistan; (W.Z.); (F.N.); (Z.R.); (N.K.); (M.)
| | - Muneeba
- Department of Chemistry, Government Graduate College Toba Tek Singh, Punjab 36050, Pakistan; (W.Z.); (F.N.); (Z.R.); (N.K.); (M.)
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
20
|
Yokoi A, Kawada T, Yokota S, Kakuuchi M, Matsushita H, Nishiura A, Li M, Uemura K, Alexander J, Tanaka R, Saku K. Impact of vericiguat on baroreflex-mediated sympathetic circulatory regulation: An open-loop analysis. PLoS One 2023; 18:e0286767. [PMID: 37566583 PMCID: PMC10420376 DOI: 10.1371/journal.pone.0286767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/23/2023] [Indexed: 08/13/2023] Open
Abstract
AIMS To quantify in vivo the effects of the soluble guanylate cyclase (sGC) stimulator, vericiguat, on autonomic cardiovascular regulation in comparison with the nitric oxide (NO) donor, sodium nitroprusside. METHODS In anesthetized Wistar-Kyoto rats, baroreflex-mediated changes in sympathetic nerve activity (SNA), arterial pressure (AP), central venous pressure (CVP), and aortic flow (AoF) were examined before and during the intravenous continuous administration (10 μg·kg-1·min-1) of vericiguat or sodium nitroprusside (n = 8 each). Systemic vascular resistance (SVR) was calculated as SVR = (AP-CVP) / AoF. RESULTS Neither vericiguat nor sodium nitroprusside affected fitted parameters of the baroreflex-mediated SNA response. Both vericiguat and sodium nitroprusside decreased the AP mainly through their peripheral effects. Vericiguat halved the slope of the SNA-SVR relationship from 0.012 ± 0.002 to 0.006 ± 0.002 mmHg·min·mL-1·%-1 (P = 0.008), whereas sodium nitroprusside caused a near parallel downward shift in the SNA-SVR relationship with a reduction of the SVR intercept from 1.235 ± 0.187 to 0.851 ± 0.123 mmHg·min/mL (P = 0.008). CONCLUSION Neither vericiguat nor sodium nitroprusside significantly affected the baroreflex-mediated SNA response. The vasodilative effect of vericiguat became greater toward high levels of SNA and AP, possibly reflecting the increased sGC sensitivity to endogenous NO. By contrast, the effect of sodium nitroprusside was more uniform over the range of SNA. These results help better understand cardiovascular effects of vericiguat.
Collapse
Affiliation(s)
- Aimi Yokoi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Shohei Yokota
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Midori Kakuuchi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hiroki Matsushita
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Akitsugu Nishiura
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Meihua Li
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Kazunori Uemura
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Joe Alexander
- Medical and Health Informatics, NTT Research, Inc., Sunnyvale, CA, United States of America
| | - Ryou Tanaka
- Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Keita Saku
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| |
Collapse
|
21
|
Friebe A, Kraehling JR, Russwurm M, Sandner P, Schmidtko A. The 10th International Conference on cGMP 2022: recent trends in cGMP research and development-meeting report. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1669-1686. [PMID: 37079081 PMCID: PMC10338386 DOI: 10.1007/s00210-023-02484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
Increasing cGMP is a unique therapeutic principle, and drugs inhibiting cGMP-degrading enzymes or stimulating cGMP production are approved for the treatment of various diseases such as erectile dysfunction, coronary artery disease, pulmonary hypertension, chronic heart failure, irritable bowel syndrome, or achondroplasia. In addition, cGMP-increasing therapies are preclinically profiled or in clinical development for quite a broad set of additional indications, e.g., neurodegenerative diseases or different forms of dementias, bone formation disorders, underlining the pivotal role of cGMP signaling pathways. The fundamental understanding of the signaling mediated by nitric oxide-sensitive (soluble) guanylyl cyclase and membrane-associated receptor (particulate) guanylyl cyclase at the molecular and cellular levels, as well as in vivo, especially in disease models, is a key prerequisite to fully exploit treatment opportunities and potential risks that could be associated with an excessive increase in cGMP. Furthermore, human genetic data and the clinical effects of cGMP-increasing drugs allow back-translation into basic research to further learn about signaling and treatment opportunities. The biannual international cGMP conference, launched nearly 20 years ago, brings all these aspects together as an established and important forum for all topics from basic science to clinical research and pivotal clinical trials. This review summarizes the contributions to the "10th cGMP Conference on cGMP Generators, Effectors and Therapeutic Implications," which was held in Augsburg in 2022 but will also provide an overview of recent key achievements and activities in the field of cGMP research.
Collapse
Affiliation(s)
- Andreas Friebe
- Institute of Physiology, University of Würzburg, Röntgenring 9, D-97070 Würzburg, Germany
| | - Jan R. Kraehling
- Pharmaceuticals, Research and Early Development, Pharma Research Center, Bayer AG, Aprather Weg 18a, D-42096 Wuppertal, Germany
| | - Michael Russwurm
- Institute of Pharmacology, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany
| | - Peter Sandner
- Pharmaceuticals, Research and Early Development, Pharma Research Center, Bayer AG, Aprather Weg 18a, D-42096 Wuppertal, Germany
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, Max-Von-Laue-Str. 9, D-60438 Frankfurt Am Main, Germany
| |
Collapse
|
22
|
Tran BA, Serag-Bolos ES, Fernandez J, Miranda AC. Vericiguat: The First Soluble Guanylate Cyclase Stimulator for Reduction of Cardiovascular Death and Heart Failure Hospitalization in Patients With Heart Failure Reduced Ejection Fraction. J Pharm Pract 2023; 36:905-914. [PMID: 35356844 DOI: 10.1177/08971900221087096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Objective: This study aims to review the pharmacology, efficacy, and safety of the soluble guanylate cyclase stimulator, vericiguat, in patients with symptomatic congestive heart failure with ejection fraction less than 45% for the reduction of cardiovascular deaths. Also, to evaluate heart failure-related hospitalization in patients following a hospital discharge secondary to heart failure or those that require outpatient intravenous diuretics. Data source: MEDLINE/Pubmed and National Institutes of Health Clinical Trial Registry were searched between January 1989 to February 2021 using the following terms: vericiguat, soluble guanylate cyclase stimulator, heart failure, (was also known as) BAY 1021189. Study Selection and Data Extraction: The following study designs were included in the analysis: phase I, II, and III clinical trials; systematic reviews; and meta-analyses. Articles were included if they were published in English and evaluated vericiguat pharmacology, pharmacokinetics, efficacy, and safety. Data Synthesis: The Food and Drug Administration approved vericiguat for the reduction of cardiovascular death and hospitalization after having a related hospitalization or the need for outpatient intravenous diuretics, in those with symptomatic chronic heart failure and ejection fraction less than 45%. In the VICTORIA trial, vericiguat demonstrated a 10% reduction in risk of death from cardiovascular causes or first hospitalization for heart failure compared with placebo. Vericiguat was well tolerated overall with hypotension, syncope, and anemia noted as the most common side effects, similar to the other agent in its class. Conclusion: Vericiguat may be appropriate as add-on therapy for patients already on guideline-directed medical therapy with recent decompensated HFrEF to reduce hospitalization.
