1
|
Mahoney MW, Helander J, Kooner AS, Norman M, Damalanka VC, De Bona P, Kasperkiewicz P, Rut W, Poreba M, Kashipathy MM, Battaile KP, Lovell S, O'Donoghue AJ, Craik CS, Drag M, Janetka JW. Use of protease substrate specificity screening in the rational design of selective protease inhibitors with unnatural amino acids: Application to HGFA, matriptase, and hepsin. Protein Sci 2024; 33:e5110. [PMID: 39073183 PMCID: PMC11284329 DOI: 10.1002/pro.5110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Inhibition of the proteolytic processing of hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP) is an attractive approach for the drug discovery of novel anticancer therapeutics which prevent tumor progression and metastasis. Here, we utilized an improved and expanded version of positional scanning of substrate combinatorial libraries (PS-SCL) technique called HyCoSuL to optimize peptidomimetic inhibitors of the HGF/MSP activating serine proteases, HGFA, matriptase, and hepsin. These inhibitors have an electrophilic ketone serine trapping warhead and thus form a reversible covalent bond to the protease. We demonstrate that by varying the P2, P3, and P4 positions of the inhibitor with unnatural amino acids based on the protease substrate preferences learned from HyCoSuL, we can predictably modify the potency and selectivity of the inhibitor. We identified the tetrapeptide JH-1144 (8) as a single digit nM inhibitor of HGFA, matriptase and hepsin with excellent selectivity over Factor Xa and thrombin. These unnatural peptides have increased metabolic stability relative to natural peptides of similar structure. The tripeptide inhibitor PK-1-89 (2) has excellent pharmacokinetics in mice with good compound exposure out to 24 h. In addition, we obtained an X-ray structure of the inhibitor MM1132 (15) bound to matriptase revealing an interesting binding conformation useful for future inhibitor design.
Collapse
Affiliation(s)
- Matthew W. Mahoney
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Jonathan Helander
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Anoopjit S. Kooner
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Mariah Norman
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Vishnu C. Damalanka
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Paolo De Bona
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Paulina Kasperkiewicz
- Division of Chemical Biology and Bioimaging, Department of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - Wioletta Rut
- Division of Chemical Biology and Bioimaging, Department of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - Marcin Poreba
- Division of Chemical Biology and Bioimaging, Department of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - Maithri M. Kashipathy
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of KansasLawrenceKansasUSA
| | | | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of KansasLawrenceKansasUSA
| | - Anthony J. O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of CaliforniaSan DiegoCaliforniaUSA
| | - Charles S. Craik
- Department of Pharmaceutical ChemistryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Marcin Drag
- Division of Chemical Biology and Bioimaging, Department of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - James W. Janetka
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| |
Collapse
|
2
|
Radisky ES. Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis. J Biol Chem 2024; 300:107347. [PMID: 38718867 PMCID: PMC11170211 DOI: 10.1016/j.jbc.2024.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
A vast ensemble of extracellular proteins influences the development and progression of cancer, shaped and reshaped by a complex network of extracellular proteases. These proteases, belonging to the distinct classes of metalloproteases, serine proteases, cysteine proteases, and aspartic proteases, play a critical role in cancer. They often become dysregulated in cancer, with increases in pathological protease activity frequently driven by the loss of normal latency controls, diminished regulation by endogenous protease inhibitors, and changes in localization. Dysregulated proteases accelerate tumor progression and metastasis by degrading protein barriers within the extracellular matrix (ECM), stimulating tumor growth, reactivating dormant tumor cells, facilitating tumor cell escape from immune surveillance, and shifting stromal cells toward cancer-promoting behaviors through the precise proteolysis of specific substrates to alter their functions. These crucial substrates include ECM proteins and proteoglycans, soluble proteins secreted by tumor and stromal cells, and extracellular domains of cell surface proteins, including membrane receptors and adhesion proteins. The complexity of the extracellular protease web presents a significant challenge to untangle. Nevertheless, technological strides in proteomics, chemical biology, and the development of new probes and reagents are enabling progress and advancing our understanding of the pivotal importance of extracellular proteolysis in cancer.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA.
