1
|
Konno S, Tanaka M, Mizuguchi T, Toyokai H, Taguchi A, Taniguchi A, Hayashi Y. Peptide mixed phosphonates for covalent complex formation with thioesterases in nonribosomal peptide synthetases. J Pept Sci 2024; 30:e3532. [PMID: 37423887 DOI: 10.1002/psc.3532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/11/2023]
Abstract
Natural macrocyclic peptides derived from microorganisms are medicinal resources that are important for the development of new therapeutic agents. Most of these molecules are biosynthesized by a nonribosomal peptide synthetase (NRPS). The thioesterase (TE) domain in NRPS is responsible for the macrocyclization of mature linear peptide thioesters in a final biosynthetic step. NRPS-TEs can cyclize synthetic linear peptide analogs and can be utilized as biocatalysts for the preparation of natural product derivatives. Although the structures and enzymatic activities of TEs have been investigated, the substrate recognition and substrate-TE interaction during the macrocyclization step are still unknown. To understand the TE-mediated macrocyclization, here we report the development of a substrate-based analog with mixed phosphonate warheads, which can react irreversibly with the Ser residue at the active site of TE. We have demonstrated that the tyrocidine A linear peptide (TLP) with a p-nitrophenyl phosphonate (PNP) enables efficient complex formation with tyrocidine synthetase C (TycC)-TE containing tyrocidine synthetase.
Collapse
Affiliation(s)
- Sho Konno
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Miyu Tanaka
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Tomoe Mizuguchi
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Haruka Toyokai
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Akihiro Taguchi
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Atsuhiko Taniguchi
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
2
|
Fang S, Liu Z, Wang T. Design and Application of Peptide-Mimic Phosphonium Salt Catalysts in Asymmetric Synthesis. Angew Chem Int Ed Engl 2023; 62:e202307258. [PMID: 37408171 DOI: 10.1002/anie.202307258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
Chiral phosphonium salt catalysis, traditionally classified as a type of phase transfer catalysis, has proven to be a powerful strategy for the stereoselective preparation of diverse optically active molecules. However, there still remain numerous forbidding issues of reactivity and selectivity in such well-known organocatalysis system. Accordingly, the development of new and high-performance phosphonium salt catalysts with unique chiral backbones is highly desirable, yet challenging. This Minireview describes the prominent endeavours in the development of a new family of chiral peptide-mimic phosphonium salt catalysts with multiple hydrogen-bonding donors and their applications in a plethora of enantioselective synthesis during the past few years. Hopefully, this minireview will pave a way for further developing much more efficient and privileged chiral ligands/catalysts featuring exclusively catalytic ability in asymmetric synthesis.
Collapse
Affiliation(s)
- Siqiang Fang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Zanjiao Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
3
|
Kawaguchi M, Furuse Y, Ieda N, Nakagawa H. Development of Nucleoside Diphosphate-Bearing Fragile Histidine Triad-Imaging Fluorescence Probes with Well-Tuned Hydrophobicity for Intracellular Delivery. ACS Sens 2022; 7:2732-2742. [PMID: 35981239 DOI: 10.1021/acssensors.2c01273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fluorescence-guided cancer surgery can dramatically improve recurrence rates and postoperative quality of life of patients by accurately distinguishing the boundary between normal and cancer tissues during surgery, thereby minimizing excision of normal tissue. One promising target in early stage cancer is fragile histidine triad (FHIT), a cancer suppressor protein with dinucleoside triphosphate hydrolase activity. In this study, we have developed fluorescence probes containing a nucleoside diphosphate moiety, which dramatically improves the reactivity and specificity for FHIT, and a moderately lipophilic ester moiety to increase the membrane permeability. The ester moiety is cleaved by ubiquitous intracellular esterases, and then, FHIT in the cells specifically cleaves nucleoside monophosphate. The remaining phosphate moiety is rapidly cleaved by ubiquitous intracellular phosphatases to release the fluorescent dye. We confirmed that this probe can detect FHIT activity in living cells. A comprehensive evaluation of the effects of various ester moieties revealed that probes with CLogP = 5-7 showed good membrane permeability and were good substrates of the target enzyme; these findings may be helpful in the rational design of other multiple phosphate-containing probes targeting intracellular enzymes.