Collapse
Affiliation(s)
- Bao-Anh Tran
- Department of Pharmacotherapeutics & Clinical Research, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Erini S Serag-Bolos
- Department of Pharmacotherapeutics & Clinical Research, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Joel Fernandez
- Cardiovascular Sciences Division, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Aimon C Miranda
- Department of Pharmacotherapeutics & Clinical Research, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
23
|
Sahana U, Wehland M, Simonsen U, Schulz H, Grimm D. A Systematic Review of the Effect of Vericiguat on Patients with Heart Failure. Int J Mol Sci 2023; 24:11826. [PMID: 37511587 PMCID: PMC10380763 DOI: 10.3390/ijms241411826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Despite recent advances in heart failure (HF) therapy, the risk of cardiovascular (CV) mortality, morbidity, and HF hospitalization (HFH) are major challenges in HF treatment. We aimed to review the potential of vericiguat as a treatment option for HF. A systematic literature review was performed using the PubMed database and ClinicalTrials.gov. Four randomized controlled trials were identified, which study the safety and efficacy of vericiguat in HF patients. Vericiguat activates soluble guanylate cyclase (sGC) by binding to the beta-subunit, bypassing the requirement for NO-induced activation. The nitric oxide (NO)-sGC-cyclic guanosine monophosphate (cGMP) pathway plays an essential role in cardiovascular (CV) regulation and the protection of healthy cardiac function but is impaired in HF. Vericiguat reduced the risk of CV death and HFH in HF patients with reduced ejection fraction (HFrEF) but showed no therapeutic effect on HF with preserved ejection fraction (HFpEF). The trials demonstrated a favorable safety profile with most common adverse events such as hypotension, syncope, and anemia. Therefore, vericiguat is recommended for patients with HFrEF and a minimum systolic blood pressure of 100 mmHg. Treatment with vericiguat is considered when the individual patient experiences decompensation despite being on guideline-recommended medication, e.g., angiotensin-converting inhibitor/AT1 receptor antagonist, beta-adrenoceptor antagonist, spironolactone, and sodium-glucose transporter 2 inhibitors. Furthermore, larger studies are required to investigate any potential effect of vericiguat in HFpEF patients. Despite the limitations, vericiguat can be recommended for patients with HFrEF, where standard-of-care is insufficient, and the disease worsens.
Collapse
Affiliation(s)
- Urjosee Sahana
- Department of Biomedicine, The Faculty of Health, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark (U.S.)
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.W.); (H.S.)
| | - Ulf Simonsen
- Department of Biomedicine, The Faculty of Health, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark (U.S.)
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.W.); (H.S.)
| | - Daniela Grimm
- Department of Biomedicine, The Faculty of Health, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark (U.S.)
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.W.); (H.S.)
| |
Collapse
|
24
|
Mace EH, Kimlinger MJ, Billings FT, Lopez MG. Targeting Soluble Guanylyl Cyclase during Ischemia and Reperfusion. Cells 2023; 12:1903. [PMID: 37508567 PMCID: PMC10378692 DOI: 10.3390/cells12141903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Ischemia and reperfusion (IR) damage organs and contribute to many disease states. Few effective treatments exist that attenuate IR injury. The augmentation of nitric oxide (NO) signaling remains a promising therapeutic target for IR injury. NO binds to soluble guanylyl cyclase (sGC) to regulate vasodilation, maintain endothelial barrier integrity, and modulate inflammation through the production of cyclic-GMP in vascular smooth muscle. Pharmacologic sGC stimulators and activators have recently been developed. In preclinical studies, sGC stimulators, which augment the reduced form of sGC, and activators, which activate the oxidized non-NO binding form of sGC, increase vasodilation and decrease cardiac, cerebral, renal, pulmonary, and hepatic injury following IR. These effects may be a result of the improved regulation of perfusion and decreased oxidative injury during IR. sGC stimulators are now used clinically to treat some chronic conditions such as heart failure and pulmonary hypertension. Clinical trials of sGC activators have been terminated secondary to adverse side effects including hypotension. Additional clinical studies to investigate the effects of sGC stimulation and activation during acute conditions, such as IR, are warranted.
Collapse
Affiliation(s)
- Eric H Mace
- Department of Surgery, Vanderbilt University Medical Center, Medical Center North, Suite CCC-4312, 1161 21st Avenue South, Nashville, TN 37232-2730, USA
| | - Melissa J Kimlinger
- Vanderbilt University School of Medicine, 428 Eskind Family Biomedical Library and Learning Center, Nashville, TN 37240-0002, USA
| | - Frederic T Billings
- Department of Anesthesiology, Division of Critical Care Medicine, Vanderbilt University Medical Center, Medical Arts Building, Suite 422, 1211 21st Avenue South, Nashville, TN 37212-1750, USA
| | - Marcos G Lopez
- Department of Anesthesiology, Division of Critical Care Medicine, Vanderbilt University Medical Center, Medical Arts Building, Suite 422, 1211 21st Avenue South, Nashville, TN 37212-1750, USA
| |
Collapse
|
25
|
Pieske B, Pieske-Kraigher E, Lam CSP, Melenovský V, Sliwa K, Lopatin Y, Arango JL, Bahit MC, O'Connor CM, Patel MJ, Roessig L, Morris DA, Kropf M, Westerhout CM, Zheng Y, Armstrong PW. Effect of vericiguat on left ventricular structure and function in patients with heart failure with reduced ejection fraction: The VICTORIA echocardiographic substudy. Eur J Heart Fail 2023; 25:1012-1021. [PMID: 36994634 DOI: 10.1002/ejhf.2836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
AIM Vericiguat significantly reduced the primary composite outcome of heart failure (HF) hospitalization or cardiovascular death in the VICTORIA trial. It is unknown if these outcome benefits are related to reverse left ventricular (LV) remodelling with vericiguat in patients with HF with reduced ejection fraction (HFrEF). The aim of this study was to compare the effects of vericiguat versus placebo on LV structure and function after 8 months of therapy in patients with HFrEF. METHODS AND RESULTS Standardized transthoracic echocardiography (TTE) was performed at baseline and after 8 months of therapy in a subset of HFrEF patients in VICTORIA. The co-primary endpoints were changes in LV end-systolic volume index (LVESVI) and LV ejection fraction (LVEF). Quality assurance and central reading were performed by an echocardiographic core laboratory blinded to treatment assignment. A total of 419 patients (208 vericiguat, 211 placebo) with high-quality paired TTE at baseline and 8 months were included. Baseline clinical characteristics were well balanced between treatment groups and echocardiographic characteristics were representative of patients with HFrEF. LVESVI significantly declined (60.7 ± 26.8 to 56.8 ± 30.4 ml/m2 ; p < 0.01) and LVEF significantly increased (33.0 ± 9.4% to 36.1 ± 10.2%; p < 0.01) in the vericiguat group, but similarly in the placebo group (absolute changes for vericiguat vs. placebo: LVESVI -3.8 ± 15.4 vs. -7.1 ± 20.5 ml/m2 ; p = 0.07 and LVEF +3.2 ± 8.0% vs. +2.4 ± 7.6%; p = 0.31). The absolute rate per 100 patient-years of the primary composite endpoint at 8 months tended to be lower in the vericiguat group (19.8) than the placebo group (29.6) (p = 0.07). CONCLUSIONS In this pre-specified echocardiographic study, significant improvements in LV structure and function occurred over 8 months in both vericiguat and placebo in a high-risk HFrEF population with recent worsening HF. Further studies are warranted to define the mechanisms of vericiguat's benefit in HFrEF.