| |
Collapse
|
3
|
Damalanka VC, Banas V, De Bona P, Kashipathy MM, Battaile K, Lovell S, Janetka JW. Mechanism-Based Macrocyclic Inhibitors of Serine Proteases. J Med Chem 2024; 67:4833-4854. [PMID: 38477709 DOI: 10.1021/acs.jmedchem.3c02388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Protease inhibitor drug discovery is challenged by the lack of cellular and oral permeability, selectivity, metabolic stability, and rapid clearance of peptides. Here, we describe the rational design, synthesis, and evaluation of peptidomimetic side-chain-cyclized macrocycles which we converted into covalent serine protease inhibitors with the addition of an electrophilic ketone warhead. We have identified potent and selective inhibitors of TMPRSS2, matriptase, hepsin, and HGFA and demonstrated their improved protease selectivity, metabolic stability, and pharmacokinetic (PK) properties. We obtained an X-ray crystal structure of phenyl ether-cyclized tripeptide VD4162 (8b) bound to matriptase, revealing an unexpected binding conformation. Cyclic biphenyl ether VD5123 (11) displayed the best PK properties in mice with a half-life of 4.5 h and compound exposure beyond 24 h. These new cyclic tripeptide scaffolds can be used as easily modifiable templates providing a new strategy to overcoming the obstacles presented by linear acyclic peptides in protease inhibitor drug discovery.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Victoria Banas
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Paolo De Bona
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Maithri M Kashipathy
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Kevin Battaile
- New York Structural Biology Center, Upton, New York 11973, United States
| | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - James W Janetka
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| |
Collapse
|
4
|
Nie X, Gao L, Zheng M, Wang S, Wang C, Li X, Liu O, Gou R, Liu J, Lin B. ST14 interacts with TMEFF1 and is a predictor of poor prognosis in ovarian cancer. BMC Cancer 2024; 24:330. [PMID: 38468232 DOI: 10.1186/s12885-024-11958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
TMEFF1 is a new protein involved in the physiological functions of the central nervous system, and we previously reported TMEFF1 can promote ovarian cancer. ST14 was determined to be involved in the processes of epidermal differentiation, epithelial cell integrity, and vascular endothelial cell migration, etc. The relationship between ST14 and TMEFF1 in the ovary remains unknown. In this study, we detected the expression of ST14 and TMEFF1 in 130 different ovarian cancer tissues through immunohistochemistry. We determined ST14 and TMEFF1 were highly expressed in ovarian cancer, indicating a higher degree of tumor malignancy and a worse prognosis. Tissues significantly expressing ST14 also highly expressed TMEFF1, and the expression of the two proteins was positively correlated. Consistently, immunofluorescence double staining demonstrated the co-localization of ST14 and TMEFF1 in the same region, and immunoprecipitation confirmed the interaction between ST14 and TMEFF1. TMEFF1 expression was also reduced after knocking down ST14 through Western blot. MTT, wound healing and Transwell assays results determined that knockdown of ST14 inhibited proliferation, migration and invasion of ovarian cancer cells in vitro, but the inhibitory effect was restored after adding TMEFF1 exogenous protein. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways analysis showed that ST14 and its related genes were enriched in the processes of epithelial formation, intercellular adhesion, protein localization, and mitosis regulation. We also clarified the kinase, microRNA, and transcription factor target networks and the impact of genetic mutations on prognosis. Overall, high expression of ST14 and TMEFF1 in ovarian cancer predicts higher tumor malignancy and a worse prognosis. ST14 and TMEFF1 co-localize and interact with each other in ovarian cancer. ST14 can regulate TMEFF1 expression to promote proliferation, migration and invasion of ovarian cancer cells. We speculate that the relationship between ST14 and TMEFF1 in ovarian cancer could become a potential target for anti-cancer therapy.
Collapse
Affiliation(s)
- Xin Nie
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, 110004, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Lingling Gao
- Union Hospital, Tongji Medical College, Department of Obstetrics and Gynecology, Huazhong University of Science and Technology, Wuhan, China
| | - Mingjun Zheng
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Shuang Wang
- Department of Gynecology and Obstetrics, Tianjin Central Gynecology and Obstetrics Hospital Affiliated to Nankai University, Tianjin, China
| | - Caixia Wang
- West China Second University Hospital, Department of Obstetrics and Gynecology, Sichuan University, Sichuan, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, 110004, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Ouxuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, 110004, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Rui Gou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, 110004, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, 110004, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, 110004, Shenyang, China.
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China.
| |
Collapse
|
5
|
Rodenas MC, Peñas-Martínez J, Pardo-Sánchez I, Zaragoza-Huesca D, Ortega-Sabater C, Peña-García J, Espín S, Ricote G, Montenegro S, Ayala-De La Peña F, Luengo-Gil G, Nieto A, García-Molina F, Vicente V, Bernardi F, Lozano ML, Mulero V, Pérez-Sánchez H, Carmona-Bayonas A, Martínez-Martínez I. Venetoclax is a potent hepsin inhibitor that reduces the metastatic and prothrombotic phenotypes of hepsin-expressing colorectal cancer cells. Front Mol Biosci 2023; 10:1182925. [PMID: 37275957 PMCID: PMC10235687 DOI: 10.3389/fmolb.2023.1182925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction: Hepsin is a type II transmembrane serine protease and its expression has been linked to greater tumorigenicity and worse prognosis in different tumors. Recently, our group demonstrated that high hepsin levels from primary tumor were associated with a higher risk of metastasis and thrombosis in localized colorectal cancer patients. This study aims to explore the molecular role of hepsin in colorectal cancer. Methods: Hepsin levels in plasma from resected and metastatic colorectal cancer patients were analyzed by ELISA. The effect of hepsin levels on cell migration, invasion, and proliferation, as well as on the activation of crucial cancer signaling pathways, was performed in vitro using colorectal cancer cells. A thrombin generation assay determined the procoagulant function of hepsin from these cells. A virtual screening of a database containing more than 2000 FDA-approved compounds was performed to screen hepsin inhibitors, and selected compounds were tested in vitro for their ability to suppress hepsin effects in colorectal cancer cells. Xenotransplantation assays were done in zebrafish larvae to study the impact of venetoclax on invasion promoted by hepsin. Results: Our results showed higher plasma hepsin levels in metastatic patients, among which, hepsin was higher in those suffering thrombosis. Hepsin overexpression increased colorectal cancer cell invasion, Erk1/2 and STAT3 phosphorylation, and thrombin generation in plasma. In addition, we identified venetoclax as a potent hepsin inhibitor that reduced the metastatic and prothrombotic phenotypes of hepsin-expressing colorectal cancer cells. Interestingly, pretreatment with Venetoclax of cells overexpressing hepsin reduced their invasiveness in vivo. Discussion: Our results demonstrate that hepsin overexpression correlates with a more aggressive and prothrombotic tumor phenotype. Likewise, they demonstrate the antitumor role of venetoclax as a hepsin inhibitor, laying the groundwork for molecular-targeted therapy for colorectal cancer.