Collapse
Affiliation(s)
- Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Yuri Furuse
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Naoya Ieda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| |
Collapse
|
4
|
Sun JT, Li X, Yang TY, Lv M, Chen LY, Wei BG. In(OTf) 3-catalyzed N-α phosphonylation of N, O-acetals with triethyl phosphite. Org Biomol Chem 2022; 20:6571-6581. [PMID: 35904891 DOI: 10.1039/d2ob01196d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical approach to α-aminophosphonates has been developed through an In(OTf)3-catalyzed N-α phosphonylation of N,O-acetals with triethyl phosphite 7. Indoline and isoindoline N,O-acetals 6a-6j and 9a-9j and chain N,O-acetals 11a-11p were subjected to a Lewis acid catalyzed N-α phosphonylation process. As a result, the desired α-aminophosphonates 8a-8j, 10a-10j and 12a-12p were obtained in moderate to good yields.
Collapse
Affiliation(s)
- Jian-Ting Sun
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China. .,School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, 201620 China.
| | - Xin Li
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Tian-Yu Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Min Lv
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Ling-Yan Chen
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, 201620 China.
| | - Bang-Guo Wei
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
5
|
Yoshida Y, Ti Z, Tanabe W, Tomoike F, Hashiya F, Suzuki T, Hirota S, Saiki Y, Horii A, Hirayama A, Soga T, Kimura Y, Abe H. Development of Fluorophosphoramidate as a New Biocompatible Transformable Functional Group and its Application as a Phosphate Prodrug for Nucleoside Analogs. ChemMedChem 2022; 17:e202200188. [PMID: 35393747 DOI: 10.1002/cmdc.202200188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Indexed: 11/12/2022]
Abstract
Synthetic phosphate-derived functional groups are important for controlling the function of bioactive molecules in vivo . Herein we describe the development of a new type of biocompatible phosphate analog, a fluorophosphoramidate (FPA) functional group that has characteristic P-F and P-N bonds. We found that FPA with a primary amino group was relatively unstable in aqueous solution and was converted to a monophosphate, while FPA with a secondary amino group was stable. Furthermore, by improving the molecular design of FPA, we developed a reaction in which a secondary amino group is converted to a primary amino group in the intracellular environment, and clarified that the FPA group functions as a phosphate prodrug of nucleoside. Various FPA-gemcitabine derivatives were synthesized and their anticancer activities were evaluated. One of the FPA-gemcitabine derivatives showed superior anticancer activity compared with gemcitabine and its ProTide prodrug, which methodology is widely used in various nucleoside analogs, including anti-cancer and anti-virus drugs.
Collapse
Affiliation(s)
- Yuki Yoshida
- Nagoya University: Nagoya Daigaku, Graduate School of Science, JAPAN
| | - Zheng Ti
- Nagoya University: Nagoya Daigaku, Graduate School of Science, JAPAN
| | - Wataru Tanabe
- Nagoya University: Nagoya Daigaku, Graduate School of Science, JAPAN
| | - Fumiaki Tomoike
- Gakushuin University: Gakushuin Daigaku, Graduate School of Science, JAPAN
| | - Fumitaka Hashiya
- Nagoya University: Nagoya Daigaku, Research Center for Material Science, JAPAN
| | | | - Shuto Hirota
- Tohoku University: Tohoku Daigaku, School of Medicine, JAPAN
| | - Yuriko Saiki
- Tohoku University: Tohoku Daigaku, School of Medicine, JAPAN
| | - Akira Horii
- Tohoku University: Tohoku Daigaku, School of Medicine, JAPAN
| | - Akiyoshi Hirayama
- Keio University: Keio Gijuku Daigaku, Institute for Biosciences, JAPAN
| | - Tomoyoshi Soga
- Keio University: Keio Gijuku Daigaku, Institute for Advance Biosciences, JAPAN
| | - Yasuaki Kimura
- Nagoya University: Nagoya Daigaku, Graduate School of Science, JAPAN
