1
|
Taiyab A, Ashraf A, Sulaimani MN, Rathi A, Shamsi A, Hassan MI. Role of MTH1 in oxidative stress and therapeutic targeting of cancer. Redox Biol 2024; 77:103394. [PMID: 39418911 PMCID: PMC11532495 DOI: 10.1016/j.redox.2024.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer cells maintain high levels of reactive oxygen species (ROS) to drive their growth, but ROS can trigger cell death through oxidative stress and DNA damage. To survive enhanced ROS levels, cancer cells activate their antioxidant defenses. One such defense is MTH1, an enzyme that prevents the incorporation of oxidized nucleotides into DNA, thus preventing DNA damage and allowing cancer to proliferate. MTH1 levels are often elevated in many cancers, and thus, inhibiting MTH1 is an attractive strategy for suppressing tumor growth and metastasis. Targeted MTH1 inhibition can induce DNA damage in cancer cells, exploiting their vulnerability to oxidative stress and selectively targeting them for destruction. Targeting MTH1 is promising for cancer treatment because normal cells have lower ROS levels and are less dependent on these pathways, making the approach both effective and specific to cancer. This review aims to investigate the potential of MTH1 as a therapeutic target, especially in cancer treatment, offering detailed insights into its structure, function, and role in disease progression. We also discussed various MTH1 inhibitors that have been developed to selectively induce oxidative damage in cancer cells, though their effectiveness varies. In addition, this review provide deeper mechanistic insights into the role of MTH1 in cancer prevention and oxidative stress management in various diseases.
Collapse
Affiliation(s)
- Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Aanchal Rathi
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, P.O. Box 346, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
2
|
Firdous SM, Khan SA, Maity A. Oxidative stress-mediated neuroinflammation in Alzheimer's disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8189-8209. [PMID: 38832985 DOI: 10.1007/s00210-024-03188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
Reactive oxygen species (ROS) are metabolic by-products that constitute an indispensable component of physiological processes, albeit their heightened presence may proffer substantial perils to biological entities. Such a proliferation gives rise to a gradual escalation of oxidative stress within the organism, thereby compromising mitochondrial functionality and inflicting harm upon various bodily systems, with a particular predilection for the central nervous system. In its nascent stages, it is plausible that inflammation has been a facilitator in the progression of the malady. The precise role of inflammation in Alzheimer's disease (AD) remains somewhat enigmatic, although it is conceivable that activated microglia and astrocytes might be implicated in the removal of amyloid-β (Aβ) deposits. Nonetheless, prolonged microglial activation is associated with Tau phosphorylation and Aβ aggregation. Research studies have indicated that AD brains upregulate complementary molecules, inflammatory cytokines, acute phase reacting agents, and other inflammatory mediators that may cause neurodegeneration. In this review, oxidative damage products will be discussed as potential peripheral biomarkers for AD and its early stages. The disordered excretion of pro-inflammatory cytokines, chemokines, oxygen, and nitrogen-reactive species, along with the stimulation of the complement system by glial cells, has the potential to disrupt the functionality of neuronal termini. This perturbation, in turn, culminates in compromised synaptic function, a phenomenon empirically linked to the manifestation of cognitive impairments. The management of neurodegenerative conditions in the context of dementia necessitates therapeutic interventions that specifically target the excessive production of inflammatory and oxidative agents. Furthermore, we shall deliberate upon the function of microglia and oxidative injury in the etiology of AD and the ensuing neurodegenerative processes.
Collapse
Affiliation(s)
- Sayed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, 711316, West Bengal, India.
| | - Sahabaj Ali Khan
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, 711316, West Bengal, India
| | - Amritangshu Maity
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, 711316, West Bengal, India
| |
Collapse
|
3
|
Teng Y, Wu R, Bo W, Tang M, Wang T, Cui X, Li Y, Zhang C, Ma Z, Fu Z, Xu Q, Liu J, Chen L. Fragment growth-based discovery of novel TNIK inhibitors for the treatment of colorectal cancer. Eur J Med Chem 2024; 268:116240. [PMID: 38422698 DOI: 10.1016/j.ejmech.2024.116240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Traf2-and Nck-interacting protein kinase (TNIK) plays an important role in regulating signal transduction of the Wnt/β-catenin pathway and is considered an important target for the treatment of colorectal cancer. Inhibiting TNIK has potential to block abnormal Wnt/β-catenin signal transduction caused by colorectal cancer mutations. We discovered a series of 6-(1-methyl-1H-imidazole-5-yl) quinoline derivatives as TNIK inhibitors through Deep Fragment Growth and virtual screening. Among them, 35b exhibited excellent TNIK kinase and HCT116 cell inhibitory activity with IC50 values of 6 nM and 2.11 μM, respectively. 35b also shown excellent kinase selectivity, PK profiles, and oral bioavailability (84.64%). At a p. o. dosage of 50 mg/kg twice daily 35b suppressed tumor growth on the HCT116 xenograft model. Taken together, 35b is a promising lead compound of TNIK inhibitors, which merits further investigation.