Collapse
Affiliation(s)
- Burkert Pieske
- Charité University Medicine, German Heart Center, Berlin, Germany
| | | | - Carolyn S P Lam
- National Heart Centre Singapore and Duke-National University of Singapore, Singapore, Singapore
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Karen Sliwa
- Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Yuri Lopatin
- Volgograd State Medical University, Volgograd Regional Cardiology Center, Volgograd, Russian Federation
| | - Juan Luis Arango
- Unidad de Cirugía Cardiovascular de Guatemala, Guatemala City, Guatemala
| | - M Cecilia Bahit
- INECO Neurociencias Oroño, Fundación INECO, Rosario, Argentina
| | | | | | | | - Daniel A Morris
- Charité University Medicine, German Heart Center, Berlin, Germany
| | - Martin Kropf
- Charité University Medicine, German Heart Center, Berlin, Germany
| | | | - Yinggan Zheng
- Canadian VIGOUR Centre, University of Alberta, Edmonton, AB, Canada
| | - Paul W Armstrong
- Canadian VIGOUR Centre, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
26
|
Gorący A, Rosik J, Szostak J, Szostak B, Retfiński S, Machaj F, Pawlik A. Improving mitochondrial function in preclinical models of heart failure: therapeutic targets for future clinical therapies? Expert Opin Ther Targets 2023; 27:593-608. [PMID: 37477241 DOI: 10.1080/14728222.2023.2240021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
INTRODUCTION Heart failure is a complex clinical syndrome resulting from the unsuccessful compensation of symptoms of myocardial damage. Mitochondrial dysfunction is a process that occurs because of an attempt to adapt to the disruption of metabolic and energetic pathways occurring in the myocardium. This, in turn, leads to further dysfunction in cardiomyocyte processes. Currently, many therapeutic strategies have been implemented to improve mitochondrial function, but their effectiveness varies widely. AREAS COVERED This review focuses on new models of therapeutic strategies targeting mitochondrial function in the treatment of heart failure. EXPERT OPINION Therapeutic strategies targeting mitochondria appear to be a valuable option for treating heart failure. Currently, the greatest challenge is to develop new research models that could restore the disrupted metabolic processes in mitochondria as comprehensively as possible. Only the development of therapies that focus on improving as many dysregulated mitochondrial processes as possible in patients with heart failure will be able to bring the expected clinical improvement, along with inhibition of disease progression. Combined strategies involving the reduction of the effects of oxidative stress and mitochondrial dysfunction, appear to be a promising possibility for developing new therapies for a complex and multifactorial disease such as heart failure.
Collapse
Affiliation(s)
- Anna Gorący
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Joanna Szostak
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Szymon Retfiński
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Filip Machaj
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
- Department of Medical Biology, Medical University of Warsaw, Warsaw, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
27
|
Patel J, Rassekh N, Fonarow GC, Deedwania P, Sheikh FH, Ahmed A, Lam PH. Guideline-Directed Medical Therapy for the Treatment of Heart Failure with Reduced Ejection Fraction. Drugs 2023; 83:747-759. [PMID: 37254024 DOI: 10.1007/s40265-023-01887-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2023] [Indexed: 06/01/2023]
Abstract
Guideline-directed medical therapy (GDMT) is the cornerstone of pharmacological therapy for patients with heart failure with reduced ejection fraction (HFrEF) and consists of the four main drug classes: renin-angiotensin system inhibitors, evidence-based β-blockers, mineralocorticoid inhibitors and sodium glucose cotransporter 2 inhibitors. The recommendation for use of GDMT is based on the results of multiple major randomized controlled trials demonstrating improved clinical outcomes in patients with HFrEF who are maintained on this therapy. The effect is most beneficial when medications from the four main drug classes are used in conjunction. Despite this, there is an underutilization of GDMT, partially due to lack of awareness of how to safely and effectively initiate and titrate these medications. In this review article, we describe the different drug classes included in GDMT and offer an approach to initiation and effective titration in both the inpatient as well as outpatient setting.
Collapse
Affiliation(s)
- Jay Patel
- MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, 110 Irving St. NW, Washington, DC, 20010, USA
- Georgetown University, Washington, DC, USA
| | - Negin Rassekh
- MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, 110 Irving St. NW, Washington, DC, 20010, USA
| | | | | | - Farooq H Sheikh
- MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, 110 Irving St. NW, Washington, DC, 20010, USA
- Georgetown University, Washington, DC, USA
| | - Ali Ahmed
- Georgetown University, Washington, DC, USA
- George Washington University, Washington, DC, USA
- Veterans Affairs Medical Center, Washington, DC, USA
| | - Phillip H Lam
- MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, 110 Irving St. NW, Washington, DC, 20010, USA.
- Georgetown University, Washington, DC, USA.
- Veterans Affairs Medical Center, Washington, DC, USA.
| |
Collapse
|
28
|
Di Fusco SA, Alonzo A, Aimo A, Matteucci A, Intravaia RCM, Aquilani S, Cipriani M, De Luca L, Navazio A, Valente S, Gulizia MM, Gabrielli D, Oliva F, Colivicchi F. ANMCO position paper on vericiguat use in heart failure: from evidence to place in therapy. Eur Heart J Suppl 2023; 25:D278-D286. [PMID: 37213802 PMCID: PMC10194817 DOI: 10.1093/eurheartjsupp/suad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the growing therapeutic armamentarium for heart failure (HF) management, vericiguat represents an innovative therapeutic option. The biological target of this drug is different from that of other drugs for HF. Indeed, vericiguat does not inhibit neuro-hormonal systems overactivated in HF or sodium-glucose co-transporter 2 but stimulates the biological pathway of nitric oxide and cyclic guanosine monophosphate, which is impaired in patients with HF. Vericiguat has recently been approved by international and national regulatory authorities for the treatment of patients with HF and reduced ejection fraction who are symptomatic despite optimal medical therapy and have worsening HF. This ANMCO position paper summarises key aspects of vericiguat mechanism of action and provides a review of available clinical evidence. Furthermore, this document reports use indications based on international guideline recommendations and local regulatory authority approval at the time of writing.
Collapse
Affiliation(s)
- Stefania Angela Di Fusco
- U.O.C. Cardiologia Clinica e Riabilitativa, Presidio Ospedaliero San Filippo Neri—, ASL Roma 1, 00135, Italy
| | - Alessandro Alonzo
- U.O.C. Cardiologia Clinica e Riabilitativa, Presidio Ospedaliero San Filippo Neri—, ASL Roma 1, 00135, Italy
| | - Alberto Aimo
- Interdisciplinary Center for Health Science, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Andrea Matteucci
- U.O.C. Cardiologia Clinica e Riabilitativa, Presidio Ospedaliero San Filippo Neri—, ASL Roma 1, 00135, Italy
| | - Rita Cristina Myriam Intravaia
- Cardiologia 4-Diagnostica e Riabilitativa, Dipartimento Cardiotoracovascolare ‘A. De Gasperis’, ASST Grande Ospedale Metropolitano Niguarda, Piazza dell'Ospedale Maggiore, 3, Milan, 20162, Italy
| | - Stefano Aquilani
- U.O.C. Cardiologia Clinica e Riabilitativa, Presidio Ospedaliero San Filippo Neri—, ASL Roma 1, 00135, Italy
| | - Manlio Cipriani
- U.O. Cardiologia, Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione-ISMETT, Via Ernesto Tricomi 5, Palermo, 90127, Italy
| | - Leonardo De Luca
- U.O.C. Cardiologia, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense 87, Rome, 00152, Italy
| | - Alessandro Navazio
- S.O.C. Cardiologia Ospedaliera, Presidio Ospedaliero Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia—IRCCS, Viale Risorgimento 80, Reggio Emilia, 42123, Italy
| | - Serafina Valente
- Dipartimento Cardio-Toracico, A.O.U. Senese, Ospedale Santa Maria alle Scotte, Viale Mario Bracci 16, Siena, 53100, Italy
| | - Michele Massimo Gulizia
- U.O.C. Cardiologia, Ospedale Garibaldi-Nesima, Azienda di Rilievo Nazionale e Alta Specializzazione ‘Garibaldi’, Via Palermo 636, Catania, 95122, Italy
| | - Domenico Gabrielli
- U.O.C. Cardiologia, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense 87, Rome, 00152, Italy
- Fondazione per il Tuo cuore—Heart Care Foundation, Via Alfonso la Marmora 36, Firenze, 50121, Italy
| | - Fabrizio Oliva
- Cardiologia 1-Emodinamica, Dipartimento Cardiotoracovascolare ‘A. De Gasperis’, ASST Grande Ospedale Metropolitano Niguarda, Piazza dell'Ospedale Maggiore, 3, Milan, 20162, Italy
| | - Furio Colivicchi
- U.O.C. Cardiologia Clinica e Riabilitativa, Presidio Ospedaliero San Filippo Neri—, ASL Roma 1, 00135, Italy
| |
Collapse
|
29
|
Rizzo C, Amata S, Pibiri I, Pace A, Buscemi S, Palumbo Piccionello A. FDA-Approved Fluorinated Heterocyclic Drugs from 2016 to 2022. Int J Mol Sci 2023; 24:ijms24097728. [PMID: 37175436 PMCID: PMC10178595 DOI: 10.3390/ijms24097728] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The inclusion of fluorine atoms or heterocyclic moiety into drug structures represents a recurrent motif in medicinal chemistry. The combination of these two features is constantly appearing in new molecular entities with various biological activities. This is demonstrated by the increasing number of newly synthesized fluorinated heterocyclic compounds among the Food and Drug Administration FDA-approved drugs. In this review, the biological activity, as well as the synthetic aspects, of 33 recently FDA-approved fluorinated heterocyclic drugs from 2016 to 2022 are highlighted.