| | - Hiroshi Abe
- Nagoya University, Department of Chemistry, Graduate School of Science, Furo, Chikusa, 464-8602, Nagoya, JAPAN
| |
Collapse
|
6
|
Tan Y, Han YP, Zhang Y, Zhang HY, Zhao J, Yang SD. Primary Amination of Ar2P(O)–H with (NH4)2CO3 as an Ammonia Source under Simple and Mild Conditions and Its Extension to the Construction of Various P–N or P–O Bonds. J Org Chem 2022; 87:3254-3264. [DOI: 10.1021/acs.joc.1c02933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yushi Tan
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Hong-Yu Zhang
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
7
|
Hore S, Singh RP. Phosphorylation of arenes, heteroarenes, alkenes, carbonyls and imines by dehydrogenative cross-coupling of P(O)-H and P(R)-H. Org Biomol Chem 2021; 20:498-537. [PMID: 34904988 DOI: 10.1039/d1ob02003j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Organophosphorous compounds have recently emerged as a powerful class of compounds with widespread applications, such as in bioactive natural products, pharmaceuticals, agrochemicals and organic materials, and as ligands in catalysis. The preparation of these compounds requires synthetic techniques with novel catalytic systems varying from transition metal, photo- and electrochemical catalysis to transformations without metal catalysts. Over the past few decades, the addition of P-H bonds to alkenes, alkynes, arenes, heteroarenes and other unsaturated substrates in hydrophosphination and other related reactions via the above-mentioned catalytic processes has emerged as an atom economical approach to obtain organophosphorus compounds. In most of the catalytic cycles, the P-H bond is cleaved to yield a phosphorus-based radical, which adds onto the unsaturated substrate followed by reduction of the corresponding radical yielding the product.
Collapse
Affiliation(s)
- Soumyadip Hore
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi-110016, India.
| | - Ravi P Singh
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
8
|
Krüger L, Albrecht CJ, Schammann HK, Stumpf FM, Niedermeier ML, Yuan Y, Stuber K, Wimmer J, Stengel F, Scheffner M, Marx A. Chemical proteomic profiling reveals protein interactors of the alarmones diadenosine triphosphate and tetraphosphate. Nat Commun 2021; 12:5808. [PMID: 34608152 PMCID: PMC8490401 DOI: 10.1038/s41467-021-26075-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/10/2021] [Indexed: 01/14/2023] Open
Abstract
The nucleotides diadenosine triphosphate (Ap3A) and diadenosine tetraphosphate (Ap4A) are formed in prokaryotic and eukaryotic cells. Since their concentrations increase significantly upon cellular stress, they are considered to be alarmones triggering stress adaptive processes. However, their cellular roles remain elusive. To elucidate the proteome-wide interactome of Ap3A and Ap4A and thereby gain insights into their cellular roles, we herein report the development of photoaffinity-labeling probes and their employment in chemical proteomics. We demonstrate that the identified ApnA interactors are involved in many fundamental cellular processes including carboxylic acid and nucleotide metabolism, gene expression, various regulatory processes and cellular response mechanisms and only around half of them are known nucleotide interactors. Our results highlight common functions of these ApnAs across the domains of life, but also identify those that are different for Ap3A or Ap4A. This study provides a rich source for further functional studies of these nucleotides and depicts useful tools for characterization of their regulatory mechanisms in cells. Diadenosine polyphosphates (ApAs) are involved in cellular stress signaling but only a few molecular targets have been characterized so far. Here, the authors develop ApnA-based photoaffinity-labeling probes and use them to identify Ap3A and Ap4A binding proteins in human cell lysates.