Collapse
Affiliation(s)
- Yaxin Teng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weichen Bo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - TaiJin Wang
- Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu, 610041, China
| | - Xue Cui
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chufeng Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziyan Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyuan Fu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lijuan Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu, 610041, China.
| |
Collapse
|
4
|
Ding Y, Liu Q. Targeting the nucleic acid oxidative damage repair enzyme MTH1: a promising therapeutic option. Front Cell Dev Biol 2024; 12:1334417. [PMID: 38357002 PMCID: PMC10864502 DOI: 10.3389/fcell.2024.1334417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
The accumulation of reactive oxygen species (ROS) plays a pivotal role in the development of various diseases, including cancer. Elevated ROS levels cause oxidative stress, resulting in detrimental effects on organisms and enabling tumors to develop adaptive responses. Targeting these enhanced oxidative stress protection mechanisms could offer therapeutic benefits with high specificity, as normal cells exhibit lower dependency on these pathways. MTH1 (mutT homolog 1), a homolog of Escherichia coli's MutT, is crucial in this context. It sanitizes the nucleotide pool, preventing incorporation of oxidized nucleotides, thus safeguarding DNA integrity. This study explores MTH1's potential as a therapeutic target, particularly in cancer treatment, providing insights into its structure, function, and role in disease progression.
Collapse
Affiliation(s)
| | - Qingquan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Jiangxi, China
| |
Collapse
|
5
|
Helleday T. Mitotic MTH1 Inhibitors in Treatment of Cancer. Cancer Treat Res 2023; 186:223-237. [PMID: 37978139 DOI: 10.1007/978-3-031-30065-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The DNA damage response (DDR) protein MTH1 is sanitising the oxidized dNTP pool and preventing incorporation of oxidative damage into DNA and has an emerging role in mitosis. It is a stress-induced protein and often found to be overexpressed in cancer. Mitotic MTH1 inhibitors arrest cells in mitosis and result in incorporation of oxidative damage into DNA and selective killing of cancer cells. Here, I discuss the leading mitotic MTH1 inhibitor TH1579 (OXC-101, karonudib), now being evaluated in clinical trials, and describe its dual effect on mitosis and incorporation of oxidative DNA damage in cancer cells. I describe why MTH1 inhibitors that solely inhibits the enzyme activity fail to kill cancer cells and discuss if MTH1 is a valid target for cancer treatment. I discuss emerging roles of MTH1 in regulating tubulin polymerisation and mitosis and the necessity of developing the basic science insights along with translational efforts. I also give a perspective on how edgetic perturbation is making target validation difficult in the DDR field.
Collapse
Affiliation(s)
- Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK.
| |
Collapse
|
6
|
Marcos Santos L, da Silveira NJF. Current Fragment-to-lead Approaches Starting from the 7-azaindole: The Pharmacological Versatility of a Privileged Molecular Fragment. Curr Top Med Chem 2023; 23:2116-2130. [PMID: 37461366 DOI: 10.2174/1568026623666230718100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/03/2023] [Accepted: 06/15/2023] [Indexed: 09/09/2023]
Abstract
Fragment-based drug discovery is one of the most powerful paradigms in the recent context of medicinal chemistry and is being widely practiced by academic and industrial researchers. Currently, azaindoles are among the most exploited molecular fragments in pharmaceutical innovation projects inspired by fragment-to-lead strategies. The 7-azaindole is the most prominent representative within this remarkable family of pyrrolopyridine fragments, as it is present in the chemical structure of several approved antitumor drugs and also of numerous therapeutic candidates. In this paper, a brief overview on existing proofs of concept in the literature will be presented, as well as some recent works that corroborate 7-azaindole as a privileged and pharmacologically versatile molecular fragment.
Collapse
Affiliation(s)
- Leandro Marcos Santos
- Laboratory of Molecular Modeling and Computer Simulation / MolMod-CS (D311-F), Institute of Chemistry, Federal University of Alfenas / UNIFAL-MG, Alfenas, Minas Gerais, 37130-001, Brazil
- Pharmaceutical Chemistry Research Laboratory / LQFar (D202A), Department of Food and Medicines, Faculty of Pharmaceutical Sciences, Federal University of Alfenas / UNIFAL-MG, Alfenas, Minas Gerais, 37130-001, Brazil
| | - Nelson José Freitas da Silveira
- Laboratory of Molecular Modeling and Computer Simulation / MolMod-CS (D311-F), Institute of Chemistry, Federal University of Alfenas / UNIFAL-MG, Alfenas, Minas Gerais, 37130-001, Brazil
| |
Collapse
|
7
|
Moinul M, Khatun S, Amin SA, Jha T, Gayen S. Recent trends in fragment-based anticancer drug design strategies against different targets: A mini-review. Biochem Pharmacol 2022; 206:115301. [DOI: 10.1016/j.bcp.2022.115301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/02/2022]
|
8
|
Lee Y, Onishi Y, McPherson L, Kietrys AM, Hebenbrock M, Jun YW, Das I, Adimoolam S, Ji D, Mohsen MG, Ford JM, Kool ET. Enhancing Repair of Oxidative DNA Damage with Small-Molecule Activators of MTH1. ACS Chem Biol 2022; 17:2074-2087. [PMID: 35830623 PMCID: PMC11163517 DOI: 10.1021/acschembio.2c00038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Impaired DNA repair activity has been shown to greatly increase rates of cancer clinically. It has been hypothesized that upregulating repair activity in susceptible individuals may be a useful strategy for inhibiting tumorigenesis. Here, we report that selected tyrosine kinase (TK) inhibitors including nilotinib, employed clinically in the treatment of chronic myeloid leukemia, are activators of the repair enzyme Human MutT Homolog 1 (MTH1). MTH1 cleanses the oxidatively damaged cellular nucleotide pool by hydrolyzing the oxidized nucleotide 8-oxo-2'-deoxyguanosine (8-oxo-dG)TP, which is a highly mutagenic lesion when incorporated into DNA. Structural optimization of analogues of TK inhibitors resulted in compounds such as SU0448, which induces 1000 ± 100% activation of MTH1 at 10 μM and 410 ± 60% at 5 μM. The compounds are found to increase the activity of the endogenous enzyme, and at least one (SU0448) decreases levels of 8-oxo-dG in cellular DNA. The results suggest the possibility of using MTH1 activators to decrease the frequency of mutagenic nucleotides entering DNA, which may be a promising strategy to suppress tumorigenesis in individuals with elevated cancer risks.