Collapse
Affiliation(s)
- Carla Rizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Sara Amata
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Ivana Pibiri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Andrea Pace
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Silvestre Buscemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| |
Collapse
|
30
|
Chandra G, Singh DV, Mahato GK, Patel S. Fluorine-a small magic bullet atom in the drug development: perspective to FDA approved and COVID-19 recommended drugs. CHEMICKE ZVESTI 2023; 77:1-22. [PMID: 37362786 PMCID: PMC10099028 DOI: 10.1007/s11696-023-02804-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/29/2023] [Indexed: 06/28/2023]
Abstract
During the last twenty years, organic fluorination chemistry established itself as an important tool to get a biologically active compound. This belief can be supported by the fact that every year, we are getting fluorinated drugs in the market in extremely significant numbers. Last year, also ten fluorinated drugs have been approved by FDA and during the COVID-19 pandemic, fluorinated drugs played a very crucial role to control the disease and saved many lives. In this review, we surveyed all ten fluorinated drugs approved by FDA in 2021 and all fluorinated drugs which were directly-indirectly used during the COVID-19 period, and emphasis has been given particularly to their synthesis, medicinal chemistry, and development process. Out of ten approved drugs, one drug pylarify, a radioactive diagnostic agent for cancer was approved for use in positron emission tomography imaging. Also, very briefly outlined the significance of fluorinated drugs through their physical, and chemical properties and their effect on drug development. Graphical abstract
Collapse
Affiliation(s)
- Girish Chandra
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| | - Durg Vijay Singh
- Department of Bioinformatics, School of Earth Biological and Environmental Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| | - Gopal Kumar Mahato
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| | - Samridhi Patel
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| |
Collapse
|
31
|
Bi S, Diao W, Tian T, Zhou T, Lin K, Zhou W. A Novel and Practical Synthesis of 5-Fluoro-1-(2-fluorobenzyl)-1 H-pyrazolo[3,4- b]pyridine-3-carbonitrile, a Key Intermediate of Vericiguat. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.3c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
32
|
Mityuk AP, Kiriakov OM, Tiutiunnyk VV, Lebed PS, Grabchuk GP, Rusanov EB, Volochnyuk DM, Ryabukhin SV. Trifluoromethyl Vinamidinium Salt as a Promising Precursor for Fused β-Trifluoromethyl Pyridines. J Org Chem 2023. [PMID: 36795967 DOI: 10.1021/acs.joc.2c02684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
An efficient chlorotrimethylsilane-promoted synthetic protocol for the preparation of functionalized fused β-trifluoromethyl pyridines by cyclization of electron-rich aminoheterocycles or substituted anilines with a trifluoromethyl vinamidinium salt was developed. The efficient and scalable approach for producing represented trifluoromethyl vinamidinium salt demonstrated huge prospects for further use. The structure specificities of the trifluoromethyl vinamidinium salt and their impact on the reaction progress were determined. The procedure's scope and alternative ways of the reaction were investigated. The possibility of increasing the reaction scale up to 50 g and further modification of obtained products was shown. A minilibrary of potential fragments for 19F NMR-based fragment-based drug discovery (FBDD) was synthesized.
Collapse
Affiliation(s)
| | | | | | - Pavlo S Lebed
- Enamine Ltd, 78 Chervonotkatska str., Kyiv 02094, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska str., Kyiv 02094, Ukraine
| | - Galyna P Grabchuk
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., Kyiv 01033, Ukraine
| | - Eduard B Rusanov
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska str., Kyiv 02094, Ukraine
| | - Dmitriy M Volochnyuk
- Enamine Ltd, 78 Chervonotkatska str., Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., Kyiv 01033, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska str., Kyiv 02094, Ukraine
| | - Sergey V Ryabukhin
- Enamine Ltd, 78 Chervonotkatska str., Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., Kyiv 01033, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska str., Kyiv 02094, Ukraine
| |
Collapse
|
33
|
Mustafa DM, Magdy N, El Azab NF. The first validated stability-indicating HPLC/DAD method for quantitation of Vericiguat in its pharmaceutical formulation; Application to degradation kinetic studies. Talanta 2023; 259:124498. [PMID: 37011562 DOI: 10.1016/j.talanta.2023.124498] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
The stability of innovative drug formulations and the development of appropriate stability-indicating methods remain major focuses of recent pharmaceutical analysis. In the present study, an efficient stability-indicating HPLC-DAD technique has been described and validated for the determination of Vericiguat (VER); a novel oral soluble guanylate cyclase (sGC) stimulator used in heart failure. VER's stability under various stress conditions was examined. It was shown that VER was sensitive to alkaline, oxidative and thermal degradation. Mass spectrometry (MS) in electrospray ionization mode was performed to figure out the structure of the alkaline and oxidative degradation products. Efficient separation of VER and its induced degradation products was accomplished using isocratic elution mode on the Inertsil ODS-C18 column. The mobile phase composed of water: acetonitrile (70:30 v/v) with 0.1% O-phosphoric acid; pH was adjusted to 2.22 and a flow rate of 0.80 mL/min. VER was detected at 332 nm over a concentration range of 2.00-20.00 μg/mL. The retention time was 4.500 ± 0.005 min and the correlation coefficient was 0.9996. Following the International Conference of Harmonization's guidelines, the analysis was validated to be specific, fast, simple, precise and accurate for utilization in routine analysis and quality control of VER in its pharmaceutical formulation. Additionally, the suggested technique was expanded to investigate the kinetics of alkaline, oxidative and dry heat degradation.
Collapse
Affiliation(s)
- Doaa M Mustafa
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbassia, Cairo, 11566, Egypt.
| | - Nancy Magdy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbassia, Cairo, 11566, Egypt.
| | - Noha F El Azab
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
34
|
Ma J, Guo S, Jiang H, Li B. Efficacy and safety of vericiguat in heart failure: a meta-analysis. J Int Med Res 2023; 51:3000605231159333. [PMID: 36896460 PMCID: PMC10009045 DOI: 10.1177/03000605231159333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the safety and efficacy of vericiguat in patients with heart failure (HF). METHODS We conducted a comprehensive literature review of the PubMed, Embase, and Cochrane Library databases up to 14 December 2022 for studies comparing vericiguat with placebo in patients with HF. Clinical data were extracted and cardiovascular deaths, adverse effects, and HF-related hospitalization were analyzed using Review Manager software (version 5.3), after quality assessment of the enrolled studies. RESULTS Four studies (6705 patients) were included in this meta-analysis. There were no significant differences in the basic characteristics of the included studies. There was no significant difference in adverse effects between the vericiguat group and placebo group, and no significant differences between the groups in terms of cardiovascular death and HF hospitalization. CONCLUSION This meta-analysis indicated that vericiguat was not an effective drug for HF; however, more clinical trials are required to verify its efficacy.