Collapse
Affiliation(s)
- Maria Carmen Rodenas
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Centro de Investigación Biomédica en Red de Enfermedades Raras, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
| | - Julia Peñas-Martínez
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Centro de Investigación Biomédica en Red de Enfermedades Raras, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
| | - Irene Pardo-Sánchez
- Department of Cell Biology, Faculty of Biology, Centro de Investigación Biomédica en Red de Enfermedades Raras, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
| | - David Zaragoza-Huesca
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Centro de Investigación Biomédica en Red de Enfermedades Raras, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
| | - Carmen Ortega-Sabater
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Centro de Investigación Biomédica en Red de Enfermedades Raras, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
| | - Jorge Peña-García
- Computer Engineering Department, Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain
| | - Salvador Espín
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Centro de Investigación Biomédica en Red de Enfermedades Raras, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
| | - Guillermo Ricote
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Centro de Investigación Biomédica en Red de Enfermedades Raras, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
| | - Sofía Montenegro
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Centro de Investigación Biomédica en Red de Enfermedades Raras, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
| | - Francisco Ayala-De La Peña
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Centro de Investigación Biomédica en Red de Enfermedades Raras, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
| | - Ginés Luengo-Gil
- Clinical Analysis and Pathology Department, Group of Molecular Pathology and Pharmacogenetics, IMIB-Pascual Parrilla, Hospital Universitario Santa Lucía, Cartagena, Spain
| | - Andrés Nieto
- Department of Pathology, Hospital Universitario Morales Meseguer, Murcia, Spain
| | | | - Vicente Vicente
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Centro de Investigación Biomédica en Red de Enfermedades Raras, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - María Luisa Lozano
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Centro de Investigación Biomédica en Red de Enfermedades Raras, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
| | - Victoriano Mulero
- Department of Cell Biology, Faculty of Biology, Centro de Investigación Biomédica en Red de Enfermedades Raras, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
| | - Horacio Pérez-Sánchez
- Computer Engineering Department, Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain
| | - Alberto Carmona-Bayonas
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Centro de Investigación Biomédica en Red de Enfermedades Raras, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
| | - Irene Martínez-Martínez
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Centro de Investigación Biomédica en Red de Enfermedades Raras, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
6
|
Yoodee S, Thongboonkerd V. Bioinformatics and computational analyses of kidney stone modulatory proteins lead to solid experimental evidence and therapeutic potential. Biomed Pharmacother 2023; 159:114217. [PMID: 36623450 DOI: 10.1016/j.biopha.2023.114217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
In recent biomedical research, bioinformatics and computational analyses have played essential roles for examining experimental findings and database information. Several bioinformatic tools have been developed and made publicly available for analyzing protein sequence, structure, functional motif/domain, and interactions network. Such properties are very helpful to define biochemical and functional roles of the protein(s) of interest. During the past few decades, bioinformatics and computational biotechnology have been widely applied to kidney stone research. This review summarizes commonly used tools and evidence of bioinformatics and computational biotechnology applied to kidney stone disease (KSD) with special emphasis on analyses of the stone modulatory proteins that play critical roles in kidney stone formation. Such analyses lead to solid experimental evidence to demonstrate mechanisms underlying their stone modulatory activities. The findings obtained from such analyses may also lead to better understanding of KSD pathogenesis and to further development of new therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
7
|
Park JH, Zhang X, Ha H, Kim JY, Choi JY, Lee KH, Byun Y, Choe YS. A High-Affinity 64Cu-Labeled Ligand for PET Imaging of Hepsin: Design, Synthesis, and Characterization. Pharmaceuticals (Basel) 2022; 15:ph15091109. [PMID: 36145330 PMCID: PMC9503212 DOI: 10.3390/ph15091109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Hepsin, a cell surface serine protease, is a potential biomarker for the detection of prostate cancer due to its high expression in prostate cancer but not in normal prostate. This study aimed to develop a radioligand for positron emission tomography (PET) imaging of hepsin. Six leucine–arginine (Leu–Arg) dipeptide derivatives (two diastereomers for each of three ligands) were synthesized and evaluated for their binding affinities and selectivity for hepsin. Based on the binding assay, a natCu-1,4,7,10-tetraazacyclododecane-N,N′,N″,N‴-tetraacetic acid (DOTA)-conjugated ligand (3B) was selected for the development of a PET radioligand. [64Cu]3B was synthesized by labeling the DOTA-conjugated compound 11B with [64Cu]CuCl2 at 80 °C for 20 min. The radioligand was evaluated for prostate cancer cell binding and PET imaging in a prostate tumor mouse model. The results demonstrated that [64Cu]3B exhibited high binding to LNCaP cells, intermediate binding to 22Rv1 cells, and low binding to PC3 cells. PET studies of [64Cu]3B in mice, implanted with 22Rv1 and PC3 cells on each flank, revealed that the radioligand uptake was high and persistent in the 22Rv1 tumors over time, whereas it was low in PC3 tumors. The results of this study suggest that [64Cu]3B is a promising PET radioligand for hepsin imaging.
Collapse
Affiliation(s)
- Ji-Hun Park
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Xuran Zhang
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Hyunsoo Ha
- College of Pharmacy, Korea University, Sejong 30019, Korea
| | - Jung Young Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong 30019, Korea
| | - Yearn Seong Choe
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, Korea
- Correspondence:
| |
Collapse
|
8
|
Peptidomimetic inhibitors of TMPRSS2 block SARS-CoV-2 infection in cell culture. Commun Biol 2022; 5:681. [PMID: 35804152 PMCID: PMC9270327 DOI: 10.1038/s42003-022-03613-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
The transmembrane serine protease 2 (TMPRSS2) primes the SARS-CoV-2 Spike (S) protein for host cell entry and represents a promising target for COVID-19 therapy. Here we describe the in silico development and in vitro characterization of peptidomimetic TMPRSS2 inhibitors. Molecular docking studies identified peptidomimetic binders of the TMPRSS2 catalytic site, which were synthesized and coupled to an electrophilic serine trap. The compounds inhibit TMPRSS2 while demonstrating good off-target selectivity against selected coagulation proteases. Lead candidates are stable in blood serum and plasma for at least ten days. Finally, we show that selected peptidomimetics inhibit SARS-CoV-2 Spike-driven pseudovirus entry and authentic SARS-CoV-2 infection with comparable efficacy as camostat mesylate. The peptidomimetic TMPRSS2 inhibitors also prevent entry of recent SARS-CoV-2 variants of concern Delta and Omicron BA.1. In sum, our study reports antivirally active and stable TMPRSS2 inhibitors with prospects for further preclinical and clinical development as antiviral agents against SARS-CoV-2 and other TMPRSS2-dependent viruses. This study describes the development and characterization of peptidomimetic inhibitors of TMPRSS2, which primes the Spike protein of SARS-CoV-2. The inhibitors are shown to prevent SARS-CoV-2 infection in cells as efficiently as camostat mesylate.