Collapse
Affiliation(s)
- Yujeong Lee
- Departmeut of Chemistry, Stanford University, Stanford. CA 94305, United States
| | - Yoshiyuki Onishi
- Departmeut of Chemistry, Stanford University, Stanford. CA 94305, United States
| | - Lisa McPherson
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Anna M. Kietrys
- Departmeut of Chemistry, Stanford University, Stanford. CA 94305, United States
| | - Marian Hebenbrock
- Departmeut of Chemistry, Stanford University, Stanford. CA 94305, United States
| | - Yong Woong Jun
- Departmeut of Chemistry, Stanford University, Stanford. CA 94305, United States
| | - Ishani Das
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Shanthi Adimoolam
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Debin Ji
- Departmeut of Chemistry, Stanford University, Stanford. CA 94305, United States
| | - Michael G. Mohsen
- Departmeut of Chemistry, Stanford University, Stanford. CA 94305, United States
| | - James M. Ford
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Eric T. Kool
- Departmeut of Chemistry, Stanford University, Stanford. CA 94305, United States
| |
Collapse
|
9
|
Lal Gupta P, Carlson HA. Cosolvent Simulations with Fragment-Bound Proteins Identify Hot Spots to Direct Lead Growth. J Chem Theory Comput 2022; 18:3829-3844. [PMID: 35533286 DOI: 10.1021/acs.jctc.1c01054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In drug design, chemical groups are sequentially added to improve a weak-binding fragment into a tight-binding lead molecule. Often, the direction to make these additions is unclear, and there are numerous chemical modifications to choose. Lead development can be guided by crystal structures of the fragment-bound protein, but this alone is unable to capture structural changes like closing or opening of the binding site and any side-chain movements. Accounting for adaptation of the site requires a dynamic approach. Here, we use molecular dynamics calculations of small organic solvents with protein-fragment pairs to reveal the nearest "hot spots". These close hot spots show the direction to make appropriate additions and suggest types of chemical modifications that could improve binding affinity. Mixed-solvent molecular dynamics (MixMD) is a cosolvent simulation technique that is well established for finding binding "hot spots" in active sites and allosteric sites of proteins. We simulated 20 fragment-bound and apo forms of key pharmaceutical targets to map out hot spots for potential lead space. Furthermore, we analyzed whether the presence of a fragment facilitates the probes' binding in the lead space, a type of binding cooperativity. To the best of our knowledge, this is the first use of cosolvent MD conducted with bound inhibitors in the simulation. Our work provides a general framework to extract molecular features of binding sites to choose chemical groups for growing lead molecules. Of the 20 systems, 17 systems were well mapped by MixMD. For the three not-mapped systems, two had lead growth out into solution away from the protein, and the third had very small modifications which indicated no nearby hot spots. Therefore, our lack of mapping in three systems was appropriate given the experimental data (true-negative cases). The simulations are run for very short time scales, making this method tractable for use in the pharmaceutical industry.
Collapse
Affiliation(s)
- Pancham Lal Gupta
- Department of Medicinal Chemistry, College of Pharmacy, 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
| | - Heather A Carlson
- Department of Medicinal Chemistry, College of Pharmacy, 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
| |
Collapse
|
10
|
Mowat J, Ehrmann AHM, Christian S, Sperl C, Menz S, Günther J, Hillig RC, Bauser M, Schwede W. Identification of the Highly Active, Species Cross-Reactive Complex I Inhibitor BAY-179. ACS Med Chem Lett 2022; 13:348-357. [PMID: 35300083 PMCID: PMC8919281 DOI: 10.1021/acsmedchemlett.1c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/08/2022] [Indexed: 11/28/2022] Open
Abstract
Mitochondria are key regulators of energy supply and cell death. Generation of ATP within mitochondria occurs through oxidative phosphorylation (OXPHOS), a process which utilizes the four complexes (complex I-IV) of the electron transport chain and ATP synthase. Certain oncogenic mutations (e.g., LKB1 or mIDH) can further enhance the reliance of cancer cells on OXPHOS for their energetic requirements, rendering cells sensitive to complex I inhibition and highlighting the potential value of complex I as a therapeutic target. Herein, we describe the discovery of a potent, selective, and species cross-reactive complex I inhibitor. A high-throughput screen of the Bayer compound library followed by hit triaging and initial hit-to-lead activities led to a lead structure which was further optimized in a comprehensive lead optimization campaign. Focusing on balancing potency and metabolic stability, this program resulted in the identification of BAY-179, an excellent in vivo suitable tool with which to probe the biological relevance of complex I inhibition in cancer indications.