Collapse
Affiliation(s)
- Jianhua Ma
- Chongqing Rongchang District People's Hospital, Chongqing, Chongqing, China
| | - Sheng Guo
- Chongqing Rongchang District People's Hospital, Chongqing, Chongqing, China
| | - Huan Jiang
- Chongqing Rongchang District People's Hospital, Chongqing, Chongqing, China
| | - Bo Li
- Chongqing Rongchang District People's Hospital, Chongqing, Chongqing, China
| |
Collapse
|
35
|
Hu BA, Li YL, Han HT, Lu B, Jia X, Han L, Ma WX, Zhu P, Wang ZH, Zhang W, Zhong M, Zhang L. Stimulation of soluble guanylate cyclase by vericiguat reduces skeletal muscle atrophy of mice following chemotherapy. Front Pharmacol 2023; 14:1112123. [PMID: 36744261 PMCID: PMC9894251 DOI: 10.3389/fphar.2023.1112123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Background: The chemotherapeutic doxorubicin (DOX) promotes severe skeletal muscle atrophy, which induces skeletal muscle weakness and fatigue. Soluble guanylate cyclase (sGC) contributes to a variety of pathophysiological processes, but whether it is involved in DOX-induced skeletal muscle atrophy is unclear. The present study aimed to stimulate sGC by vericiguat, a new oral sGC stimulator, to test its role in this process. Methods: Mice were randomly divided into four groups: control group, vericiguat group, DOX group, and DOX + vericiguat group. Exercise capacity was evaluated before the mice were sacrificed. Skeletal muscle atrophy was assessed by histopathological and molecular biological methods. Protein synthesis and degradation were monitored in mice and C2C12 cells. Results: In this study, a significant decrease in exercise capacity and cross-sectional area (CSA) of skeletal muscle fibers was found in mice following DOX treatment. Furthermore, DOX decreased sGC activity in mice and C2C12 cells, and a positive correlation was found between sGC activity and CSA of skeletal muscle fibers in skeletal muscle. DOX treatment also impaired protein synthesis, shown by puromycin detection, and activated ubiquitin-proteasome pathway. Following sGC stimulation, the CSA of muscle fibers was elevated, and exercise capacity was enhanced. Stimulation of sGC also increased protein synthesis and decreased ubiquitin-proteasome pathway. In terms of the underlying mechanisms, AKT/mTOR and FoxO1 pathways were impaired following DOX treatment, and stimulation of sGC restored the blunted pathways. Conclusion: These results unravel sGC stimulation can improve skeletal muscle atrophy and increase the exercise capacity of mice in response to DOX treatment by enhancing protein synthesis and inhibiting protein degradation. Stimulation of sGC may be a potential treatment of DOX-induced skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Bo-ang Hu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu-lin Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hai-tao Han
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bin Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xu Jia
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lu Han
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of General Practice, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wei-xuan Ma
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ping Zhu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhi-hao Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong key Laboratory of Cardiovascular Proteomics, Jinan, Shandong, China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,*Correspondence: Ming Zhong, ; Lei Zhang,
| | - Lei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,*Correspondence: Ming Zhong, ; Lei Zhang,
| |
Collapse
|
36
|
Mulvaney EP, Renzo F, Adão R, Dupre E, Bialesova L, Salvatore V, Reid HM, Conceição G, Grynblat J, Llucià-Valldeperas A, Michel JB, Brás-Silva C, Laurent CE, Howard LS, Montani D, Humbert M, Vonk Noordegraaf A, Perros F, Mendes-Ferreira P, Kinsella BT. The thromboxane receptor antagonist NTP42 promotes beneficial adaptation and preserves cardiac function in experimental models of right heart overload. Front Cardiovasc Med 2022; 9:1063967. [PMID: 36588576 PMCID: PMC9794752 DOI: 10.3389/fcvm.2022.1063967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is a progressive disease characterized by increased pulmonary artery pressure leading to right ventricular (RV) failure. While current PAH therapies improve patient outlook, they show limited benefit in attenuating RV dysfunction. Recent investigations demonstrated that the thromboxane (TX) A2 receptor (TP) antagonist NTP42 attenuates experimental PAH across key hemodynamic parameters in the lungs and heart. This study aimed to validate the efficacy of NTP42:KVA4, a novel oral formulation of NTP42 in clinical development, in preclinical models of PAH while also, critically, investigating its direct effects on RV dysfunction. Methods The effects of NTP42:KVA4 were evaluated in the monocrotaline (MCT) and pulmonary artery banding (PAB) models of PAH and RV dysfunction, respectively, and when compared with leading standard-of-care (SOC) PAH drugs. In addition, the expression of the TP, the target for NTP42, was investigated in cardiac tissue from several other related disease models, and from subjects with PAH and dilated cardiomyopathy (DCM). Results In the MCT-PAH model, NTP42:KVA4 alleviated disease-induced changes in cardiopulmonary hemodynamics, pulmonary vascular remodeling, inflammation, and fibrosis, to a similar or greater extent than the PAH SOCs tested. In the PAB model, NTP42:KVA4 improved RV geometries and contractility, normalized RV stiffness, and significantly increased RV ejection fraction. In both models, NTP42:KVA4 promoted beneficial RV adaptation, decreasing cellular hypertrophy, and increasing vascularization. Notably, elevated expression of the TP target was observed both in RV tissue from these and related disease models, and in clinical RV specimens of PAH and DCM. Conclusion This study shows that, through antagonism of TP signaling, NTP42:KVA4 attenuates experimental PAH pathophysiology, not only alleviating pulmonary pathologies but also reducing RV remodeling, promoting beneficial hypertrophy, and improving cardiac function. The findings suggest a direct cardioprotective effect for NTP42:KVA4, and its potential to be a disease-modifying therapy in PAH and other cardiac conditions.