Collapse
|
9
|
Knaff PM, Müller P, Kersten C, Wettstein L, Münch J, Landfester K, Mailänder V. Structure-Based Design of High-Affinity and Selective Peptidomimetic Hepsin Inhibitors. Biomacromolecules 2022; 23:2236-2242. [PMID: 35593713 DOI: 10.1021/acs.biomac.1c01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In many solid tumors, increased upregulation of transmembrane serine proteases (TTSPs) leads to an overactivation of growth factors, which promotes tumor progression. Here, we have used a combinatorial methodology to develop high-affinity tetrapeptidic inhibitors. A previous virtual screening of 8000 peptide combinations against the crystal structure of the TTSP hepsin identified a series of recognition sequences, customized for the non-prime substrate binding (P) sites of this serine protease. A combination of the top recognition sequences with an electrophilic warhead resulted in highly potent inhibitors with good selectivity against coagulation proteases factor Xa and thrombin. Structure-activity relationships of two selected compounds were further elucidated by investigation of their stability in biological fluids as well as the influence of the warhead and truncated inhibitors on the inhibitory potency. Overall, this methodology yielded compounds as selective inhibitors for potential cancer drug development, where hepsin is overexpressed.
Collapse
Affiliation(s)
- Philip Maximilian Knaff
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany.,Dermatology Clinic of the University Medicine of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, Mainz 55131, Germany
| | - Patrick Müller
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Christian Kersten
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Lukas Wettstein
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany.,Dermatology Clinic of the University Medicine of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, Mainz 55131, Germany
| |
Collapse
|
10
|
Kastenhuber ER, Mercadante M, Nilsson-Payant B, Johnson JL, Jaimes JA, Muecksch F, Weisblum Y, Bram Y, Whittaker GR, tenOever BR, Schwartz RE, Chandar V, Cantley L. Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry. eLife 2022; 11:77444. [PMID: 35294338 PMCID: PMC8942469 DOI: 10.7554/elife.77444] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Coagulopathy is a significant aspect of morbidity in COVID-19 patients. The clotting cascade is propagated by a series of proteases, including factor Xa and thrombin. While certain host proteases, including TMPRSS2 and furin, are known to be important for cleavage activation of SARS-CoV-2 spike to promote viral entry in the respiratory tract, other proteases may also contribute. Using biochemical and cell-based assays, we demonstrate that factor Xa and thrombin can also directly cleave SARS-CoV-2 spike, enhancing infection at the stage of viral entry. Coagulation factors increased SARS-CoV-2 infection in human lung organoids. A drug-repurposing screen identified a subset of protease inhibitors that promiscuously inhibited spike cleavage by both transmembrane serine proteases and coagulation factors. The mechanism of the protease inhibitors nafamostat and camostat may extend beyond inhibition of TMPRSS2 to coagulation-induced spike cleavage. Anticoagulation is critical in the management of COVID-19, and early intervention could provide collateral benefit by suppressing SARS-CoV-2 viral entry. We propose a model of positive feedback whereby infection-induced hypercoagulation exacerbates SARS-CoV-2 infectivity.