Collapse
Affiliation(s)
- Lena Krüger
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Christoph J Albrecht
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany
| | | | - Florian M Stumpf
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Marie L Niedermeier
- Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Yizhi Yuan
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Katrin Stuber
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Josua Wimmer
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Florian Stengel
- Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Martin Scheffner
- Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz, Konstanz, Germany. .,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
9
|
Khrapova KO, Telezhkin AA, Volkov PA, Larina LI, Pavlov DV, Gusarova NK, Trofimov BA. Oxidative cross-coupling of secondary phosphine chalcogenides with amino alcohols and aminophenols: aspects of the reaction chemoselectivity. Org Biomol Chem 2021; 19:5098-5107. [PMID: 33861297 DOI: 10.1039/d1ob00287b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Secondary phosphine chalcogenides react with primary amino alcohols under mild conditions (room temperature, molar ratio of the initial reagents 1 : 1) in a CCl4/Et3N oxidizing system to chemoselectively deliver amides of chalcogenophosphinic acids with free OH groups. Under similar conditions, mono-cross-coupling between secondary phosphine chalcogenides and 1,2- or 1,3-aminophenols proceeds only with the participation of phenolic hydroxyl to give aminophenylchalcogenophosphinic O-esters. The yields of the synthesized functional amides or esters are 60-85%.
Collapse
Affiliation(s)
- Kseniya O Khrapova
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russian Federation.
| | - Anton A Telezhkin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russian Federation.
| | - Pavel A Volkov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russian Federation.
| | - Lyudmila I Larina
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russian Federation.
| | - Dmitry V Pavlov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russian Federation.
| | - Nina K Gusarova
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russian Federation.
| | - Boris A Trofimov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russian Federation.
| |
Collapse
|
10
|
Touqeer S, Ielo L, Miele M, Urban E, Holzer W, Pace V. Direct and straightforward transfer of C1 functionalized synthons to phosphorous electrophiles for accessing gem-P-containing methanes. Org Biomol Chem 2021; 19:2425-2429. [PMID: 33666635 DOI: 10.1039/d1ob00273b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The direct transfer of different α-substituted methyllithium reagents to chlorinated phosphorous electrophiles of diverse oxidation state (phosphates, phosphine oxides and phosphines) is proposed as an effective strategy to synthesize geminal P-containing methanes. The methodology relies on the efficient nucleophilic substitution conducted on the P-chlorine linkage. Uniformly high yields are observed regardless the specific nature of the carbanion employed: once established the conditions for generating the competent nucleophile (LiCH2Hal, LiCHHal2, LiCH2CN, LiCH2SeR etc.) the homologated compounds are obtained via a single operation. Some P-containing formal carbanions have been evaluated in transferring processes, including the carbonyl-difluoromethylation of the opioid agent Hydrocodone.
Collapse
Affiliation(s)
- Saad Touqeer
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
11
|
Justyna K, Małolepsza J, Kusy D, Maniukiewicz W, Błażewska KM. The McKenna reaction - avoiding side reactions in phosphonate deprotection. Beilstein J Org Chem 2020; 16:1436-1446. [PMID: 32647545 PMCID: PMC7323628 DOI: 10.3762/bjoc.16.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022] Open
Abstract
The McKenna reaction is a well-known and popular method for the efficient and mild synthesis of organophosphorus acids. Bromotrimethylsilane (BTMS) is the main reagent in this reaction, which transforms dialkyl phosphonate esters into bis(trimethylsilyl)esters, which are then easily converted into the target acids. However, the versatile character of the McKenna reaction is not always used to its full extent, due to formation of side products. Herein, demonstrated by using model examples we have not only analyzed the typical side processes accompanying the McKenna reaction, but also uncovered new ones. Further, we discovered that some commonly recommended precautions did not always circumvent the side reactions. The proposed results and recommendations may facilitate the synthesis of phosphonic acids.