Collapse
Affiliation(s)
- Jeffrey Mowat
- Pharmaceuticals R&D, Bayer AG, 13342 Berlin, Germany
| | | | | | - Carolyn Sperl
- Pharmaceuticals R&D, Bayer AG, 13342 Berlin, Germany
| | - Stephan Menz
- Pharmaceuticals R&D, Bayer AG, 13342 Berlin, Germany
| | | | | | - Marcus Bauser
- Pharmaceuticals R&D, Bayer AG, 13342 Berlin, Germany
| | | |
Collapse
|
11
|
Wortmann L, Bräuer N, Holton SJ, Irlbacher H, Weiske J, Lechner C, Meier R, Karén J, Siöberg CB, Pütter V, Christ CD, Ter Laak A, Lienau P, Lesche R, Nicke B, Cheung SH, Bauser M, Haegebarth A, von Nussbaum F, Mumberg D, Lemos C. Discovery and Characterization of the Potent and Highly Selective 1,7-Naphthyridine-Based Inhibitors BAY-091 and BAY-297 of the Kinase PIP4K2A. J Med Chem 2021; 64:15883-15911. [PMID: 34699202 DOI: 10.1021/acs.jmedchem.1c01245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PIP4K2A is an insufficiently studied type II lipid kinase that catalyzes the conversion of phosphatidylinositol-5-phosphate (PI5P) into phosphatidylinositol 4,5-bisphosphate (PI4,5P2). The involvement of PIP4K2A/B in cancer has been suggested, particularly in the context of p53 mutant/null tumors. PIP4K2A/B depletion has been shown to induce tumor growth inhibition, possibly due to hyperactivation of AKT and reactive oxygen species-mediated apoptosis. Herein, we report the identification of the novel potent and highly selective inhibitors BAY-091 and BAY-297 of the kinase PIP4K2A by high-throughput screening and subsequent structure-based optimization. Cellular target engagement of BAY-091 and BAY-297 was demonstrated using cellular thermal shift assay technology. However, inhibition of PIP4K2A with BAY-091 or BAY-297 did not translate into the hypothesized mode of action and antiproliferative activity in p53-deficient tumor cells. Therefore, BAY-091 and BAY-297 serve as valuable chemical probes to study PIP4K2A signaling and its involvement in pathophysiological conditions such as cancer.
Collapse
Affiliation(s)
- Lars Wortmann
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Nico Bräuer
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Simon J Holton
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Horst Irlbacher
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Jörg Weiske
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Christian Lechner
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Robin Meier
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Jakob Karén
- Pelago Bioscience AB, Banvaktsvägen 20, 171 48 Solna, Sweden
| | | | - Vera Pütter
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Clara D Christ
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Antonius Ter Laak
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Philip Lienau
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Ralf Lesche
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Barbara Nicke
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Shing-Hu Cheung
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Marcus Bauser
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Andrea Haegebarth
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Franz von Nussbaum
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Dominik Mumberg
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Clara Lemos
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| |
Collapse
|
12
|
Abstract
Chemical probes are selective modulators that are used in cell assays to link a phenotype to a gene and have become indispensable tools to explore gene function and discover therapeutic targets. Chemical probe off-targets are a confounding factor as the observed phenotype may be driven by inhibition of an unknown off-target instead of the targeted protein. A negative control, a close chemical analog of the chemical probe that is inactive against the intended target, is typically used to verify that the phenotype is indeed driven by the targeted protein. Here, we compare the selectivity profiles of four unrelated chemical probes and their respective negative controls. We find that controls that chemically deviate from the probe by a single heavy atom can be inactive against up to 80% of known off-targets if the chemical modification has a charge-neutralizing effect. In such cases, a loss in phenotype upon treatment with the negative control may be driven by loss of inhibition of an off-target. To expand this analysis, we inspect the crystal structures of 90 pairs of unrelated proteins, where both proteins within each pair is in complex with the same drug-like ligand. We computationally estimate that in 50% of cases, methylation of the ligand (a simple chemical modification often used to generate negative controls) at a position that will preclude binding to one protein (the intended target) will also preclude binding to the other (the off-target). These results emphasize the need to select negative controls with care and profile both chemical probes and negative controls against diverse protein arrays to verify that off-targets of probes are also hit by negative controls. When available, a best practice should be to verify that two unrelated chemical probes targeting the same protein elicit the same phenotype.