Collapse
Affiliation(s)
| | - Marisa Mercadante
- Department of Medicine, Weill Cornell Medical College, New York, United States
| | - Benjamin Nilsson-Payant
- Institute of Experimental Virology, TWINCORE Zentrum für Experimentelle und Klinische Infektionsforschung GmbH, Hannover, Germany
| | - Jared L Johnson
- Department of Medicine, Weill Cornell Medical College, New York, United States
| | - Javier A Jaimes
- Department of Microbiology and Immunology, Cornell University, Ithaca, United States
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, United States
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller University, New York, United States
| | - Yaron Bram
- Department of Medicine, Weill Cornell Medicine, New York, United States
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, United States
| | - Benjamin R tenOever
- Department of Microbiology, New York University Langone Medical Center, New York, United States
| | - Robert E Schwartz
- Department of Medicine, Weill Cornell Medicine, New York, United States
| | - Vasuretha Chandar
- Department of Medicine, Weill Cornell Medicine, New York, United States
| | - Lewis Cantley
- Department of Medicine, Weill Cornell Medical College, New York, United States
| |
Collapse
|
11
|
Damalanka VC, Voss JJLP, Mahoney MW, Primeau T, Li S, Klampfer L, Janetka JW. Macrocyclic Inhibitors of HGF-Activating Serine Proteases Overcome Resistance to Receptor Tyrosine Kinase Inhibitors and Block Lung Cancer Progression. J Med Chem 2021; 64:18158-18174. [PMID: 34902246 DOI: 10.1021/acs.jmedchem.1c01671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hepatocyte growth factor (HGF), the ligand for the MET receptor tyrosine kinase, is a tumor-promoting factor that is abundant in the tumor microenvironment. Proteolytic activation of inactive pro-HGF by one or more of the serine endopeptidases matriptase, hepsin, and HGF activator is the rate-limiting step in HGF/MET signaling. Herein, we have rationally designed a novel class of side chain cyclized macrocyclic peptide inhibitors. The new series of cyclic tripeptides has superior metabolic stability and significantly improved pharmacokinetics in mice relative to the corresponding linear peptides. We identified the lead compound VD2173 that potently inhibits matriptase and hepsin, which was tested in parallel alongside the acyclic inhibitor ZFH7116 using both in vitro and in vivo models of lung cancer. We demonstrated that both compounds block pro-HGF activation, abrogate HGF-mediated wound healing, and overcome resistance to EGFR- and MET-targeted therapy in lung cancer models. Furthermore, VD2173 inhibited HGF-dependent growth of lung cancer tumors in mice.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Jorine J L P Voss
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Matthew W Mahoney
- ProteXase Therapeutics, Inc., Saint Louis, Missouri 63108, United States
| | - Tina Primeau
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Shunqiang Li
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Lidija Klampfer
- ProteXase Therapeutics, Inc., Saint Louis, Missouri 63108, United States
| | - James W Janetka
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States.,ProteXase Therapeutics, Inc., Saint Louis, Missouri 63108, United States
| |
Collapse
|
12
|
Belitškin D, Pant SM, Munne P, Suleymanova I, Belitškina K, Hongisto HA, Englund J, Raatikainen T, Klezovitch O, Vasioukhin V, Li S, Wu Q, Monni O, Kuure S, Laakkonen P, Pouwels J, Tervonen TA, Klefström J. Hepsin regulates TGFβ signaling via fibronectin proteolysis. EMBO Rep 2021; 22:e52532. [PMID: 34515392 PMCID: PMC8567232 DOI: 10.15252/embr.202152532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor‐beta (TGFβ) is a multifunctional cytokine with a well‐established role in mammary gland development and both oncogenic and tumor‐suppressive functions. The extracellular matrix (ECM) indirectly regulates TGFβ activity by acting as a storage compartment of latent‐TGFβ, but how TGFβ is released from the ECM via proteolytic mechanisms remains largely unknown. In this study, we demonstrate that hepsin, a type II transmembrane protease overexpressed in 70% of breast tumors, promotes canonical TGFβ signaling through the release of latent‐TGFβ from the ECM storage compartment. Mammary glands in hepsin CRISPR knockout mice showed reduced TGFβ signaling and increased epithelial branching, accompanied by increased levels of fibronectin and latent‐TGFβ1, while overexpression of hepsin in mammary tumors increased TGFβ signaling. Cell‐free and cell‐based experiments showed that hepsin is capable of direct proteolytic cleavage of fibronectin but not latent‐TGFβ and, importantly, that the ability of hepsin to activate TGFβ signaling is dependent on fibronectin. Altogether, this study demonstrates a role for hepsin as a regulator of the TGFβ pathway in the mammary gland via a novel mechanism involving proteolytic downmodulation of fibronectin.
Collapse
Affiliation(s)
- Denis Belitškin
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Shishir M Pant
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Pauliina Munne
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Ilida Suleymanova
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Kati Belitškina
- Pathology Department, North Estonia Medical Centre, Tallinn, Estonia
| | - Hanna-Ala Hongisto
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Johanna Englund
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Tiina Raatikainen
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Olga Klezovitch
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Shuo Li
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Qingyu Wu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Outi Monni
- Research Programs Unit/Applied Tumor Genomics Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Satu Kuure
- GM-Unit, Laboratory Animal Centre, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Pirjo Laakkonen
- Laboratory Animal Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Jeroen Pouwels
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Topi A Tervonen
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Juha Klefström
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Finnish Cancer Institute & FICAN South, Helsinki University Hospital (HUS), Helsinki, Finland
| |
Collapse
|
13
|
Mahoney M, Damalanka VC, Tartell MA, Chung DH, Lourenço AL, Pwee D, Mayer Bridwell AE, Hoffmann M, Voss J, Karmakar P, Azouz NP, Klingler AM, Rothlauf PW, Thompson CE, Lee M, Klampfer L, Stallings CL, Rothenberg ME, Pöhlmann S, Whelan SPJ, O'Donoghue AJ, Craik CS, Janetka JW. A novel class of TMPRSS2 inhibitors potently block SARS-CoV-2 and MERS-CoV viral entry and protect human epithelial lung cells. Proc Natl Acad Sci U S A 2021; 118:e2108728118. [PMID: 34635581 PMCID: PMC8694051 DOI: 10.1073/pnas.2108728118] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
The host cell serine protease TMPRSS2 is an attractive therapeutic target for COVID-19 drug discovery. This protease activates the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and of other coronaviruses and is essential for viral spread in the lung. Utilizing rational structure-based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2, we have discovered covalent small-molecule ketobenzothiazole (kbt) TMPRSS2 inhibitors which are structurally distinct from and have significantly improved activity over the existing known inhibitors Camostat and Nafamostat. Lead compound MM3122 (4) has an IC50 (half-maximal inhibitory concentration) of 340 pM against recombinant full-length TMPRSS2 protein, an EC50 (half-maximal effective concentration) of 430 pM in blocking host cell entry into Calu-3 human lung epithelial cells of a newly developed VSV-SARS-CoV-2 chimeric virus, and an EC50 of 74 nM in inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells. Further, MM3122 blocks Middle East respiratory syndrome coronavirus (MERS-CoV) cell entry with an EC50 of 870 pM. MM3122 has excellent metabolic stability, safety, and pharmacokinetics in mice, with a half-life of 8.6 h in plasma and 7.5 h in lung tissue, making it suitable for in vivo efficacy evaluation and a promising drug candidate for COVID-19 treatment.