Collapse
Affiliation(s)
- Eamon P. Mulvaney
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Fabiana Renzo
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Rui Adão
- Department of Surgery and Physiology, Cardiovascular R&D Centre—UnIC@RISE, Faculty of Medicine of the University of Porto, Porto, Portugal
| | | | - Lucia Bialesova
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Viviana Salvatore
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Helen M. Reid
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Glória Conceição
- Department of Surgery and Physiology, Cardiovascular R&D Centre—UnIC@RISE, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Julien Grynblat
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France,INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Aida Llucià-Valldeperas
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC (Location VUMC), Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands,Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, Netherlands
| | | | - Carmen Brás-Silva
- Department of Surgery and Physiology, Cardiovascular R&D Centre—UnIC@RISE, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Charles E. Laurent
- IPS Therapeutique Inc., Sherbrooke, QC, Canada,ToxiPharm Laboratories Inc., Ste-Catherine-de-Hatley, QC, Canada
| | - Luke S. Howard
- Imperial College London, National Heart and Lung Institute, London, United Kingdom
| | - David Montani
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France,INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France,AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France,INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France,AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Anton Vonk Noordegraaf
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC (Location VUMC), Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Frédéric Perros
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France,INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France,Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), INSERM UMR_S 999, Université Paris-Saclay, Le Kremlin-Bicêtre, France,INSERM, INRAE, CarMeN Laboratory and Centre de Recherche en Nutrition Humaine Rhône-Alpes (CRNH-RA), Claude Bernard University Lyon 1, University of Lyon, Lyon, France
| | - Pedro Mendes-Ferreira
- Department of Surgery and Physiology, Cardiovascular R&D Centre—UnIC@RISE, Faculty of Medicine of the University of Porto, Porto, Portugal,Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), INSERM UMR_S 999, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - B. Therese Kinsella
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland,UCD School of Biomolecular and Biomedical Research, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland,*Correspondence: B. Therese Kinsella,
| |
Collapse
|
37
|
Li G, Cheng Y, Han C, Song C, Huang N, Du Y. Pyrazole-containing pharmaceuticals: target, pharmacological activity, and their SAR studies. RSC Med Chem 2022; 13:1300-1321. [PMID: 36439976 PMCID: PMC9667768 DOI: 10.1039/d2md00206j] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Pyrazole is a five-membered heterocycle bearing two adjacent nitrogen atoms. Both pharmaceutical agents and natural products with pyrazole as a nucleus have exhibited a broad spectrum of biological activities. In the last few decades, more than 40 pyrazole-containing drugs have been approved by the FDA for the treatment of a broad range of clinical conditions including celecoxib (anti-inflammatory), CDPPB (antipsychotic), difenamizole (analgesic), etc. Owing to the unique physicochemical properties of the pyrazole core, pyrazole-containing drugs may exert better pharmacokinetics and pharmacological effects compared with drugs containing similar heterocyclic rings. The purpose of this paper is to provide an overview of all the existing drugs bearing a pyrazole nucleus that have been approved or in clinical trials, involving their pharmacological activities and SAR studies.
Collapse
Affiliation(s)
- Guangchen Li
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| | - Yifu Cheng
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| | - Chi Han
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| | - Chun Song
- State Key Laboratory of Microbial Technology, Shandong University Qing Dao City Shandong Province 266237 China
| | - Niu Huang
- National Institution of Biological Sciences Beijing, No. 7 Science Park Road, Zhongguancun Life Science Park Beijing 102206 China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University Beijing 102206 China
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| |
Collapse
|
38
|
Design, synthesis and biological evaluation of new 3,4-dihydroquinoxalin-2(1H)-one derivatives as soluble guanylyl cyclase (sGC) activators. Heliyon 2022; 8:e11438. [DOI: 10.1016/j.heliyon.2022.e11438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|
39
|
Yuan S, Wang DS, Liu H, Zhang SN, Yang WG, Lv M, Zhou YX, Zhang SY, Song J, Liu HM. New drug approvals for 2021: Synthesis and clinical applications. Eur J Med Chem 2022; 245:114898. [DOI: 10.1016/j.ejmech.2022.114898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
40
|
Patel R, Fu Y, Khang S, Benardeau AM, Thomson SC, Vallon V. Responses in Blood Pressure and Kidney Function to Soluble Guanylyl Cyclase Stimulation or Activation in Normal and Diabetic Rats. Nephron Clin Pract 2022; 147:281-300. [PMID: 36265461 PMCID: PMC10115913 DOI: 10.1159/000526934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/22/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction: Agonists of soluble guanylate cyclase (sGC) are being developed as treatment for cardiovascular disease. Most effects of nitric oxide (NO) on glomerular and tubular function are mediated through sGC but whether sGC agonists mimic these effects is unknown. Methods: Renal clearance and micropuncture studies were performed in Wistar-Froemter rats (WF), with or without streptozotocin diabetes (STZ-WF), and in Goto-Kakizaki rats (GK) with mild type-2 diabetes to test for acute effects of the sGC “stimulator” BAY 41-2272, which synergizes with endogenous NO, and the “activator” runcaciguat, which generates cGMP independent of NO. Results: Both sGC agonists reduced arterial blood pressure (MAP). For MAP reductions <10% the drugs increased GFR in WF and STZ-WF but not in GK. Larger MAP reductions outweighed this effect and GFR declined, with better preserved GFR in STZ-WF. Changes in GFR could not be accounted for by changes in RBF, suggesting parallel changes in ultrafiltration pressure and/or ultrafiltration coefficient. The doses chosen for micropuncture in WF and GK reduced MAP by 2–10% and the net effect on single nephron GFR and ultrafiltration pressure was neutral. Effects of the drugs on tubular reabsorption were dominated by declining MAP and no natriuretic effect observed at any dose. Discussion/Conclusion: sGC agonists impact kidney function directly and because they reduce MAP. The direct tendency to increase GFR is most apparent for MAP reductions <10%. The direct effect is otherwise subtle and overridden when MAP declines more. Effects of sGC agonists on tubular reabsorption are dominated by effects on MAP.
Collapse
Affiliation(s)
- Rohit Patel
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | - Yiling Fu
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | - Ser Khang
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | | | - Scott C. Thomson
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | - Volker Vallon
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
- Department of Pharmacology, University of California San Diego, La Jolla, USA
| |
Collapse
|
41
|
Diamanti E, Méndez M, Ross T, Kuttruff CA, Lefranc J, Klingler FM, von Nussbaum F, Jung M, Gehringer M. Frontiers in Medicinal Chemistry 2022 Goes Virtual. ChemMedChem 2022; 17:e202200419. [PMID: 36198574 DOI: 10.1002/cmdc.202200419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 11/09/2022]
Abstract
The Frontiers in Medicinal Chemistry (FiMC) meeting, which represents the largest international medicinal chemistry conference in Germany, took place from March 14th to 16th 2022 in a fully virtual format. Organized by the Division of Medicinal Chemistry of the German Chemical Society (GDCh) together with the Division of Pharmaceutical & Medicinal Chemistry of the German Pharmaceutical Society (DPhG) and a "local" organization committee from the University of Freiburg headed by Manfred Jung, the meeting brought together 271 participants from around 20 countries. The program included 33 lectures by leading scientists from industry and academia as well as early career investigators. 67 posters were presented in two poster sessions and with over 20.000 poster abstract downloads. The general organization and the time-shift function were very much appreciated as demonstrated by almost 600 on-demand contents retrieved. The online format fitted perfectly to bring together medicinal chemists from academia and industry across the globe.
Collapse
Affiliation(s)
- Eleonora Diamanti
- HIPS - Helmholtz-Institut für Pharmazeutische Forschung Saarland, Campus E8 1, 66123, Saarbrücken, Germany
| | - María Méndez
- Sanofi R&D, Integrated Drug Discovery, Industriepark Höchst, Blg. G838, 65926, Frankfurt am Main, Germany
| | - Tatjana Ross
- Merck Healthcare KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | - Christian A Kuttruff
- Boehringer Ingelheim International GmbH, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Julien Lefranc
- Merck Healthcare KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | | | - Franz von Nussbaum
- NUVISAN Innovation Campus Berlin, NUVISAN ICB GmbH, Muellerstr. 178, 13353, Berlin, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104, Freiburg im Breisgau, Germany
| | - Matthias Gehringer
- University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical/Medicinal Chemistry Department, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| |
Collapse
|
42
|
Popa IP, Haba MȘC, Mărănducă MA, Tănase DM, Șerban DN, Șerban LI, Iliescu R, Tudorancea I. Modern Approaches for the Treatment of Heart Failure: Recent Advances and Future Perspectives. Pharmaceutics 2022; 14:1964. [PMID: 36145711 PMCID: PMC9503448 DOI: 10.3390/pharmaceutics14091964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Heart failure (HF) is a progressively deteriorating medical condition that significantly reduces both the patients' life expectancy and quality of life. Even though real progress was made in the past decades in the discovery of novel pharmacological treatments for HF, the prevention of premature deaths has only been marginally alleviated. Despite the availability of a plethora of pharmaceutical approaches, proper management of HF is still challenging. Thus, a myriad of experimental and clinical studies focusing on the discovery of new and provocative underlying mechanisms of HF physiopathology pave the way for the development of novel HF therapeutic approaches. Furthermore, recent technological advances made possible the development of various interventional techniques and device-based approaches for the treatment of HF. Since many of these modern approaches interfere with various well-known pathological mechanisms in HF, they have a real ability to complement and or increase the efficiency of existing medications and thus improve the prognosis and survival rate of HF patients. Their promising and encouraging results reported to date compel the extension of heart failure treatment beyond the classical view. The aim of this review was to summarize modern approaches, new perspectives, and future directions for the treatment of HF.