Collapse
Affiliation(s)
- Jinyoung Lee
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
13
|
Inhibitor development of MTH1 via high-throughput screening with fragment based library and MTH1 substrate binding cavity. Bioorg Chem 2021; 110:104813. [PMID: 33774493 DOI: 10.1016/j.bioorg.2021.104813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/25/2021] [Accepted: 03/06/2021] [Indexed: 11/22/2022]
Abstract
MutT Homolog 1 (MTH1) has been proven to hydrolyze oxidized nucleotide triphosphates during DNA repair. It can prevent the incorporation of wrong nucleotides during DNA replication and mitigate cell apoptosis. In a cancer cell, abundant reactive oxygen species can lead to substantial DNA damage and DNA mutations by base-pairing mismatch. MTH1 could eliminate oxidized dNTP and prevent cancer cells from entering cell death. Therefore, inhibition of MTH1 activity is considered to be an anti-cancer therapeutic target. In this study, high-throughput screening techniques were combined with a fragment-based library containing 2,313 compounds, which were used to screen for lead compounds with MTH1 inhibitor activity. Four compounds with MTH1 inhibitor ability were selected, and compound MI0639 was found to have the highest effective inhibition. To discover the selectivity and specificity of this action, several derivatives based on the MTH1 and MI0639 complex structure were synthesized. We compared 14 complex structures of MTH1 and the various compounds in combination with enzymatic inhibition and thermodynamic analysis. Nanomolar-range IC50 inhibition abilities by enzyme kinetics and Kd values by thermodynamic analysis were obtained for two compounds, named MI1020 and MI1024. Based on structural information and compound optimization, we aim to provide a strategy for the development of MTH1 inhibitors with high selectivity and specificity.
Collapse
|
14
|
Yin Y, Chen F. Targeting human MutT homolog 1 (MTH1) for cancer eradication: current progress and perspectives. Acta Pharm Sin B 2020; 10:2259-2271. [PMID: 33354500 PMCID: PMC7745060 DOI: 10.1016/j.apsb.2020.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/11/2020] [Accepted: 02/21/2020] [Indexed: 01/20/2023] Open
Abstract
Since accelerated metabolism produces much higher levels of reactive oxygen species (ROS) in cancer cells compared to ROS levels found in normal cells, human MutT homolog 1 (MTH1), which sanitizes oxidized nucleotide pools, was recently demonstrated to be crucial for the survival of cancer cells, but not required for the proliferation of normal cells. Therefore, dozens of MTH1 inhibitors have been developed with the aim of suppressing cancer growth by accumulating oxidative damage in cancer cells. While several inhibitors were indeed confirmed to be effective, some inhibitors failed to kill cancer cells, complicating MTH1 as a viable target for cancer eradication. In this review, we summarize the current status of developing MTH1 inhibitors as drug candidates, classify the MTH1 inhibitors based on their structures, and offer our perspectives toward the therapeutic potential against cancer through the targeting of MTH1.
Collapse
Key Words
- AI, 7-azaindole
- AID, 7-azaindazole
- AP, aminopyrimidine
- AQ, amidoquinolines
- AZ, 2-aminoquinazoline
- Anticancer
- CETSA, cellular thermal shift assay
- CR, cyclometalated ruthenium
- DDR, DNA damage response
- DNA repair
- F, fragment
- FP, farnesyl phenolic
- IC50, half-maximal inhibitory concentrations
- Inhibitor
- MMR, DNA mismatch repair
- MTH1
- MTH1, human MutT homolog 1
- NSCLC, non-small cell lung cancer
- Oxidized nucleotide
- P, purinone
- PDT, photodynamic therapy
- PM, purinone macrocycle
- Pu, purine
- ROS, reactive oxygen species
- TLR7, Toll-like receptor 7
- TPP, thermal proteome profiling
- TS-FITGE, thermal stability shift-based fluorescence difference in two-dimensional gel electrophoresis
Collapse
Affiliation(s)
- Yizhen Yin
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fener Chen
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- Corresponding author. Tel./fax: +86 21 65643811.
| |
Collapse
|
15
|
Rudd SG, Gad H, Sanjiv K, Amaral N, Hagenkort A, Groth P, Ström CE, Mortusewicz O, Berglund UW, Helleday T. MTH1 Inhibitor TH588 Disturbs Mitotic Progression and Induces Mitosis-Dependent Accumulation of Genomic 8-oxodG. Cancer Res 2020; 80:3530-3541. [PMID: 32312836 DOI: 10.1158/0008-5472.can-19-0883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 02/21/2020] [Accepted: 04/15/2020] [Indexed: 11/16/2022]
Abstract
Reactive oxygen species (ROS) oxidize nucleotide triphosphate pools (e.g., 8-oxodGTP), which may kill cells if incorporated into DNA. Whether cancers avoid poisoning from oxidized nucleotides by preventing incorporation via the oxidized purine diphosphatase MTH1 remains under debate. Also, little is known about DNA polymerases incorporating oxidized nucleotides in cells or how oxidized nucleotides in DNA become toxic. Here we show that replacement of one of the main DNA replicases in human cells, DNA polymerase delta (Pol δ), with an error-prone variant allows increased 8-oxodG accumulation into DNA following treatment with TH588, a dual MTH1 inhibitor and microtubule targeting agent. The resulting elevated genomic 8-oxodG correlated with increased cytotoxicity of TH588. Interestingly, no substantial perturbation of replication fork progression was observed, but rather mitotic progression was impaired and mitotic DNA synthesis triggered. Reducing mitotic arrest by reversin treatment prevented accumulation of genomic 8-oxodG and reduced cytotoxicity of TH588, in line with the notion that mitotic arrest is required for ROS buildup and oxidation of the nucleotide pool. Furthermore, delayed mitosis and increased mitotic cell death was observed following TH588 treatment in cells expressing the error-prone but not wild-type Pol δ variant, which is not observed following treatments with antimitotic agents. Collectively, these results link accumulation of genomic oxidized nucleotides with disturbed mitotic progression. SIGNIFICANCE: These findings uncover a novel link between accumulation of genomic 8-oxodG and perturbed mitotic progression in cancer cells, which can be exploited therapeutically using MTH1 inhibitors.See related commentary by Alnajjar and Sweasy, p. 3459.