Collapse
Affiliation(s)
- Matthew Mahoney
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110
- ProteXase Therapeutics, Inc., Saint Louis, MO 63108
| | - Vishnu C Damalanka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110
| | - Michael A Tartell
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
- Program in Virology, Harvard Medical School, Boston, MA 02115
| | - Dong Hee Chung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - André Luiz Lourenço
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Dustin Pwee
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Anne E Mayer Bridwell
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen 37077, Germany
- Faculty of Biology and Psychology, Georg-August University Göttingen, Göttingen 37077, Germany
| | - Jorine Voss
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110
| | - Partha Karmakar
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110
| | - Nurit P Azouz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Andrea M Klingler
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
- Program in Virology, Harvard Medical School, Boston, MA 02115
| | - Cassandra E Thompson
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Melody Lee
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | | | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen 37077, Germany
- Faculty of Biology and Psychology, Georg-August University Göttingen, Göttingen 37077, Germany
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110;
- ProteXase Therapeutics, Inc., Saint Louis, MO 63108
| |
Collapse
|
14
|
Mahoney M, Damalanka VC, Tartell MA, Chung DH, Lourenco AL, Pwee D, Mayer Bridwell AE, Hoffmann M, Voss J, Karmakar P, Azouz N, Klingler AM, Rothlauf PW, Thompson CE, Lee M, Klampfer L, Stallings C, Rothenberg ME, Pöhlmann S, Whelan SP, O'Donoghue AJ, Craik CS, Janetka JW. A novel class of TMPRSS2 inhibitors potently block SARS-CoV-2 and MERS-CoV viral entry and protect human epithelial lung cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34131661 DOI: 10.1101/2021.05.06.442935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The host cell serine protease TMPRSS2 is an attractive therapeutic target for COVID-19 drug discovery. This protease activates the Spike protein of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and of other coronaviruses and is essential for viral spread in the lung. Utilizing rational structure-based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2, we have discovered a novel class of small molecule ketobenzothiazole TMPRSS2 inhibitors with significantly improved activity over existing irreversible inhibitors Camostat and Nafamostat. Lead compound MM3122 ( 4 ) has an IC 50 of 340 pM against recombinant full-length TMPRSS2 protein, an EC 50 of 430 pM in blocking host cell entry into Calu-3 human lung epithelial cells of a newly developed VSV SARS-CoV-2 chimeric virus, and an EC 50 of 74 nM in inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells. Further, MM3122 blocks Middle East Respiratory Syndrome Coronavirus (MERS-CoV) cell entry with an EC 50 of 870 pM. MM3122 has excellent metabolic stability, safety, and pharmacokinetics in mice with a half-life of 8.6 hours in plasma and 7.5 h in lung tissue, making it suitable for in vivo efficacy evaluation and a promising drug candidate for COVID-19 treatment.
Collapse
|
15
|
Kastenhuber ER, Jaimes JA, Johnson JL, Mercadante M, Muecksch F, Weisblum Y, Bram Y, Schwartz RE, Whittaker GR, Cantley LC. Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33821268 DOI: 10.1101/2021.03.31.437960] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coagulopathy is recognized as a significant aspect of morbidity in COVID-19 patients. The clotting cascade is propagated by a series of proteases, including factor Xa and thrombin. Other host proteases, including TMPRSS2, are recognized to be important for cleavage activation of SARS-CoV-2 spike to promote viral entry. Using biochemical and cell-based assays, we demonstrate that factor Xa and thrombin can also directly cleave SARS-CoV-2 spike, enhancing viral entry. A drug-repurposing screen identified a subset of protease inhibitors that promiscuously inhibited spike cleavage by both transmembrane serine proteases as well as coagulation factors. The mechanism of the protease inhibitors nafamostat and camostat extend beyond inhibition of TMPRSS2 to coagulation-induced spike cleavage. Anticoagulation is critical in the management of COVID-19, and early intervention could provide collateral benefit by suppressing SARS-CoV-2 viral entry. We propose a model of positive feedback whereby infection-induced hypercoagulation exacerbates SARS-CoV-2 infectivity.
Collapse
|
16
|
Kwon H, Ha H, Jeon H, Jang J, Son SH, Lee K, Park SK, Byun Y. Structure-activity relationship studies of dipeptide-based hepsin inhibitors with Arg bioisosteres. Bioorg Chem 2020; 107:104521. [PMID: 33334587 DOI: 10.1016/j.bioorg.2020.104521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/09/2023]
Abstract
Hepsin is a type II transmembrane serine protease (TTSP) associated with cell proliferation and overexpressed in several types of cancer including prostate cancer (PCa). Because of its significant role in cancer progression and metastasis, hepsin is an attractive protein as a potential therapeutic and diagnostic biomarker for PCa. Based on the reported Leu-Arg dipeptide-based hepsin inhibitors, we performed structural modification and determined in vitro hepsin- and matriptase-inhibitory activities. Comprehensive structure-activity relationship studies identified that the p-guanidinophenylalanine-based dipeptide analog 22a exhibited a strong hepsin-inhibitory activity (Ki = 50.5 nM) and 22-fold hepsin selectivity over matriptase. Compound 22a could be a prototype molecule for structural optimization of dipeptide-based hepsin inhibitors.