Collapse
Affiliation(s)
- Irene Paula Popa
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Mihai Ștefan Cristian Haba
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Minela Aida Mărănducă
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Daniela Maria Tănase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iași, Romania
| | - Dragomir N. Șerban
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Lăcrămioara Ionela Șerban
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Radu Iliescu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ionuț Tudorancea
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| |
Collapse
|
43
|
Jia XY, Liu YM, Wang YF, An JY, Peng KL, Wang H. Bibliometric study of soluble guanylate cyclase stimulators in cardiovascular research based on web of science from 1992 to 2021. Front Pharmacol 2022; 13:963255. [PMID: 36081943 PMCID: PMC9445840 DOI: 10.3389/fphar.2022.963255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Several studies have shown that soluble guanylate cyclase (sGC) stimulators have cardiovascular (CV) benefits. However, few bibliometric analyses have examined this field systematically. Our study aimed to examine the publications to determine the trends and hotspots in CV research on sGC stimulators. Methods: Publications on sGC stimulators in CV research were retrieved from the Web of Science Core Collection. VOSviewer and CiteSpace visualization software were used to analyze publication trends, countries (regions) and institutions, journals and cited journals, authors and cited references, as well as keywords. Results: A total of 1,212 literatures were obtained. From its first appearance in 1992–2021 (based on WOSCC record), the overall volume of publications has shown a gradual increasing trend. Nearly one-third were authored by American scholars, and most were published in Circulation, Circulation Research, and Proceedings of the National Academy of Sciences of the United States of America. Bayer Agency in Germany was the leading driving force, and has a high academic reputation in this field. Stasch JP has published the most related articles and been cited most frequently. Half of the top 10 co-cited references were published in the leading highly co-cited journal Circulation and New England Journal of Medicine. “NO,” “allosteric regulation” and “free radicals” were the focus of previous research, “chronic thromboembolic pulmonary hypertension,” “pulmonary hypertension” and “heart failure” were the main research hotspots. The key words “chronic thromboembolic pulmonary hypertension,” “Pulmonary hypertension,” “preserved ejection fraction” and “heart failure” appeared most recently as research frontiers. Conclusion: The research in the CV field of sGC stimulators was relatively comprehensive, and there was a close relationship among countries, research institutions and authors, but it is still in the exploratory stage in the treatment of CV disease. At present, most studies focus on the results of clinical trials. sGC stimulators in the treatment of heart failure, especially heart failure with preserved ejection fraction, may be the hotpots and Frontier at present and in the future, and should be closely monitored.
Collapse
|
44
|
Luo L, Yang X, Tang K, Wu J, Li D, Ran J, Zhang L, Wang D, Zhao D, Yu M, Chen A, Saranathan M. Efficacy of three novel drugs in the treatment of heart failure: A network meta-analysis. Medicine (Baltimore) 2022; 101:e29415. [PMID: 35866831 PMCID: PMC9302283 DOI: 10.1097/md.0000000000029415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Angiotensin receptor neprilysin inhibitors (ARNI), sodium-glucose cotransporter 2 inhibitors (SGLT2i), soluble guanylate cyclase stimulators (sGCs), and the traditional golden triangle standard-of-care (SOC) are effective drugs for heart failure. We aimed to assess the efficacy of 4 interventions in these patients. METHODS PubMed, The Cochrane Library, Embase, and Web of Science databases were electronically searched to collect randomized controlled trials of 3 novel drugs in the treatment of heart failure from inception to September 1st, 2021. Two reviewers independently screened literature, extracted data, and assessed the risk bias of included studies. Stata 16.0 software was used for network meta-analysis. RESULTS A total of 17 randomized controlled trial involving 38,088 patients were included. The results of network meta-analysis: in terms of heart failure rehospitalization rate, 3 novel drugs lower than SOC [ARNI (OR = 0.77, 95% CI: 0.71-0.83), SGLT2i (OR = 0.70, 95% CI: 0.63-0.77), sGCs (OR = 0.88, 95% CI: 0.78-0.99)], and SGLT2i was also lower than sGCs (OR = 0.79, 95% CI: 0.68-0.93). In terms of all-cause mortality, ARNI was lower than SOC (OR = 0.81, 95% CI: 0.66-0.99). In terms of cardiovascular mortality, ARNI and SGLT2i was lower than SOC (ARNI [OR = 0.80, 95% CI: 0.70-0.92], SGLT2i [OR = 0.87, 95% CI: 0.76-0.99]). In terms of rates of cardiovascular death or heart failure rehospitalization, 3 novel drugs lower than SOC (ARNI [OR = 0.76, 95% CI: 0.71-0.82], SGLT2i [OR = 0.76, 95% CI: 0.70-0.82], sGCs [OR = 0.87, 95% CI: 0.78-0.97]). In terms of Kansas city cardiomyopathy questionnaire score, ARNI and SGLT2i was superior to SOC (ARNI [MD = 1.43, 95% CI: 0.43-2.42], SGLT2i [MD = 1.88, 95% CI: 1.12-2.65]). In terms of N-terminal pro-B-type natriuretic peptide outcome indexes, SGLT2i was superior to SOC (MD = -134.63, 95% CI: -237.70 to -31.56). The results of Surface under the cumulative ranking sequencing: in terms of heart failure rehospitalization rate and rates of cardiovascular death or heart failure rehospitalization, the ranking was SGLT2i>ARNI>sGCs>SOC. in terms of all-cause mortality and cardiovascular mortality, the ranking was ARN>SGLT2i>sGCs>SOC. in terms of Kansas city cardiomyopathy questionnaire score and N-terminal pro-B-type natriuretic peptide outcome indexes, the ranking was SGLT2i>ARN>SOC. CONCLUSIONS The available evidence suggests that all 3 novel heart failure drugs can improve the prognosis of heart failure. ARNI may be the most effective in reducing mortality, SGLT2i may be the most effective in improving quality of life, while sGCs may be inferior to ARNI and SGLT2i.