Collapse
Affiliation(s)
- Katarzyna Justyna
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego St. 116, 90-924 Lodz, Poland
| | - Joanna Małolepsza
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego St. 116, 90-924 Lodz, Poland
| | - Damian Kusy
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego St. 116, 90-924 Lodz, Poland
| | - Waldemar Maniukiewicz
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego St. 116, 90-924 Lodz, Poland
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego St. 116, 90-924 Lodz, Poland
| |
Collapse
|
12
|
Qian Y, Dai Q, Li Z, Liu Y, Zhang J. O-Phosphination of Aldehydes/Ketones toward Phosphoric Esters: Experimental and Mechanistic Studies. Org Lett 2020; 22:4742-4748. [PMID: 32484695 DOI: 10.1021/acs.orglett.0c01537] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yanyan Qian
- College of Chemistry and Life Science, Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, Changchun University of Technology, 2055 Yan’an Street, Changchun 130012, P.R. China
| | - Qiang Dai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Zhiming Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China
| | - Yu Liu
- College of Chemistry and Life Science, Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, Changchun University of Technology, 2055 Yan’an Street, Changchun 130012, P.R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, P.R. China
| |
Collapse
|
13
|
Dalton SE, Campos S. Covalent Small Molecules as Enabling Platforms for Drug Discovery. Chembiochem 2020; 21:1080-1100. [DOI: 10.1002/cbic.201900674] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Samuel E. Dalton
- Astex Pharmaceuticals 436 Cambridge Science Park Milton Road Cambridge CB4 0QA UK
| | - Sebastien Campos
- PharmaronDrug Discovery Services Europe Hertford Road Hoddesdon Hertfordshire EN11 9BU UK
| |
Collapse
|
14
|
Ou Y, Huang Y, He Z, Yu G, Huo Y, Li X, Gao Y, Chen Q. A phosphoryl radical-initiated Atherton–Todd-type reaction under open air. Chem Commun (Camb) 2020; 56:1357-1360. [DOI: 10.1039/c9cc09407e] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A phosphoryl radical-initiated Atherton–Todd-type reaction enables the phosphorylation of alcohols, phenols, and amines under mild reaction conditions.
Collapse
Affiliation(s)
- Yingcong Ou
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Yuanting Huang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Zhenlin He
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Guodian Yu
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Yang Gao
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Qian Chen
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
| |
Collapse
|
15
|
|
16
|
Wen C, Yu G, Ou Y, Wang X, Zhang K, Chen Q. DDQ-promoted C(sp3) H phosphorylation of cycloheptatriene. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Late-Stage Conversion of Diphenylphosphonate to Fluorophosphonate Probes for the Investigation of Serine Hydrolases. Cell Chem Biol 2019; 26:878-884.e8. [PMID: 30982751 DOI: 10.1016/j.chembiol.2019.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/04/2019] [Accepted: 02/27/2019] [Indexed: 01/13/2023]
Abstract
Diphenylphosphonates (DPPs) have been used for 50 years to inactivate serine hydrolases, creating adducts representative of tetrahedral intermediates of this important class of enzymes. Failure to react at active site serine residues, however, can thwart their usefulness. Here, we describe a facile route and allied mechanistic studies to highly reactive, structurally complex organofluorophosphonates (FPs) by direct fluorinative hydrolysis of DPPs. Advantages over current preparations of FPs are exemplified by the synthesis of a β-lactam-containing peptide substrate analog capable of modifying the C-terminal, dual-function thioesterase involved in nocardicin A biosynthesis. Although this serine hydrolase was found to resist modification by classic DPP inhibitors, active site selective phosphonylation by the corresponding FP occurs rapidly to form a stable adduct. This simple, late-stage method enables the ready preparation of FP probes that retain important structural motifs of native substrates, thus promoting efforts in mechanistic enzymology by accessing biologically relevant enzyme-inhibitor co-structures.
Collapse
|
18
|
Wanat P, Kasprzyk R, Kopcial M, Sikorski PJ, Strzelecka D, Jemielity J, Kowalska J. ExciTides: NTP-derived probes for monitoring pyrophosphatase activity based on excimer-to-monomer transitions. Chem Commun (Camb) 2018; 54:9773-9776. [PMID: 30105342 DOI: 10.1039/c8cc04968h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a new type of nucleotide-derived fluorescent probe designed for monitoring pyrophosphatase activity based on excimer-to-monomer transitions, called ExciTide. The nucleotides were designed with two self-interacting dye moieties and synthesised using copper-catalysed azide-alkyne cycloaddition click chemistry. We applied these probes for enzyme activity monitoring and inhibitor evaluation. Some of the probes permeated into living cells, yielding interesting prospects for future applications.
Collapse
Affiliation(s)
- Przemyslaw Wanat
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|