Collapse
Affiliation(s)
- Hongmok Kwon
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Hyunsoo Ha
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Hayoung Jeon
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Jaebong Jang
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Sang-Hyun Son
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Kiho Lee
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Song-Kyu Park
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea; Biomedical Research Center, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea.
| |
Collapse
|
17
|
Murza A, Dion SP, Boudreault PL, Désilets A, Leduc R, Marsault É. Inhibitors of type II transmembrane serine proteases in the treatment of diseases of the respiratory tract - A review of patent literature. Expert Opin Ther Pat 2020; 30:807-824. [PMID: 32887532 DOI: 10.1080/13543776.2020.1817390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Type II transmembrane serine proteases (TTSPs) of the human respiratory tract generate high interest owing to their ability, among other roles, to cleave surface proteins of respiratory viruses. This step is critical in the viral invasion of coronaviruses, including SARS-CoV-2 responsible for COVID-19, but also influenza viruses and reoviruses. Accordingly, these cell surface enzymes constitute appealing therapeutic targets to develop host-based therapeutics against respiratory viral diseases. Additionally, their deregulated levels or activity has been described in non-viral diseases such as fibrosis, cancer, and osteoarthritis, making them potential targets in these indications. AREAS COVERED Areas covered: This review includes WIPO-listed patents reporting small molecules and peptide-based inhibitors of type II transmembrane serine proteases of the respiratory tract. EXPERT OPINION Expert opinion: Several TTSPs of the respiratory tract represent attractive pharmacological targets in the treatment of respiratory infectious diseases (notably COVID-19 and influenza), but also against idiopathic pulmonary fibrosis and lung cancer. The current emphasis is primarily on TMPRSS2, matriptase, and hepsin, yet other TTSPs await validation. Compounds listed herein are predominantly peptidomimetic inhibitors, some with covalent reversible mechanisms of action and high potencies. Their selectivity profile, however, are often only partially characterized. Preclinical data are promising and warrant further advancement in the above diseases.
Collapse
Affiliation(s)
- Alexandre Murza
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , Sherbrooke (Québec), Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke (Québec), Canada
| | - Sébastien P Dion
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , Sherbrooke (Québec), Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke (Québec), Canada
| | - Pierre-Luc Boudreault
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , Sherbrooke (Québec), Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke (Québec), Canada
| | - Antoine Désilets
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , Sherbrooke (Québec), Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke (Québec), Canada
| | - Richard Leduc
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , Sherbrooke (Québec), Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke (Québec), Canada
| | - Éric Marsault
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , Sherbrooke (Québec), Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke (Québec), Canada
| |
Collapse
|
18
|
N-glycan in the scavenger receptor cysteine-rich domain of hepsin promotes intracellular trafficking and cell surface expression. Int J Biol Macromol 2020; 161:818-827. [DOI: 10.1016/j.ijbiomac.2020.06.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
|
19
|
Chen S, Yim JJ, Bogyo M. Synthetic and biological approaches to map substrate specificities of proteases. Biol Chem 2020; 401:165-182. [PMID: 31639098 DOI: 10.1515/hsz-2019-0332] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023]
Abstract
Proteases are regulators of diverse biological pathways including protein catabolism, antigen processing and inflammation, as well as various disease conditions, such as malignant metastasis, viral infection and parasite invasion. The identification of substrates of a given protease is essential to understand its function and this information can also aid in the design of specific inhibitors and active site probes. However, the diversity of putative protein and peptide substrates makes connecting a protease to its downstream substrates technically difficult and time-consuming. To address this challenge in protease research, a range of methods have been developed to identify natural protein substrates as well as map the overall substrate specificity patterns of proteases. In this review, we highlight recent examples of both synthetic and biological methods that are being used to define the substrate specificity of protease so that new protease-specific tools and therapeutic agents can be developed.
Collapse
Affiliation(s)
- Shiyu Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joshua J Yim
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
20
|
Blay V, Li MC, Ho SP, Stoller ML, Hsieh HP, Houston DR. Design of drug-like hepsin inhibitors against prostate cancer and kidney stones. Acta Pharm Sin B 2020; 10:1309-1320. [PMID: 32874830 PMCID: PMC7452031 DOI: 10.1016/j.apsb.2019.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/24/2019] [Accepted: 09/23/2019] [Indexed: 12/30/2022] Open
Abstract
Hepsin, a transmembrane serine protease abundant in renal endothelial cells, is a promising therapeutic target against several cancers, particularly prostate cancer. It is involved in the release and polymerization of uromodulin in the urine, which plays a role in kidney stone formation. In this work, we design new potential hepsin inhibitors for high activity, improved specificity towards hepsin, and promising ADMET properties. The ligands were developed in silico through a novel hierarchical pipeline. This pipeline explicitly accounts for off-target binding to the related serine proteases matriptase and HGFA (human hepatocyte growth factor activator). We completed the pipeline incorporating ADMET properties of the candidate inhibitors into custom multi-objective optimization functions. The ligands designed show excellent prospects for targeting hepsin via the blood stream and the urine and thus enable key experimental studies. The computational pipeline proposed is remarkably cost-efficient and can be easily adapted for designing inhibitors against new drug targets.
Collapse
Affiliation(s)
- Vincent Blay
- Division of Biomaterials and Bioengineering, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
- Corresponding author. Tel.: +1 415 5142818.