Collapse
Affiliation(s)
- Sean G Rudd
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Helge Gad
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kumar Sanjiv
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Nuno Amaral
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Hagenkort
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Petra Groth
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia E Ström
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Oliver Mortusewicz
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
16
|
Erlanson DA, de Esch IJP, Jahnke W, Johnson CN, Mortenson PN. Fragment-to-Lead Medicinal Chemistry Publications in 2018. J Med Chem 2020; 63:4430-4444. [PMID: 31913033 DOI: 10.1021/acs.jmedchem.9b01581] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This Perspective, the fourth in an annual series, summarizes fragment-to-lead (F2L) success stories published during 2018. Topics such as target class, screening methods, physicochemical properties, and ligand efficiency are discussed for the 2018 examples as well as for the combined 111 F2L examples covering 2015-2018. While the overall properties of fragments and leads have remained constant, a number of new trends are noted, for example, broadening of target class coverage and application of FBDD to covalent inhibitors. Moreover, several studies make use of fragment hits that were previously described in the literature, illustrating that fragments are versatile starting points that can be optimized to structurally diverse leads. By focusing on success stories, the hope is that this Perspective will identify and inform best practices in fragment-based drug discovery.
Collapse
Affiliation(s)
- Daniel A Erlanson
- Frontier Medicines, 151 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Wolfgang Jahnke
- Novartis Institutes for Biomedical Research, Chemical Biology and Therapeutics, 4002 Basel, Switzerland
| | - Christopher N Johnson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Paul N Mortenson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| |
Collapse
|
17
|
Lefranc J, Schulze VK, Hillig RC, Briem H, Prinz F, Mengel A, Heinrich T, Balint J, Rengachari S, Irlbacher H, Stöckigt D, Bömer U, Bader B, Gradl SN, Nising CF, von Nussbaum F, Mumberg D, Panne D, Wengner AM. Discovery of BAY-985, a Highly Selective TBK1/IKKε Inhibitor. J Med Chem 2019; 63:601-612. [DOI: 10.1021/acs.jmedchem.9b01460] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Julien Lefranc
- Pharmaceuticals, Research and Development, Bayer AG, 13353 Berlin, Germany
| | | | | | - Hans Briem
- Pharmaceuticals, Research and Development, Bayer AG, 13353 Berlin, Germany
| | - Florian Prinz
- Pharmaceuticals, Research and Development, Bayer AG, 13353 Berlin, Germany
| | - Anne Mengel
- Pharmaceuticals, Research and Development, Bayer AG, 13353 Berlin, Germany
| | - Tobias Heinrich
- Pharmaceuticals, Research and Development, Bayer AG, 13353 Berlin, Germany
| | - Jozsef Balint
- ASCA GmbH (Angewandte Synthesechemie Adlershof), 12489 Berlin, Germany
| | - Srinivasan Rengachari
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, LE1 7RH Leicester, U.K
| | - Horst Irlbacher
- Pharmaceuticals, Research and Development, Bayer AG, 13353 Berlin, Germany
| | - Detlef Stöckigt
- Pharmaceuticals, Research and Development, Bayer AG, 13353 Berlin, Germany
| | - Ulf Bömer
- Pharmaceuticals, Research and Development, Bayer AG, 13353 Berlin, Germany
| | - Benjamin Bader
- Pharmaceuticals, Research and Development, Bayer AG, 13353 Berlin, Germany
| | | | | | - Franz von Nussbaum
- Pharmaceuticals, Research and Development, Bayer AG, 13353 Berlin, Germany
| | - Dominik Mumberg
- Pharmaceuticals, Research and Development, Bayer AG, 13353 Berlin, Germany
| | - Daniel Panne
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, LE1 7RH Leicester, U.K
- European Molecular Biology Laboratory, 38042 Grenoble, France
| | | |
Collapse
|
18
|
Samaranayake GJ, Troccoli CI, Zhang L, Huynh M, Jayaraj CJ, Ji D, McPherson L, Onishi Y, Nguyen DM, Robbins DJ, Karbaschi M, Cooke MS, Barrientos A, Kool ET, Rai P. The Existence of MTH1-independent 8-oxodGTPase Activity in Cancer Cells as a Compensatory Mechanism against On-target Effects of MTH1 Inhibitors. Mol Cancer Ther 2019; 19:432-446. [PMID: 31744893 DOI: 10.1158/1535-7163.mct-19-0437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/20/2019] [Accepted: 11/12/2019] [Indexed: 01/28/2023]
Abstract
Investigations into the human 8-oxodGTPase, MutT Homolog 1 (MTH1), have risen sharply since the first-in-class MTH1 inhibitors were reported to be highly tumoricidal. However, MTH1 as a cancer therapeutic target is currently controversial because subsequently developed inhibitors did not exhibit similar cytotoxic effects. Here, we provide the first direct evidence for MTH1-independent 8-oxodGTPase function in human cancer cells and human tumors, using a novel ATP-releasing guanine-oxidized (ARGO) chemical probe. Our studies show that this functionally redundant 8-oxodGTPase activity is not decreased by five different published MTH1-targeting small molecules or by MTH1 depletion. Significantly, while only the two first-in-class inhibitors, TH588 and TH287, reduced cancer cell viability, all five inhibitors evaluated in our studies decreased 8-oxodGTPase activity to a similar extent. Thus, the reported efficacy of the first-in-class MTH1 inhibitors does not arise from their inhibition of MTH1-specific 8-oxodGTPase activity. Comparison of DNA strand breaks, genomic 8-oxoguanine incorporation, or alterations in cellular oxidative state by TH287 versus the noncytotoxic inhibitor, IACS-4759, contradict that the cytotoxicity of the former results solely from increased levels of oxidatively damaged genomic DNA. Thus, our findings indicate that mechanisms unrelated to oxidative stress or DNA damage likely underlie the reported efficacy of the first-in-class inhibitors. Our study suggests that MTH1 functional redundancy, existing to different extents in all cancer lines and human tumors evaluated in our study, is a thus far undefined factor which is likely to be critical in understanding the importance of MTH1 and its clinical targeting in cancer.