Collapse
Affiliation(s)
- Lin Luo
- Department of Cardiovascular, The First People's Hospital of Shuangliu District, Chengdu, China
| | - Xu Yang
- Department of Ophthalmolgy, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| | - Kai Tang
- Department of Cardiovascular, The First People's Hospital of Shuangliu District, Chengdu, China
| | - Jianli Wu
- Department of Cardiovascular, The First People's Hospital of Shuangliu District, Chengdu, China
| | - Dejin Li
- Department of Cardiovascular, The First People's Hospital of Shuangliu District, Chengdu, China
| | - Jiuju Ran
- Department of Cardiovascular, The First People's Hospital of Shuangliu District, Chengdu, China
| | - Li Zhang
- Department of Cardiovascular, The First People's Hospital of Shuangliu District, Chengdu, China
| | - Dan Wang
- Department of Cardiovascular, The First People's Hospital of Shuangliu District, Chengdu, China
| | - Dan Zhao
- Department of Cardiovascular, The First People's Hospital of Shuangliu District, Chengdu, China
| | - Min Yu
- Department of Cardiovascular, The First People's Hospital of Shuangliu District, Chengdu, China
| | - Anfang Chen
- Department of Cardiovascular, The First People's Hospital of Shuangliu District, Chengdu, China
| | - Maya Saranathan
- Department of Cardiovascular, The First People's Hospital of Shuangliu District, Chengdu, China
| |
Collapse
|
45
|
(Vericiguat - soluble guanylate cyclase stimulator, in therapy of heart failure). COR ET VASA 2022. [DOI: 10.33678/cor.2022.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Makrynitsa GI, Argyriou AI, Zompra AA, Salagiannis K, Vazoura V, Papapetropoulos A, Topouzis S, Spyroulias GA. Mapping of the sGC Stimulator BAY 41-2272 Binding Site on H-NOX Domain and Its Regulation by the Redox State of the Heme. Front Cell Dev Biol 2022; 10:925457. [PMID: 35784456 PMCID: PMC9247194 DOI: 10.3389/fcell.2022.925457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022] Open
Abstract
Soluble guanylate cyclase (sGC) is the main receptor of nitric oxide (NO) and by converting GTP to cGMP regulates numerous biological processes. The β1 subunit of the most abundant, α1β1 heterodimer, harbors an N-terminal domain called H-NOX, responsible for heme and NO binding and thus sGC activation. Dysfunction of the NO/sGC/cGMP axis is causally associated with pathological states such as heart failure and pulmonary hypertension. Enhancement of sGC enzymatic function can be effected by a class of drugs called sGC “stimulators,” which depend on reduced heme and synergize with low NO concentrations. Until recently, our knowledge about the binding mode of stimulators relied on low resolution cryo-EM structures of human sGC in complex with known stimulators, while information about the mode of synergy with NO is still limited. Herein, we couple NMR spectroscopy using the H-NOX domain of the Nostoc sp. cyanobacterium with cGMP determinations in aortic smooth muscle cells (A7r5) to study the impact of the redox state of the heme on the binding of the sGC stimulator BAY 41-2272 to the Ns H-NOX domain and on the catalytic function of the sGC. BAY 41-2272 binds on the surface of H-NOX with low affinity and this binding is enhanced by low NO concentrations. Subsequent titration of the heme oxidant ODQ, fails to modify the conformation of H-NOX or elicit loss of the heme, despite its oxidation. Treatment of A7r5 cells with ODQ following the addition of BAY 41-2272 and an NO donor can still inhibit cGMP synthesis. Overall, we describe an analysis in real time of the interaction of the sGC stimulator, BAY 41-2272, with the Ns H-NOX, map the amino acids that mediate this interaction and provide evidence to explain the characteristic synergy of BAY 41-2272 with NO. We also propose that ODQ can still oxidize the heme in the H-NOX/NO complex and inhibit sGC activity, even though the heme remains associated with H-NOX. These data provide a more-in-depth understanding of the molecular mode of action of sGC stimulators and can lead to an optimized design and development of novel sGC agonists.
Collapse
Affiliation(s)
| | | | | | - Konstantinos Salagiannis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece
| | - Vassiliki Vazoura
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavros Topouzis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece
| | - Georgios A. Spyroulias
- Department of Pharmacy, University of Patras, Patras, Greece
- *Correspondence: Georgios A. Spyroulias,
| |
Collapse
|
47
|
Tawa M, Okamura T. Factors influencing the soluble guanylate cyclase heme redox state in blood vessels. Vascul Pharmacol 2022; 145:107023. [PMID: 35718342 DOI: 10.1016/j.vph.2022.107023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 11/15/2022]
Abstract
Soluble guanylate cyclase (sGC) plays an important role in maintaining vascular homeostasis, as an acceptor for the biological messenger nitric oxide (NO). However, only reduced sGC (with a ferrous heme) can be activated by NO; oxidized (ferric heme) and apo (absent heme) sGC cannot. In addition, the proportions of reduced, oxidized, and apo sGC change under pathological conditions. Although diseased blood vessels often show decreased NO bioavailability in the vascular wall, a shift of sGC heme redox balance in favor of the oxidized/apo forms can also occur. Therefore, sGC is of growing interest as a drug target for various cardiovascular diseases. Notably, the balance between NO-sensitive reduced sGC and NO-insensitive oxidized/apo sGC in the body is regulated in a reversible manner by various biological molecules and proteins. Many studies have attempted to identify endogenous factors and determinants that influence this redox state. For example, various reactive nitrogen and oxygen species are capable of inducing the oxidation of sGC heme. Conversely, a heme reductase and some antioxidants reduce the ferric heme in sGC to the ferrous state. This review summarizes the factors and mechanisms identified by these studies that operate to regulate the sGC heme redox state.
Collapse
Affiliation(s)
- Masashi Tawa
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-1094, Japan.
| | - Tomio Okamura
- Emeritus Professor, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
48
|
|
49
|
Boettcher M, Düngen HD, Donath F, Mikus G, Werner N, Thuermann PA, Karakas M, Besche N, Koch T, Gurniak M, Becker C. Vericiguat in Combination with Short-Acting Nitroglycerin in Patients With Chronic Coronary Syndromes: The Randomized, Phase Ib, VENICE Study. Clin Pharmacol Ther 2022; 111:1239-1247. [PMID: 35258101 PMCID: PMC9310564 DOI: 10.1002/cpt.2574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
Abstract
Vericiguat is a soluble guanylate cyclase stimulator indicated to reduce the risk of cardiovascular death and heart failure (HF) hospitalization in adults with symptomatic chronic HF and ejection fraction less than 45%. Guidelines recommend short‐acting nitrates, such as sublingual nitroglycerin, for the treatment of acute angina pectoris in patients with chronic coronary syndromes (CCSs), common comorbidities in HF. We evaluated safety, tolerability, and the pharmacodynamic interaction between vericiguat and nitroglycerin, coadministered in patients with CCSs. In this phase Ib, double‐blind, randomized, multicenter study, 36 patients with CCSs received either vericiguat 2.5 mg (up‐titrated every 2 weeks to 5 mg and 10 mg) or placebo. Patients also received nitroglycerin (0.4 mg sublingual). In total, 31 patients completed the study (vericiguat + nitroglycerin, n = 21; placebo + nitroglycerin, n = 10). There was no increase in treatment‐emergent adverse events (TEAEs) with vericiguat + nitroglycerin vs. placebo + nitroglycerin; three patients discontinued due to TEAEs (vericiguat + nitroglycerin, n = 1; placebo + nitroglycerin, n = 2). Decreases in mean blood pressure (BP; 6–10 mmHg systolic BP (SBP); 4–6 mmHg diastolic BP (DBP)) were independent of vericiguat exposure and occurred to a similar extent at trough and peak concentrations with all vericiguat doses and placebo. Coadministration of vericiguat with nitroglycerin in patients with CCSs was well tolerated, and the combination is unlikely to cause significant adverse effects beyond those known for nitroglycerin.
Collapse
Affiliation(s)
| | - Hans-Dirk Düngen
- Department of Internal Medicine, Cardiology, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Frank Donath
- SocraTec Research & Development GmbH, Erfurt, Germany
| | - Gerd Mikus
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nikos Werner
- Heart Center, Department of Medicine II, University Hospital Bonn, Bonn, Germany
| | - Petra A Thuermann
- Philipp Klee-Institute of Clinical Pharmacology, Helios Klinikum Wuppertal, Wuppertal, Germany
| | - Mahir Karakas
- Department of Cardiology, University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Nina Besche
- Chrestos Concept GmbH & Co. KG, Essen, Germany
| | - Tanja Koch
- Translational Studies Operations, Bayer AG, Wuppertal, Germany
| | | | | |
Collapse
|
50
|
He J, Li Z, Dhawan G, Zhang W, Sorochinsky AE, Butler G, Soloshonok VA, Han J. Fluorine-containing drugs approved by the FDA in 2021. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|