| | - Mu-Chun Li
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan 350, China
| | - Sunita P. Ho
- Division of Biomaterials and Bioengineering, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Mashall L. Stoller
- Division of Biomaterials and Bioengineering, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Hsing-Pang Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan 350, China
| | - Douglas R. Houston
- University of Edinburgh, Institute of Quantitative Biology, Biochemistry and Biotechnology, Edinburgh, Scotland, EH9 3BF, UK
| |
Collapse
|
21
|
Jin L, Shen F, Weinfeld M, Sergi C. Insulin Growth Factor Binding Protein 7 (IGFBP7)-Related Cancer and IGFBP3 and IGFBP7 Crosstalk. Front Oncol 2020; 10:727. [PMID: 32500027 PMCID: PMC7242731 DOI: 10.3389/fonc.2020.00727] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022] Open
Abstract
The insulin/insulin-like growth factors (IGFs) have crucial tasks in the growth, differentiation, and proliferation of healthy and pernicious cells. They are involved in coordinated complexes, including receptors, ligands, binding proteins, and proteases. However, the systems can become dysregulated in tumorigenesis. Insulin-like growth factor-binding protein 7 (IGFBP7) is a protein belonging to the IGFBP superfamily (also termed GFBP-related proteins). Numerous studies have provided evidence that IGFBP3 and IGFBP7 are involved in a variety of cancers, including hepatocellular carcinoma (HCC), breast cancer, gastroesophageal cancer, colon cancer, prostate cancer, among many others. Still, very few suggest an interaction between these two molecules. In studying several cancer types in our laboratories, we found that both proteins share some crucial signaling pathways. The objective of this review is to present a comprehensive overview of the relationship between IGFBP7 and cancer, as well as highlighting IGFBP3 crosstalk with IGFBP7 reported in recent studies.
Collapse
Affiliation(s)
- Li Jin
- Department of Laboratory Medicine, Shiyan Taihe Hospital, College of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Fan Shen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Michael Weinfeld
- Division of Experimental Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada.,Department of Orthopedics, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China.,Key Laboratory of Fermentation Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Stollery Children's Hospital, University Alberta Hospital, Edmonton, AB, Canada
| |
Collapse
|
22
|
Abstract
Over the last two decades, a novel subgroup of serine proteases, the cell surface-anchored serine proteases, has emerged as an important component of the human degradome, and several members have garnered significant attention for their roles in cancer progression and metastasis. A large body of literature describes that cell surface-anchored serine proteases are deregulated in cancer and that they contribute to both tumor formation and metastasis through diverse molecular mechanisms. The loss of precise regulation of cell surface-anchored serine protease expression and/or catalytic activity may be contributing to the etiology of several cancer types. There is therefore a strong impetus to understand the events that lead to deregulation at the gene and protein levels, how these precipitate in various stages of tumorigenesis, and whether targeting of selected proteases can lead to novel cancer intervention strategies. This review summarizes current knowledge about cell surface-anchored serine proteases and their role in cancer based on biochemical characterization, cell culture-based studies, expression studies, and in vivo experiments. Efforts to develop inhibitors to target cell surface-anchored serine proteases in cancer therapy will also be summarized.
Collapse
|
23
|
Damalanka VC, Wildman SA, Janetka JW. Piperidine carbamate peptidomimetic inhibitors of the serine proteases HGFA, matriptase and hepsin. MEDCHEMCOMM 2019; 10:1646-1655. [PMID: 31803403 DOI: 10.1039/c9md00234k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022]
Abstract
Matriptase and hepsin are type II transmembrane serine proteases (TTSPs). Along with related S1 trypsin like serine protease HGFA (hepatocyte growth factor activator), their unregulated proteolytic activity has been associated with cancer including tumor progression and metastasis. These three proteases have two substrates in common, hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP), the ligands for MET and recepteur d'origine nantais (RON) receptor tyrosine kinases. Mechanism-based tetrapeptide and benzamidine inhibitors of these proteases have been shown to block HGF/MET and MSP/RON cancer cell signaling. Herein, we have rationally designed a new class of peptidomimetic hybrid small molecule piperidine carbamate dipeptide inhibitors comparable in potency to much larger tetrapeptides. We have identified multiple compounds which have potent activity against matriptase and hepsin and with excellent selectivity over the off-target serine proteases factor Xa and thrombin.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , St. Louis , Missouri , USA . ; Tel: +314 362 0509
| | - Scott A Wildman
- University of Wisconsin Carbone Cancer Center , Drug Development Core , University of Wisconsin-Madison , Madison , Wisconsin , USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , St. Louis , Missouri , USA . ; Tel: +314 362 0509
| |
Collapse
|
24
|
Montaruli M, Alberga D, Ciriaco F, Trisciuzzi D, Tondo AR, Mangiatordi GF, Nicolotti O. Accelerating Drug Discovery by Early Protein Drug Target Prediction Based on a Multi-Fingerprint Similarity Search. Molecules 2019; 24:molecules24122233. [PMID: 31207991 PMCID: PMC6631269 DOI: 10.3390/molecules24122233] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 01/06/2023] Open
Abstract
In this continuing work, we have updated our recently proposed Multi-fingerprint Similarity Search algorithm (MuSSel) by enabling the generation of dominant ionized species at a physiological pH and the exploration of a larger data domain, which included more than half a million high-quality small molecules extracted from the latest release of ChEMBL (version 24.1, at the time of writing). Provided with a high biological assay confidence score, these selected compounds explored up to 2822 protein drug targets. To improve the data accuracy, samples marked as prodrugs or with equivocal biological annotations were not considered. Notably, MuSSel performances were overall improved by using an object-relational database management system based on PostgreSQL. In order to challenge the real effectiveness of MuSSel in predicting relevant therapeutic drug targets, we analyzed a pool of 36 external bioactive compounds published in the Journal of Medicinal Chemistry from October to December 2018. This study demonstrates that the use of highly curated chemical and biological experimental data on one side, and a powerful multi-fingerprint search algorithm on the other, can be of the utmost importance in addressing the fate of newly conceived small molecules, by strongly reducing the attrition of early phases of drug discovery programs.
Collapse
Affiliation(s)
- Michele Montaruli
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy.
| | - Domenico Alberga
- Cineca, Via Magnanelli 6/3, 40033 Casalecchio di Reno, Bologna, Italy.
| | - Fulvio Ciriaco
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy.
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy.
| | - Anna Rita Tondo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via la Masa 19, 20156 Milano, Italy.
| | | | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy.
| |
Collapse
|