Collapse
Affiliation(s)
- Govindi J Samaranayake
- Department of Medicine/Division of Medical Oncology, University of Miami Miller School of Medicine, Miami, Florida
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Clara I Troccoli
- Department of Medicine/Division of Medical Oncology, University of Miami Miller School of Medicine, Miami, Florida
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Ling Zhang
- Department of Medicine/Division of Medical Oncology, University of Miami Miller School of Medicine, Miami, Florida
| | - Mai Huynh
- University of Miami, Coral Gables, Florida
| | | | - Debin Ji
- Department of Chemistry, Stanford University, Stanford, California
| | - Lisa McPherson
- Department of Medicine/Oncology, Stanford University, Stanford, California
| | - Yoshiyuki Onishi
- Department of Chemistry, Stanford University, Stanford, California
| | - Dao M Nguyen
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - David J Robbins
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Mahsa Karbaschi
- Department of Human and Molecular Genetics, Florida International University, Miami, Florida
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, Florida
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, Florida
| | - Antonio Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, California
| | - Priyamvada Rai
- Department of Medicine/Division of Medical Oncology, University of Miami Miller School of Medicine, Miami, Florida.
- Sylvester Comprehensive Cancer Center, Miami, Florida
| |
Collapse
|
19
|
Wiedmer L, Schärer C, Spiliotopoulos D, Hürzeler M, Śledź P, Caflisch A. Ligand retargeting by binding site analogy. Eur J Med Chem 2019; 175:107-113. [DOI: 10.1016/j.ejmech.2019.04.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 12/27/2022]
|
20
|
Michel M, Visnes T, Homan EJ, Seashore-Ludlow B, Hedenström M, Wiita E, Vallin K, Paulin CBJ, Zhang J, Wallner O, Scobie M, Schmidt A, Jenmalm-Jensen A, Warpman Berglund U, Helleday T. Computational and Experimental Druggability Assessment of Human DNA Glycosylases. ACS OMEGA 2019; 4:11642-11656. [PMID: 31460271 PMCID: PMC6682003 DOI: 10.1021/acsomega.9b00162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/21/2019] [Indexed: 06/10/2023]
Abstract
Due to a polar or even charged binding interface, DNA-binding proteins are considered extraordinarily difficult targets for development of small-molecule ligands and only a handful of proteins have been targeted successfully to date. Recently, however, it has been shown that development of selective and efficient inhibitors of 8-oxoguanine DNA glycosylase is possible. Here, we describe the initial druggability assessment of DNA glycosylases in a computational setting and experimentally investigate several methods to target endonuclease VIII-like 1 (NEIL1) with small-molecule inhibitors. We find that DNA glycosylases exhibit good predicted druggability in both DNA-bound and -unbound states. Furthermore, we find catalytic sites to be highly flexible, allowing for a range of interactions and binding partners. One flexible catalytic site was rationalized for NEIL1 and further investigated experimentally using both a biochemical assay in the presence of DNA and a thermal shift assay in the absence of DNA.
Collapse
Affiliation(s)
- Maurice Michel
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Torkild Visnes
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Department
of Biotechnology and Nanomedicine, SINTEF
Industry, N-7465 Trondheim, Norway
| | - Evert J. Homan
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Brinton Seashore-Ludlow
- Chemical
Biology Consortium Sweden, Science for Life Laboratory, Division of
Translational Medicine and Chemical Biology, Department of Medical
Biochemistry and Biophysics, Karolinska
Institutet, S-171 21 Stockholm, Sweden
| | | | - Elisée Wiita
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Karl Vallin
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Cynthia B. J. Paulin
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Jiaxi Zhang
- Institute
of Organic Chemistry, Clausthal University
of Technology, Leibnizstrasse
6, D-38678 Clausthal-Zellerfeld, Germany
| | - Olov Wallner
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Martin Scobie
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Andreas Schmidt
- Institute
of Organic Chemistry, Clausthal University
of Technology, Leibnizstrasse
6, D-38678 Clausthal-Zellerfeld, Germany
| | - Annika Jenmalm-Jensen
- Chemical
Biology Consortium Sweden, Science for Life Laboratory, Division of
Translational Medicine and Chemical Biology, Department of Medical
Biochemistry and Biophysics, Karolinska
Institutet, S-171 21 Stockholm, Sweden
| | - Ulrika Warpman Berglund
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Thomas Helleday
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Sheffield
Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, S10 2RX Sheffield, U.K.
| |
Collapse
|
21
|
Discovery of a new class of MTH1 inhibitor by X-ray crystallographic screening. Eur J Med Chem 2019; 167:153-160. [DOI: 10.1016/j.ejmech.2019.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 11/19/2022]
|
22
|
Rai P, Sobol RW. Mechanisms of MTH1 inhibition-induced DNA strand breaks: The slippery slope from the oxidized nucleotide pool to genotoxic damage. DNA Repair (Amst) 2019; 77:18-26. [PMID: 30852368 DOI: 10.1016/j.dnarep.2019.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Unlike normal tissues, tumor cells possess a propensity for genomic instability, resulting from elevated oxidant levels produced by oncogenic signaling and aberrant cellular metabolism. Thus, targeting mechanisms that protect cancer cells from the tumor-inhibitory consequences of their redox imbalance and spontaneous DNA-damaging events is expected to have broad-spectrum efficacy and a high therapeutic index. One critical mechanism for tumor cell protection from oxidant stress is the hydrolysis of oxidized nucleotides. Human MutT homolog 1 (MTH1), the mammalian nudix (nucleoside diphosphate X) pyrophosphatase (NUDT1), protects tumor cells from oxidative stress-induced genomic DNA damage by cleansing the nucleotide pool of oxidized purine nucleotides. Depletion or pharmacologic inhibition of MTH1 results in genomic DNA strand breaks in many cancer cells. However, the mechanisms underlying how oxidized nucleotides, thought mainly to be mutagenic rather than genotoxic, induce DNA strand breaks are largely unknown. Given the recent therapeutic interest in targeting MTH1, a better understanding of such mechanisms is crucial to its successful translation into the clinic and in identifying the molecular contexts under which its inhibition is likely to be beneficial. Here we provide a comprehensive perspective on MTH1 function and its importance in protecting genome integrity, in the context of tumor-associated oxidative stress and the mechanisms that likely lead to irreparable DNA strand breaks as a result of MTH1 inhibition.
Collapse
Affiliation(s)
- Priyamvada Rai
- Department of Medicine/Division of Medical Oncology, University of Miami Miller School of Medicine, Miami, FL, 33136, United States; Sylvester Comprehensive Cancer Center, Miami, FL, 33136, United States.
| | - Robert W Sobol
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, United States.
| |
Collapse
|
23
|
Wang Y, Zhang WY, You SL. Ketones and Aldehydes as O-Nucleophiles in Iridium-Catalyzed Intramolecular Asymmetric Allylic Substitution Reaction. J Am Chem Soc 2019; 141:2228-2232. [DOI: 10.1021/jacs.8b13182] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ye Wang
- State Key Laboratory
of Organometallic Chemistry, Center for Excellence in Molecular Synthesis,
Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Wen-Yun Zhang
- State Key Laboratory
of Organometallic Chemistry, Center for Excellence in Molecular Synthesis,
Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory
of Organometallic Chemistry, Center for Excellence in Molecular Synthesis,
Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 30072, China
| |
Collapse
|
24
|
Niu RJ, Zheng QC, Zhang HX. The influence of residue in the position of 116 on the inhibitory potency of TH588 for MTH1. J Mol Graph Model 2018; 85:75-83. [PMID: 30103119 DOI: 10.1016/j.jmgm.2018.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/23/2018] [Accepted: 08/03/2018] [Indexed: 11/29/2022]
Abstract
As one of the first-in-class inhibitor, TH588 was found to be efficient in the suppression of MutT homolog1 (MTH1). A recent work shows that the inhibitory potency of TH588 against human MTH1 (hsMTH1) is approximately 20-fold over that of mouse MTH1 (mmMTH1) and identifies residue in position 116 in MTH1 has an important contribution to TH588 affinity. But the effect of residue Leu or Met in position 116 on the binding affinity remains unclear. In this study, molecular dynamics (MD) simulations and free energy calculations were used to elucidate the mechanism about the effect of residue 116 to the different inhibitory potency of TH588 against MTH1. The binding free energy of TH588 in M116 complexes predicated by the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) is much lower than that in L116 complexes, which is consistent with the experiment results. The analysis of the individual energy terms suggests that the non-polar interactions are important for distinguishing the binding of TH588. The MD results show that the Leu116 disrupts the interactions between Asn33 and TH588, thus induces the conformational changes of Asn33 as well as TH588. The altered interactions between TH588 and mmMTH1 change the flexibility of TH588, which could induce the remarkable conformational fluctuation of mmMTH1. The conformations of the two loops covering the binding pocket have obvious influence on the opening or closure of the active site. The more open binding site may explain the lower inhibitor potency of TH588 against mmMTH1 than hsMTH1. Our results provide mechanistic insight into the effect of different residue Leu or Met in position 116 on the binding affinity of TH588 for MTH1, which is expected to contribute to the further rational design of more potent inhibitors.
Collapse
Affiliation(s)
- Rui-Juan Niu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, PR China
| | - Qing-Chuan Zheng
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, PR China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130023, PR China.
| | - Hong-Xing Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, PR China.
| |
Collapse
|